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Abstract. In this article, we investigate the existence, uniqueness and stability of mild solutions for a
class of higher-order nonautonomous neutral stochastic differential equations (NSDEs) with infinite delay
driven by Poisson jumps and Rosenblatt process in Hilbert space. More precisely, using semigroup theory
and successive approximation method, we establish a set of sufficient conditions for obtained the required
result. Further, the result is deduced to study the higher-order autonomous system. Finally, examples are
provided to demonstrate the obtain results.

1. Introduction

Noise or arbitry fluctuations are unavoided and omnipresent in nature as well as in man-made systems,
therefore it is better to study the existence, uniqueness of stochastic models rather than deterministic
models. The deterministic system often fluctuates due to environmental noise. So, it is important and
necessary for us to deal with stochastic differential equations (SDEs). The differential equations which
involve randomness in the mathematical description of a given phenomena as known as SDEs. In recent
years, SDEs in both finite and infinite dimensions have attracted much attention in many areas due to their
applications in describing various phenomenon in population dynamics, electrical engineering, ecology,
medicine biology, and other areas of science and engineering. For good introduction to SDEs and their
applications see [1–4].

Higher-order differential equations capture the dynamic behavior of many natural phenomena and
have found applications in various fields, for example, biology, physics and finance. In many cases, it is
advantageous to treat the higher-order SDEs directly rather than converting them to first-order systems. A
varity of problems arising in mechanics, molecular dynamics, and quantum mechanics can be described in
general by second-order nonlinear differential equations. For instance, it is useful for engineers to model
mechanical vibrations or charge on a capacitor or condenser subjected to white noise excitation through
a second-order SDEs see [9–12, 25–27]. Due to this reason, researchers interest to focus on second-order
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SDEs. In recent years, existence and stability results for second-order SDEs have been considered by many
scholars. Chen [6] discussed the exponential and asymptotical stability for second-order stochastic partial
differential equations with infinite delay. Using Banach fixed point theorem, the sufficient conditions for
the existenc, exponential stability and as well as almost sure exponential stability of SDEs with Poisson
jumps. In the study of Ren and Sakthivel [7], proved the existence and uniqueness of mild solution of
second-order neutral stochastic differential equations (NSDEs) with Poisson jumps under Lipschitz and
non-Lipschitz conditions. In very recently, Dhanalakshmi and Balasubramaniam [8], investigated the
stability of higher-order fractional NSDEs with Poisson jumps and Rosenblatt process via Nussbaum fixed
point theorem.

Nowadays various real-life situations can be modeled by using Poisson jumps. For example, if a system
jumps from a “normal state” to a “other state”, the strength of systems is random. In order to make realistic
model, a jumps term is included in and dynamical systems. Recently, the study of SDEs driven by Poisson
jumps has considerable attentions see [8, 9, 13, 14]. On the other hand, the fractional Brownian motion (fBm)
are utilized largely due to its self-similarity, stationary of increments and long-range dependence, for more
details see [15–17, 24] and the references therein. Firstly, Tudor [18], investigated the Rosenblatt process
which is a self-similar process with stationary increments and it appears as limit of long-range dependent
stationary series in the Non-Central Limit Theorem. Subsequently, Maejima and Tudor [19] established the
new properties of the Rosenblatt distribution. More recently, many researchers, investigated the SDEs with
Rosenblatt process, one can refer the articles [8, 20–23].

Moreover, nonautonomous models are important to deal with the changes in the vital rates through
time as a result of environmetal variation. Besides, to the best of authors’ knowledge, there is no paper in
the literature that is involved with the NSDEs with Poisson jumps and Rosenblatt process. Motivated by
this consideration, in this article, we consider the higher-order nonautonomous NSDEs with infinite delay
driven by Poisson jumps and Rosenblatt process.

d
[
u
′

(t) − f1(t,ut)
]

= A(t)
[
u(t) − f1(t,ut)

]
dt + f2(t,ut)dt + g(t,ut)dw(t) +

∫
Z

h(t,ut, η)Ñ(dt, dη)

+ σ(t)dZH(t), t ∈ [0,T],
u0 = ϕ ∈ B, u

′

(0) = ζ, (1)

where A(t) : D(A(t)) ⊂ H → H, a closed linear operator, which generators an evolution operators S(t, s).
The functions f1, f2 : [0,T] ×B → H, g : [0,T] ×B → L0

2, h : [0,T] ×B × Z → H and σ : [0,T] → L0
2 are

appropriate mappings specified later. The delay ut : (−∞, 0] → H is defined by ut(θ) = u(t + θ) for t ≥ 0
belongs to the phase space B, which is defined axiomatically. The initial data ϕ =

{
ϕ(t) : −∞ < t ≤ 0

}
is an

F0-measurable, B-valued stochastic process independent of t. In Ñ(dt, dη) = N(dt, dη)− dt(λdη) the Poisson
measure Ñ(dt, dη) denotes the Poisson counting measure.

