See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343390890

Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO and HOMO-LUMO analysis of Z)-3-(2,4-dichlorophenyl)1-(1H- imidazol-1-yl)prop-2-en-1-one

READS

117

Article · August 2020

CITATIONS 0 6 authors, including: Dr.Ramasamy Naicker Kar Dr. N.G.P. Arts and Science

Dr.Ramasamy Naicker Karunathan Dr. N.G.P. Arts and Science College 16 PUBLICATIONS 88 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project

Molecular modelling for Solar cell NLO and medical applications View project

Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO and HOMO-LUMO analysis of Z)-3-(2,4-dichlorophenyl)1-(1Himidazol-1-yl)prop-2-en-1-one

S. Arulappan, R.RajMuhamed, A. IshaqAhamed, R.Karunathan, D.Prabha, S.Krishnaveni

Abstract: The Fourier Transform Infrared (FT-IR) and FT-Raman Spectra of ((*Z*)-3-(2,4-dichlorophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (1) have been recorded in the regions 4000-100 and 4000-450 cm⁻¹, respectively. A complete assignment and analysis of the fundamental vibrational modes of the molecule were carried out. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using DFT (B3LYP) method by employing 6-311++G(d,p) basis sets. The vibrational studies were interpreted in terms of potential energy distribution. The first order hyperpolarizability (β_0) and related properties (α , μ and $\Delta \alpha$) of this molecular system were calculated using B3LYP/6-311++G(d,p) method based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis.. Molecular electrostatic potential (MEP) and HOMO-LUMO energy levels were also constructed.

Index Terms: DFT, FT-IR, FT-Raman, HOMO-LUMO, MEP, NLO.

1. INTRODUCTION

Imidazole derivatives have attracted significant interest in recent time for their usefulness in synthetic heterocyclic chemistry, analytical and pharmacology. They are a highly polar and have a calculated dipole moment of 3.61D. It is 5- membered nitrogen containing heterocyclic ring, which are soluble in both organic and inorganic polar solvents. They are amphoteric in nature and aromatic in character due to the presence of 6 -electrons. The nitrogen attached with the hydrogen has a lone pair of electrons bringing the required 6 -electrons for aromaticity. The hydrogen atom can be located on either of the two nitrogen atoms due to resonance structures of imidazole [1]. A literature survey imidazole derivatives show that they posses antimicrobial, anti-inflammatory, analgesic, anti-tubercular and anticancer activities. Further possible improvements in their activity can be achieved by slight modifications in the substituent on the basic imidazole nucleus. By virtue of having structural similarity with histidine, imidazole compound can bind with protein molecules with ease when compared to the some other heterocyclic moieties

- Arulappan S, Research Scholar, Department of Physics, Jamal Mohamed College(Bharatyhidasan University), Tiruchirappalli 620020, Tamil Nadu, India
- RajMuhamed R, Associate Professor, Department of Physics, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India
- Ishaq Ahamed A, Associate Professor, Department of Physics, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India
- Karunathan R, Assistant Professor, Department of Physics, Dr.NGP. College of Arts and Science, Coimbatore – 641 014, Tamil Nadu, India
- Prabha D, Assistant Professor, Department of Physics, PSG College of Arts & Science, Coimbatore – 641 014, Tamil Nadu, Indi
- Krishnaveni S, Research Scholar, Department of Physics, PSG College of Arts & Science, Coimbatore – 641 014,Tamil Nadu, India

membranes, without interference with sterols and sterol esters. Recently various new drugs developed using imidazoles derivatives have shown better effect and less toxicity.

2. Synthesis of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one

A mixture of N-acetyl imidazole (0.01mmol) and 2,4dicholorobenzaldehyde(0.01mmol) was dissolved in 20 ml of ethanol, cooled to 5 -10 °C in an ice bath. A cold aqueous sodium hydroxide solution (10 ml, 10%, wt/v) was added drop wise to the reaction mixture under stirring and after the addition, the stirring was continued for 6 h under ice-cold condition. A flocculent precipitate formed in the process was filtered, washed with cold water, and recrystallized from ethanol. The components of the reaction mixture were analyzed by TLC and the product was separated from a silica column.