This manuscript is organized as follows: In section 2, basic notations, preliminaries, and some basic re-
sults are recalled to use in the sequel. In section 3, we study the existence and uniqueness of nonautonomous
NSDEs with infinite delays driven by Poisson jumps and Rosenblatt process. In section 4, we study the
stability through the continuous dependence on initial values. In section 5, we prove the autonomous case
of the system. An example are provided to demonstrate the obtain results in section 6 and conclusion is
derived in section 7.

2. Preliminaries

In this section, we introduce notations and preliminary results need to establish our results. Let
(H, ‖·‖ , < ·, · >) and (K, ‖·‖ , < ·, · >) denote two real separable Hilbert spaces, with their vectors norms and
their products, respectively. We denote by L(K;H) the set of all linear bounded operators from K andH,
which is equipped with the usual operator norm ‖·‖. Let (Ω,F,P) be a complete filtered probability space
furnished with complete family of right continuous increasing sub σ-algebras {Ft, t ∈ J} satisfyingFt ⊂ F an
H-valued random variable is an F-measurable function x(t) : Ω→ H, and a collection of random variable



K. Ramkumar et al. / Filomat 35:2 (2021), 353–365 355

S = {x(t, ω) : Ω→H : t ∈ J} is called a stochastic process. Let βn(t)(n = 1, 2, . . . ) be a sequence of real valued
one-dimensional standard Brownian motions independent of (Ω,F,P). Set w(t) =

∑
∞

n=1
√
λnβn(t)ζn(t), t ≥ 0,

where, λn ≥ 0 are non-negative real numbers and {ζn}(n = 1, 2, . . . ) is complete orthonormal basis in K.
Let Q ∈ L(K,H) be an operator defined by Qζn = λnζn with finite Tr(Q) =

∑
∞

n=1 λn ≤ ∞. Then the above
K-valued stochastic process w(t) is called a Q-Wiener process. Let Ψ ∈ L0

Q(K,H) and define,

‖Ψ‖2
L

0
2

= Tr(ΨQΨ∗) =

∞∑
n=1

‖

√
λnΨζn‖

2.

If ‖Ψ‖Q < ∞, then Ψ is known as Q-Hilbert Schmidt operator. For more details on concepts and theory
on SDEs, one can refer the articles [7, 8, 13, 24] and references therein. The axioms of the space B are
established for F0-measurable functions from (−∞, 0] into H endowed with a norm ‖·‖B, which satisfies
the following axioms:
(a) If u : (−∞,T]→H, T > 0 is such that u0 ∈ B, then, for every t ∈ [0,T], the following conditions hold:
(i) ut ∈ B,
(ii) ‖u(t)‖ ≤ m ‖ut‖B ,
(iii) ‖ut‖B ≤M(t) sup0≤s≤t ‖u(s)‖ + N(t) ‖u0‖B
where m > 0 is a constant, M,N : [0,+∞) → [1,+∞), M is continuous, N is locally bounbed, M,N are
independent of u(·).
(b) The space B is complete.
Let u : (−∞,T]→H be an Ft-adapted measurable process such that F0-adapted process u0 = ϕ ∈ L0

2(Ω,B)
then

E ‖us‖B ≤ NE
∥∥∥ϕ∥∥∥

B
+ M sup

0≤s≤T
E ‖us‖

where N = supt∈[0,T] {N(t)} and M = supt∈[0,T] {M(t)}. Define M2((−∞, 0),B) be the space of all H-valued
continuous Ft-adapted process u = {u(t)}−∞<t≤T such that
(1) u0 = ϕ ∈ B and u(t) is continuous on [0,T]
(2) define the norm ‖·‖M inM2((−∞,T],H) by

‖x‖2M = E
∥∥∥ϕ∥∥∥2

B
+ E

∫ T

0
‖u(s)‖2 dt < ∞. (2)

Then,M2((−∞,T],H) with the norm is a Banach space.

Definition 2.1. [18] The basic concepts of the Rosenblatt process as for as Wiener integral, let ZH(t) be one-
dimensional Rosenblatt process with the Hurst parameter H ∈ ( 1

2 , 1). Hence the Rosenblatt process with parameter
H > 1

2 representation as

ZH(t) = d(H)
∫ t

0

∫ t

0

[∫ t

0

∂K
∂U

(U, ζ1)
∂K
∂U

(U, ζ1)dU
]

dB(ζ1)dB(ζ2)

where KH(t, s) is defined as

KH(t, s) = CHs
1
2−H

∫ t

s
(U − s)H− 3

2U
H− 3

2 dU, t > s

with CH =
√

H(2H−1)
γ(2−2H,H− 1

2 )
.

For basic preliminaries and fundamental results on Rosenblatt process can refer the articles therein
[18, 19].

Definition 2.2. A mapS : [0,T]× [0,T]→ L(H) is said to be an evolution operator for equation (1) if the following
conditions are fulfilled:
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(A1) For each u ∈H the map (t, s)→ S(t, s)u is continuously differentiable and
(i) For each t ∈ [0,T], S(t, t) = 0.
(ii) For all t, s ∈ [0,T] and each u ∈H, ∂

∂tS(t, s)u|t=s = u and ∂
∂tS(t, s)u|t=s = −u.

(A2) For all s, t ∈ [0,T] if u ∈ D , then S(t, s)u ∈ D , the map (t, s) → S(t, s)u is of class C2 and (i) ∂2

∂t2S(t, s)u =
A(t)S(t, s)x.
(ii) ∂2

∂s2S(t, s)u = S(t, s)A(s)x.
(iii) ∂2

∂s∂t
∂
∂tS(t, s)u|t=s = 0.

(A3) For all s, t ∈ [0,T], if x ∈ D , then ∂
∂sS(t, s)x ∈ D , there exist ∂3

∂t2∂sS(t, s)x, ∂3

∂s2∂tS(t, s)x and
(i) ∂3

∂t2∂sS(t, s)x = A(t) ∂∂sS(t, s)x. Moreover, the map (t, s)→ A(t) ∂∂sS(t, s)x is continuous.
(ii) ∂3

∂t2∂sS(t, s)x = ∂
∂tS(t, s)A(s)x.

Moreover, we assume that there exists an evolution operator S(t, s) associated to the operators A(t).
Also, we define the operator C(t, s) = −

∂S(t,s)
∂s . Furthermore, L > 0 such that

sup
0≤s,t≤T

‖S(t, s)‖2 ≤ L, and sup
0≤s,t≤T

‖C(t, s)‖2 ≤ L.

Definition 2.3. A continuous stochastic process u : (−∞,T]→H is said to be a mild solution of (1) if
(i) u(t) is F-adapted and {ut : t ∈ [0,T]} is B-valued,
(ii)

∫ T

0 ‖u(t)‖2 < ∞, P-a.s.,
(iii) For each t ∈ [0,T], u(t) satisfies the following integral equation:

u(t) = C(t, 0)ϕ(0) +S(t, 0)
[
ζ − f1(0, ϕ)

]
+ f1(s,us) +

∫ t

0
S(t, s)f(s,us)ds

+

∫ t

0
S(t, s)g(s,us)dw(s) +

∫ t

0

∫
Z

S(t, s)h(s,us, η)Ñ(ds, dη)

+

∫ t

0
S(t, s)σ(s)dZH(s). (3)

(iv) u0 = ϕ ∈ B.

3. Existence and Uniqueness Results

In this section, we prove the existence, uniqueness and stability of mild solutions for nonautonomous
NSDEs with infinite delay driven by Poisson jumps and Rosenblatt process. In order to prove the result,
we impose the conditions as follows:

(H1) The functions f1, f : [0,T] ×B → H, g : [0,T] ×B → L0
2, h : [0,T] ×B × Z → H and σ : [0,T] → L0

2
satisfy ∀ t ∈ [0,T], x.y ∈ B

(i)
∥∥∥f(t, x) − f(t, y)

∥∥∥2
∨

∥∥∥g(t, x) − g(t, y)
∥∥∥2
≤ κ

(∥∥∥x − y
∥∥∥2

B

)
,

(ii)
∫
Z

∥∥∥h(s, x, η) − h(s, y, η)
∥∥∥2
λ(dη)ds ∨(∫

Z

∥∥∥h(s, x, η) − h(s, y, η)
∥∥∥4
λ(dη)ds

)1/2

≤ κ
(∥∥∥x − y

∥∥∥2

B

)
,

(iii)
(∫
Z

∥∥∥h(s, x, η) − h(s, y, η)
∥∥∥4
λ(dη)ds

)1/2

≤ κ
(∥∥∥x − y

∥∥∥2

B

)
,

where κ(·) is a concave, nondecreasing, continuous function fromR+ toR+ such that κ(0) = 0, κ(ϑ) > 0
for ϑ > 0 and

∫
0+

dϑ
κ(ϑ) = ∞.
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(H2) There exists Mf1 > 0 such that Mf1 <
1
14 for any x, y ∈ D∥∥∥f1(t, x) − f1(t, y)

∥∥∥2
≤Mf1

∥∥∥x − y
∥∥∥2
, f1(t, 0) = 0, t ≥ 0.

(H3) The function σ : [0,T]→ L2
Q satisfies

∥∥∥∥∥∥
∫ b

a
σ(s)dZH(s)

∥∥∥∥∥∥
2

≤ C(H)t2H

 sup
t∈[0,T]

‖σ(t)‖2
L

0
Q(K,H)

 .
(H4) For all t ∈ [0,T] there exists κ0 > 0,

‖f(t, 0)‖2 ∨ ‖g(t, 0)‖2 ∨
∫
Z

∥∥∥h(t, 0, η)
∥∥∥2
≤ κ0.