Fig. 1. Synthesis of (Z)-3-(2,4dichlorophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one from the crossed aldol condensation of N-acetylimidazole with 2,4-dichloronitrobenzaldehyde

2.1 Experimental

The FT-IR spectrum of the synthesis compound 3BSC was recorded in the region 4000-450 cm⁻¹ in evacuation mode using a KBr pellet technique with 1.0 cm⁻¹ resolution on a PERKIN ELMER FT-IR spectrophotometer. The FT-

Raman spectrum of the title molecule was recorded in the region 4000-100 cm⁻¹ in a pure mode using Nd:YAG Laser of 100 mW with 2cm⁻¹ resolution on a BRUCKER RFS 27 at SAIF, IIT, Chennai, India. Carbon(13C) NMR and Proton (1H) NMR spectra were recorded in DMSO-d6 using TMS as an internal standard on a Bruker high-resolution NMR spectrometer at 400 MHz at CAS in Crystallography & Biophysics, University of Madras, Chennai, India. The ultraviolet absorption spectrum of the sample is examined in the range 200-600 nm using UV-1700 series recording spectrometer.

2.2. Computational method

Quantum chemical density functional computations were carried out at the Becke3-Lee-Yang-parr (B3LYP) level with 6-311++G(d,p) basis set using Gaussian 09W program package [2] to get a clear knowledge of optimized parameters. The optimized molecular structure (Fig. 2) is used for the computation of vibrational frequencies, Raman activities and IR intensities with the Gaussian 09W software system and GaussView 5.0 [3] molecular visualization program at the same level of theory and basis set. The theoretical vibrational assignments of the 3BSC molecule using percentage potential energy distribution (PED) have been done with the VEDA program [4]. In order to understand the electronic properties, the theoretical UV-Vis spectra have been investigated by TD-DFT method with 6-311++G(d,p) basis set for the gas phase. The proton and carbon NMR chemical shift were calculated with gauge-including atomic orbital (GIAO) approach [5] by applying B3LYP/6-311++G(d,p) method of the title molecule and compared with the experimental Molecular docking (ligandprotein) NMR spectra. simulations have been performed by using auto Dock 4.2.6 free software package. The calculated Raman activities (Si) with Gaussian 09W program have been converted to relative Raman Intensities (Ii) using the following relationship obtained from the basic theory of Raman scattering [6], [7],

Fig. 2. Optimized geometric structure with atoms numbering of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1yl)prop-2-en-1-one

$$Ii = f (v_0 - v_i)^4 s_i$$
 $v_i [1 - exp-hc v_i]/kT$

Where v_0 is the laser exciting frequency in cm-1, v_i is the vibrational frequency of the ith normal mode, h, c and k are universal constants and f is a suitably chosen common scaling factor for all peak intensities.

3. RESULTS AND DISCUSSIONS

3.1 Structural Description

The geometrical optimization was carried out using the B3LYP/6-311++G(d,p) basis set and the optimized molecular structure is as shown in Fig. 2. The bond lengths, bond angles and dihedral angles are presented in Table 1. The optimized parameters were calculated in the gas phase and compared with the XRD results. The statistical linear regression plots between the experimental XRD values and theoretical geometrical parameters, such as bond lengths and angles, showed good agreement, as shown in Table 1. C11-N13 manifested the shortest C-N bond length (1.423 Å), while N₁₃-C₁₄ displayed the longest C-N bond length (1.431 Å), which is shorter than the normal C-N bond length (1.480 Å). This may be due to the fact that the lone pair interactions of the nitrogen atoms in the imidazole ring may affect the N_{13} - C_{17} (1.393 Å) and N_{15} - C_{16} (1.364 Å) bond lengths and make them shorter than other C-N bonds in the imidazole ring. The distance between O₁₂...and C₁₁ is 1.216 Å, which is shorter than the vander Waal's radius (2.75 Å). This suggests the possibility of hydrogen bonding $(N_{13}-C_{11}...,O_{12})$. The bond lengths between Cl_1-C_2 and C_6-Cl_8 are 1.76 and 1.751 Å, respectively, and they showed a slight deviation from the normal C-CI bond lengths, possibly due to the Halogen group conjugation. The calculated bond length of C₄-H₁₈ is 1.079Å. C₁₀-C₁₁ manifested a relatively longer bond length (1.474 Å) than the other C-C bonds. The C-H bond lengths in the phenyl ring vary from 1.081 Å (C7-H20) to 1.075 Å (C₄-H₁₈) and it seems that the C-H bond lengths in the other rings do not deviate much. The para substituted phenyl ring is planar with a C5-C6-Cl8 chlorophenyl angle of 119.9°. The calculated bond angles C_{10} - C_{11} - O_{12} (126.5°), O12-C11-N13 (118.7°) and C2-C7-C6 (118.8°) seem to be consistent with the experimental values.

 Table 1

 Optimized geometrical parameters of (Z)-3-(2,4

 dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one

 obtained by B3LYP/6-311++G(d,p) basis set.