Further, in order to prove the result, let us now introduce the successive approximations as follows:

u0(t) = C(t, 0)ϕ(0) +S(t, 0)
[
ζ − f1(0, ϕ)

]
, t ∈ [0,T],

un(t) = C(t, 0)ϕ(0) +S(t, 0)
[
ζ − f1(0, ϕ)

]
+ f1(s,un

s ) +

∫ t

0
C(t, s)f(s,un−1

s )ds

+

∫ t

0
S(t, s)g(s,un−1

s )dw(s) +

∫ t

0

∫
Z

S(t, s)h(s,un−1
s , η)Ñ(ds, dη)

+

∫ t

0
S(t, s)σ(s)dZH(s). (4)

un(t) = ϕ(t), ∞ < t ≤ 0, n ≥ 1.

Lemma 3.1. Assume that the conditions (H1) − (H4) hold. Then, for all t ∈ [−∞,T],n ≥ 0 there exists a constant
C1 such that E ‖un

‖
2
≤ C1.

Proof: For all t ∈ (−∞,T], the sequence un(t), n ≥ 1 is bounded. It is obvious that u0(t) ∈ M2((−∞,T],H).
By induction, we show that un(t) ∈M2((−∞,T],H). Now, we have

E
(
sup
0≤s≤t
‖un(s)‖2

)
≤ 7LE

∥∥∥ϕ∥∥∥2
+ 14LE ‖ζ‖2 + 14LMf1E

∥∥∥ϕ∥∥∥2

+ 7Mf1LE ‖un(s)‖2 + 14LTE
∫ t

0
κ
(∥∥∥un−1

s

∥∥∥2
)

ds + 14LT2κ0

+ 14LE
∫ t

0
κ
(∥∥∥un−1

s

∥∥∥2
)

ds + 14LTκ0

+ 21LE
∫ t

0
κ
(∥∥∥un−1

s

∥∥∥2
)

ds + 14LTκ0 + 7LC(H)T2H

≤ Q1 + 7Mf1E
∥∥∥un

s

∥∥∥2
+ 7L(2T + 5)E

∫ t

0
κ
(∥∥∥un−1

s

∥∥∥2
)

ds

whereQ1 = 7LE
∥∥∥ϕ∥∥∥2

+ 14LE ‖ζ‖2 + 14LMf1E
∥∥∥ϕ∥∥∥2

+ 14LT2κ0 + 28LTκ0 + 14LT(T + 2)κ0 + 7LC(H)T2H. Given
that κ(·) is a concave and κ(0) = 0, we can find positive constants a and b such that

κ(υ) ≤ a + bυ, for all υ ≥ 0.
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So, let us derive that

E
(
sup
0≤s≤t
‖un(s)‖2

)
≤ Q1 + 7La(2T + 5)T + 7Mf1E

∥∥∥un
s

∥∥∥2
+ 7L(2T + 5)b

∫ t

0
E
(∥∥∥un−1(s)

∥∥∥2
)

ds

≤ Q2 + 7Mf1E
∥∥∥un

s

∥∥∥2
+ 7L(2T + 5)b

∫ t

0
E
(
sup
0≤s≤t

∥∥∥un−1(s)
∥∥∥2

)
ds

where Q2 = Q1 + 7La(2T + 5)T and noting that

E
(
sup
0≤s≤t
‖un(s)‖2

)
≤ Q2 + 14Mf1E

∥∥∥ϕ∥∥∥2
+ 14Mf1E sup

0≤s≤t

∥∥∥un
s

∥∥∥2

+ 14Lb(2T + 5)TE
∥∥∥ϕ∥∥∥2

+ 14Lb(2T + 5)
∫ t

0
E
(
sup
0≤s≤t

∥∥∥un−1
s

∥∥∥2
)

ds

≤
1

1 − 14Mf1

{
Q3 + 14Lb(2T + 5)

∫ t

0
E
(
sup
0≤s≤t

∥∥∥un−1
s

∥∥∥2
)

ds
}

where Q3 = Q214Mf1E
∥∥∥ϕ∥∥∥2

+ 14Lb(2T + 5)TE
∥∥∥ϕ∥∥∥2

. On the other hand, for any k ≥ 1,

max
1≤n≤k

E sup
0≤s≤t

∥∥∥un−1(s)
∥∥∥2
≤ E

∥∥∥u0(s)
∥∥∥2

+ max
1≤n≤k

E sup
0≤s≤t

∥∥∥un−1(s)
∥∥∥2
,

max
1≤n≤k

E sup
0≤s≤t
‖un(s)‖2 ≤

1
1 − 14Mf1

{
Q3 + 14Lb(2T + 5)

∫ t

0
E
(∥∥∥un−1

s

∥∥∥2
)

ds

+ 14Lb(2T + 5)
∫ t

0
max
1≤n≤k

E ‖un(r)‖2 ds
}

≤
1

1 − 14Mf1

{
Q3 + 14Lb(2T + 5)[2E

∥∥∥ϕ∥∥∥2
+ 4LE ‖ζ‖2 + 4Lf1E

∥∥∥ϕ∥∥∥2
]T

+ 14Lb(2T + 5)
∫ t

0
max
1≤n≤k

E
(
sup
0≤s≤t
‖un(r)‖

)2

ds
}

≤ Q4 +Q5

∫ t

0
max
1≤n≤k

E
(
sup
0≤s≤t
‖un(s)‖

)2

ds.

where
Q4 =

1
1 − 14Mf1

{
Q3 + 14Lb(2T + 5)[2E

∥∥∥ϕ∥∥∥2
+ 4LE ‖ζ‖2 + 4Lf1E

∥∥∥ϕ∥∥∥2
]T

}
Q5 =

14Lb(2T + 5)
1 − 14Mf1

max
1≤n≤k

E
(
sup
0≤s≤t
‖un(s)‖2

)
≤ Q4 +Q5

∫ t

0
max
1≤n≤k

E
(
sup
0≤s≤t
‖un(s)‖

)2

ds.

Using the Gronwall inequality in the above inequality, we get

max
1≤n≤k

E
(
sup
0≤s≤t
‖un(s)‖2

)
≤ Q4eQ5T.

Since, k is arbitrary, we have

E
(
sup
0≤s≤t
‖un(s)‖2

)
≤ Q4eQ5T, ∀ 0 ≤ t ≤ T, n ≥ 1.
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Hence by the result, we have

E ‖un
‖

2 = E
∥∥∥u2

0

∥∥∥2
+

∫ t

0
E ‖un(s)‖2 ds

≤ E
∥∥∥ϕ∥∥∥2

+ TQ4eQ5T
≤ C1 < ∞,

where C1 = E
∥∥∥ϕ∥∥∥2

+ TQ4eQ5T. Hence the proof.

Lemma 3.2. If the assumptions of Lemma 3.1 are satisfied, then there exist positive constants C2,C3 such that

E
(
sup
0≤s≤t

∥∥∥un+m(s) − un(s)
∥∥∥2

)
≤ C2

∫ t

0
κ
(
E
(∥∥∥un+m−1(r) − un−1(r)

∥∥∥2
))

ds

E
(
sup
0≤s≤t

∥∥∥un+m(s) − un(s)
∥∥∥2

)
≤ C3t.

for all 0 ≤ t ≤ T, n,m ≥ 1.

Proof: By the definition of un, we obtain

E
(
sup
0≤s≤t

∥∥∥un+m(s) − un(s)
∥∥∥2

)
≤ 4E

(
sup
0≤s≤t

∥∥∥f1(s,un+m) − f1(s,un)
∥∥∥2

)
+ 4E

sup
0≤s≤t

∥∥∥∥∥∥
∫ t

0
S(t, s)[f(s,un+m−1) − f(s,un−1)]ds

∥∥∥∥∥∥2
+ 4E

sup
0≤s≤t

∥∥∥∥∥∥
∫ t

0
S(t, s)[g(s,un+m−1) − g(s,un−1)]dw(s)

∥∥∥∥∥∥2
+ 4E

sup
0≤s≤t

∥∥∥∥∥∥
∫ t

0

∫
Z

S(t, s)[h(s,un+m−1, η) − h(s,un−1, η)]Ñ(ds, dη)

∥∥∥∥∥∥2
≤

Q6

1 − 4Mf1

∫ t

0
τ

(
sup
0≤s≤t

∥∥∥un+m−1(r) − un−1(r)
∥∥∥2

)
ds

≤ C2

∫ t

0
κ(2C1)ds = C3t.

Theorem 3.3. Assume that the assumptions of Lemma 3.1 and Lemma 3.2 are hold. Then, the system (1) has a
unique mild solution ofM2((−∞,T],H).

Proof: Step 1: Let us show that un(t), t ∈ [0,T] is a Cauchy sequence.
Let ν1(ϑ) = C2κ(ϑ). Choose T1 ∈ [0,T] such that ν1(C3ϑ) ≤ C3 for ϑ ∈ [0,T1]. We first introduce two
sequences of functions φn,m(t)m,n∈N+

and φn(t)n∈N+
by

φ1(t) = C3t,

φn+1(t) =

∫ t

0
ν1(φn(ϑ))dϑ,

φm,n(t) = E sup
0≤ϑ≤t

‖um+n(ϑ) − un(ϑ)‖2.
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Then φn(t)n∈N+
is monotonically decreasing when n→∞ and 0 ≤ φm,n(t) ≤ φn(t) for all m,n ≥ 1, t ∈ [0,T1].

In fact, it is obvious that φ1,m(t) ≤ φ1(t) and

φ2,m(t) = E sup
0≤ϑ≤t

‖xm+2(ϑ) − x2(ϑ)‖2

≤

∫ t

0
ν1E

(
sup

0≤ϑ≤s
‖xm+1(ϑ) − x1(ϑ)‖2

)
ds

≤

∫ t

0
ν1(φ1(s))ds

= φ2(t) ≤ C3t = φ1(t),

which implies that φ2(t) ≤ φ1(t). Now assume the results holds for n, then

φn+1,m(t) = E sup
0≤ϑ≤t

‖um+n+1(ϑ) − un+1(ϑ)‖2

≤

∫ t

0
ν1(φm,n(s))ds

≤

∫ t

0
ν1(φn(s))ds

= φn+1(t) ≤
∫ t

0
ν1(φn−1(s))ds

= φn(t).

This shows that φn(t) is a nonnegative and decreasing continuous function on [0,T1] by induction on n, so
we can define a function φn(t) by φk(t) ↓ φ(t), and it is easy to verify that φ(0) = 0 and φ(t) is a continuous
function on [0,T1]. Consequently, φ(t) = limn→∞ φn(t) = limn→∞

∫ t

0 ν1(φn−1(s))ds =
∫ t

0 ν1(φ(s))ds. From
φ(0) = 0,

∫
0+

dϑ
ν1(ϑ) = +∞ together with Bihari inequality, we obtain φ(t) ≡ 0. Thus 0 ≤ φn,n(t) ≤ φn(b1)→ 0as

n→∞. This shows that xn(t), t ∈ [0,T1] is a Cauchy sequence inM2((−∞,T],H). The Borel-Cantelli lemma
shows that as n → ∞,un(t) → u(t) holds uniformly for 0 ≤ t ≤ T. So, taking limits on both sides of (5), for
all −∞ ≤ t ≤ T, we obtain that u(t) is a solution of (1).
Step 2: Uniqueness Let u(t), v(t) be two solutions of (1). Then the uniqueness is obvious on the interval
[−∞, 0], and for 0 ≤ t ≤ T, it is easy to show that by using Lemma 3.2, we have

E sup
0≤s≤t
‖u(s) − v(s)‖2 ≤ C2

∫ t

0
κ

(
sup
0≤r≤s
‖u(r) − v(r)‖2

)
ds.

The Bihari inequality yields that

E(sup
0≤s≤t
‖u(s) − v(s)‖2) = 0, 0 ≤ t ≤ T.

Therefore, u(t) = v(t) for all 0 ≤ t ≤ T.

4. Stability Results

In this section, we will give the continuous dependence of solutions on the initial value by means of a
corollary of Bihari’s inequality.

Definition 4.1. A mild solution uζ,u(t) with initial value (ζ,u) is said to be stable in mean square if for all ε > 0
there exists δ > 0 such that

E
(

sup
0≤s≤T

∥∥∥uζ,u(s) − uξ,u(s)
∥∥∥2

)
≤ ε, when E ‖ζ − ξ‖2 + E ‖u − v‖2 ≤ δ,

where uξ,u(t) is another solution of (1) with initial value (ξ, v).
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Lemma 4.2. (Bihari inequality)[5]: Let T > 0 and u0 ≥ 0, u(t), v(t) be continuous functions on [0,T]. Let
K : R+

→ R+ be a concave continuous and nondecreasing function such that K(r) > 0 for r > 0. If

u(t) ≤ u0 +

∫ t

0
v(t)K(u(s))ds for 0 ≤ t ≤ T,

then

u(t) ≤ G−1

(
G(u0) +

∫ t

0
v(s)ds

)
for all t ∈ [0,T] such that

G(u0) +

∫ t

0
v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds

K(s) , for r ≥ 0 and G−1 is the inverse function of the G. In particular, if, moreover, u0 = 0 and∫ +

0
ds

K(s) = +∞, then u(t) = 0 for all t ∈ [0,T].

Lemma 4.3. [7] Let the assumption of Lemma 4.2 hold. If

u(t) ≤ u0 +

∫ t

0
v(t)K(u(s))ds for 0 ≤ t ≤ T,

then

u(t) ≤ G−1

(
G(u0) +

∫ t

0
v(s)ds

)
, t ∈ [0,T]

such that

G(u0) +

∫ t

0
v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds

K(s) , for r ≥ 0 and G−1 is the inverse function of the G.

Corollary 4.4. [7] Let the assumptions of Lemma 4.2 hold and v(t) ≥ 0 for t ∈ [0,T]. If for all ε > 0, there exists
t1 ≥ 0 such that for 0 ≤ u0 < ε,

∫ T

t1
v(s)ds ≤

∫ ε
u0

ds
K(s) holds. Then for every t ∈ [t1,T], the estimate u(t) ≤ ε holds.

Theorem 4.5. Assume that the condiitions of Theorem 3.3 are satisfied, then the solution of (1) is stable in mean
square.

Proof: Let uζ,u(s),uξ,u(s) be solutions of (1) with initial value (ζ,u) and (ξ,u) respectively. This implies that
u(t) and v(t) be two solutions of (1) with initial value (ζ,u) and (ξ,u). Then we have

E
(
sup
0≤s≤t
‖u(s) − v(s)‖2

)
≤

6L(3 + 2)Mf1

1 − 6Mf1

E ‖ζ − ξ‖2 +
6L(T + 3)
1 − 6Mf1

∫ t

0
κ
(
‖u(r) − v(r)‖2

)
ds

Let κ1(ϑ) =
6L(3+2)Mf1

1−6Mf1
κ(ϑ), where κ is a concave increasing function from R+ to R+ such that κ(0) = 0,

κ(ϑ) > 0 for ϑ > 0 and
∫

0+

dϑ
κ(ϑ) = +∞. Then, κ1(ϑ) is concave from R+ to R+ such that κ(0) = 0, κ1(ϑ) ≥ κ(ϑ)

for 0 ≤ ϑ ≤ 1 and
∫

0+

dϑ
κ(ϑ) = +∞. Now for any ε > 0, ε1 = 1

2ε, we have lims→0

∫ ε1

s
dϑ

K1(ϑ) = ∞. Then, there is a

positive constant δ < ε1, such that
∫ ε1

δ
dϑ
κ1(ϑ) ≥ T.

Let

ϑ0 =
6L(3 + 2)Mf1

1 − 6Mf1

E
∥∥∥ϕ1 − ϕ2

∥∥∥2
,

ϑ(t) = E
∥∥∥x − y

∥∥∥2

B
, ς(t) = 1,
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when ϑ0 ≤ δ ≤ ε1. Corollary 4.4, shows that∫ ε1

ϑ0

du
κ1(ϑ)

≥

∫ ε1

δ

du
κ1(ϑ)

≥ T =

∫ T

0
ς(s)ds.

So, for any t ∈ [0,T], the estimate ϑ(t) ≤ ε1 hold. This completes the proof of the theorem.

5. Autonomous Case

Next, we consider the autonomous case of Equations (1). Put A(t) = A the higher-order nonautonomous
NSDEs with infinite delay of (1) becomes

d
[
u
′

(t) − f1(t,ut)
]

= A
[
u(t) − f1(t,ut)

]
dt + f2(t,ut)dt + g(t,ut)dw(t) +

∫
Z

h(t,ut, η)Ñ(dt, dη)

+ σ(t)dZH(t), t ∈ [0,T],
u0 = ϕ ∈ B, u

′

(0) = ζ, (5)

where A is the infinitesimal generator of a strongly continuous cosine family C(t) onH. Let the functions
f1, f2, g, h and σ are defined as in equation (1). Now, we will present some facts about cosine families of
operators.

Definition 5.1. The one parameter family {C(t) : t ∈ R} ∈ L(H,H) satisfing that
(i) C(0) = I
(ii) C(t)x is continuous in t on R, for all x ∈H
(iii) C(t + s) + C(t − s) = 2C(t)C(s) for all t, s ∈ R is called a strongly continuous cosine family.

Definition 5.2. A continuous stochastic process u : (−∞,T]→H is said to be a mild solution of (5) if
(i) u(t) is F-adapted and {ut : t ∈ [0,T]} is B-valued,
(ii)

∫ T

0 ‖u(t)‖2 < ∞, P-a.s.,
(iii) For each t ∈ [0,T], u(t) satisfies the following integral equation:

u(t) = C(t)ϕ(0) +S(t)
[
ζ − f1(0, ϕ)

]
+ f1(s,us) +

∫ t

0
S(t − s)f(s,us)ds

+

∫ t

0
S(t − s)g(s,us)dw(s) +

∫ t

0

∫
Z

S(t − s)h(s,us, η)Ñ(ds, dη)

+

∫ t

0
S(t − s)σ(s)dZH(s). (6)

(iv) u0 = ϕ ∈ B.

Next, we provide the existence, uniqueness and stability of mild solution to the autonomous NSDEs
with infinite delays of (5).

Theorem 5.3. Assume that the cosine family of operators {C(t) : t ∈ [0,T]} onH and the corresponding sine family
{S(t) : t ∈ [0,T]} satisfy the conditions

‖C(t)‖2 ≤ L, ‖S(t)‖2 ≤ L, t ≥ 0

for a positive constant L. Further, assume that the conditions (H1) − (H4) hold. Then, there exists a unique mild
solution of (5) inM2((−∞,T],H).
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Proof: First, we consider the sequence of successive approximate as follows:

u0(t) = C(t)ϕ(0) +S(t)
[
ζ − f1(0, ϕ)

]
, t ∈ [0,T],

un(t) = C(t)ϕ(0) +S(t)
[
ζ − f1(0, ϕ)

]
+ f1(s,un

s ) +

∫ t

0
C(t − s)f(s,un−1

s )ds

+

∫ t

0
S(t − s)g(s,un−1

s )dw(s) +

∫ t

0

∫
Z

S(t − s)h(s,un−1
s , η)Ñ(ds, dη)

+

∫ t

0
S(t − s)σ(s)dZH(s). (7)

un(t) = ϕ(t), ∞ < t ≤ 0, n ≥ 1.

The proof of this theorem is similar to that of Theorem 3.3, and one can easily prove that solution of system
(5) and hence, it is omitted.

Theorem 5.4. Let uζ,u(t) and uξ,u(t) be solutions of (5) with initial value (ζ,u) and (ξ, v) respectively. Assume the
assumptions (H1) − (H4) hold. Then, the solution of (5) is stable in mean square.

The proof of this theorem is similar to that of Theorem 4.3, and one can easily prove that solution of
system (5) and hence, it is omitted.

6. Example

In this section, we consider the stochastic wave equation driven by Poisson jumps and Rosenblatt
process of the form

∂

[
∂x(t, ζ)
∂t

− f̂1(t, x(t − τ, ζ))
]

=
∂2

∂ζ2

[
x(t, ζ) − f̂1(t, x(t − τ, ζ))

]
∂t

+ f̂2(t, x(t − τ), ζ)∂t + ĝ(t, x(t − τ), ζ)dw(t)

+

∫
Z

ĥ(t, x(t − τ)η, ζ)Ñ(dt, dη) + σ̂(t)dZH(t), τ > 0, t ∈ [0, 1],

x(θ, ζ) = ϕ(θ, ζ), θ ∈ (−∞, 0], 0 ≤ ζ ≤ 2π,
x(t, 0) = x(t, 2π) = 0, t ∈ [0, 1],

∂x(0, ζ)
∂t

= ψ(ζ), 0 ≤ ζ ≤ 2π, (8)

where dZH(s) is the Rosenblatt process, f1, f2, g, h and σ are appropriate functions. Let H = K = L2(T,C),
where T is defined as the quotient R/2πZ andL2(T,C) denotes the Sobolev space of 2π-periodic functions
x : R→ C such that x′′ ∈H. Define the operator Ax(ζ) = ∂2

∂ζ2 x(ζ) with domain D(A) = L2(T,C). It is known
that A0 is the infinitesimal generator of a strongly continuous cosine function C0(t) and is given by

C0(t)u =
∑
n∈Z

cos(nt) < u, xn > xn, t ∈ R,

with corresponding sine function

S0(t)u = t < u, x0 > x0 +
∑

n∈Z,n,0

sin(nt)
n

< u, xn > xn, t ∈ R.

Also,A0 has discrete spectrum and the spectrum ofA0 consists of eigenvalues−n2 for n ∈ Z, with associated
eigenvectors xn(ζ) = 1

2π einζ, n ∈ Z. Furthermore, the set {xn : n ∈ Z} is an orthonormal basis of H. In
particular, A0 =

∑
n∈Z −n2 < u, xn > xn for u ∈ D(A0). Also, it is clear that ‖C0(t)‖ ≤ 1 for all t ∈ R and
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hence C0(·) is uniformly bounded on R and T(t, s) : H → H is well defined and satisfies the conditions of
Definition 2.2. Let ϕ(θ)ζ = ϕ(θ, ζ), (θ, ζ) ∈ (−∞, 0] × [0, 2π], x(t)ζ = x(t, ζ).

Define f1, f2 : [0,T] × B → H, g : [0,T] × B → L
0
2, h : [0,T] × B × Z → H and σ : [0,T] → L0

2 by
f1(t, x)(·) = f̂1(t, x)(·), f2(t, x)(·) = f̂2(t, x)(·), g(t, x)(·) = ĝ(t, x)(·), h(t, x)(·) = ĥ(t, x)(·), and σ(t, x)(·) = σ̂(t, x)(·).
Then, the system (8) can be rewritten as the abstract from the system (1). Further, all the assumptions of
Theorem 4.2, have been satisfied, so we can conclude that the mild solution of the system (8) is stable.

7. Conclusion

This manuscript addresses, we investigate the existence, uniqueness and stability of mild solutions for
a class of higher-order nonautonomous NSDEs with infinite delay driven by Poisson jumps and Rosenblatt
process in Hilbert space. More precisely, using semigroup theory and successive approximation method, we
establish a set of sufficient conditions for obtained the required result. Further, the result is deduced to study
the higher-order autonomous system. Finally, examples are provided to demonstrate the obtain results.
Further, this result could be extended to investigate the controllability of higher-order nonautonomous
NSDEs with infinite delay in future.
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