				• /	
Para meter s	Experimen tal ^a	B3LYP/ 6- 311++G (d,p)	Parame ters	Experime ntal ^a	B3LYP / 6- 311++ G(d,p)
Bond	length(Å)		Bond angle(°)		
CI_1-C_2	-	1.76	$CI_1-C_2-C_3$	-	121.1
C ₂ -C ₃	1.415	1.413	$CI_1-C_2-C_7$	-	116.5
C ₂ -C ₇	1.384	1.388	C ₃ -C ₂ -C ₇	121.97	122.4
C_3-C_4	1.408	1.408	$C_2 - C_3 - C_4$	117.4	116.4
C ₃ -C ₉	1.477	1.464	$C_2 - C_3 - C_9$	119.60	119.5
$C_4 - C_5$	1.389	1.388	C ₂ -C ₇ -C ₆	118.6	118.8
C ₄ - H ₁₈	0.930	1.079	C ₂ -C ₇ -H ₂₀	119.7	120.4
C ₅ -C ₆	1.355	1.39	C ₄ -C ₃ -C ₉	123.55	124
C₅- H₁9	0.930	1.082	C ₃ -C ₄ -C ₅	122.40	122.1
C ₆ -C ₇	1.389	1.391	C ₃ -C ₄ -H ₁₈	118.8	118.5
C ₆ -Cl ₈	-	1.751	C ₃ -C ₉ -C ₁₀	129.36	134
C ₇ - H ₂₀	0.930	1.081	C ₃ -C ₉ -H ₂₁	115.3	112.6
C ₉ - C ₁₀	1.355	1.352	C ₅ -C ₄ -H ₁₈	119.3	119.4
C ₉ - H ₂₁	0.930	1.085	$C_4 - C_5 - C_6$	119.41	119.3

<u> </u>			-		
C ₁₀ - C ₁₁	1.477	1.474	C ₄ -C ₅ -H ₁₉	119.7	120.4
C ₁₀ - H ₂₂	0.930	1.083	Ce-C5-H19	119.7	120.3
C ₁₁ -	1 216	1 214	Cr-Co-Cr	120.63	121
C ₁₁ -	1 431	1 423		-	110.0
N ₁₃ -	1.421	1 202			110.1
N ₁₃ -	1.431	1.392	U7-U6-U18	-	119.1
C ₁₇	1.431	1.393	$C_6 - C_7 - H_{20}$	120.5	120.8
N ₁₅	1.305	1.301	H ₂₁	115.3	113.3
C ₁₄ - H ₂₃	0.930	1.078	C ₉ -C ₁₀ - C ₁₁	129.36	129.8
N ₁₅ - C ₁₆	1.364	1.388	C ₉ -C ₁₀ - H ₂₂	115.3	115.4
C ₁₆ - C ₁₇	1.357	1.361	C ₁₁ -C ₁₀ - H ₂₂	115.3	114.8
C ₁₆ - H ₂₄	0.930	1.078	C ₁₀ -C ₁₁ - O ₁₂	120.97	126.5
C ₁₇ - H ₂₅	0.930	1.075	C ₁₀ -C ₁₁ -	112.81	114.8
25	0.000		O ₁₂ -C ₁₁ -	118 10	118.7
			C ₁₁ -N ₁₃ -	128.00	130.2
			C ₁₁ -N ₁₃ -	125.00	122.9
			C ₁₇ C ₁₄ -N ₁₃ -	123.02	125.0
			C ₁₇ N ₁₃ -C ₁₄ -	104.26	105.9
			N ₁₅ N ₁₃ -C ₁₄ -	112.21	111.9
			H ₂₃	123.90	122.6
			N ₁₃ -C ₁₇ - C ₁₆	104.260	105.7
			N ₁₃ -C ₁₇ - H ₂₅	123.90	120.9
			N ₁₅ -C ₁₄ - H ₂₃	123.90	125.4
			C ₁₄ -N ₁₅ -	104.26	105.6
			N ₁₅ -C ₁₆ -	104.20	110.0
			N ₁₅ -C ₁₆ -	106.95	110.8
			H ₂₄ C ₁₇ -C ₁₆ -	123.90	121.1
			H_{24}	127.90	128.1
			H ₂₅	127.90	133.3

^a Taken from Ref [13]

3.2 Vibrational Assignment

The title molecule contains 25 atoms, and it has 69 normal modes of vibration. All the 69 fundamental vibrations are FT-IR and FT-Raman active. The harmonic-vibrational frequencies calculated for the title molecule have been compared with the experimental frequencies and are given in Table 2. The calculated vibrational wave numbers are usually higher than the corresponding experimental quantities because of the combination of electron correlation effects and basis sets deficiencies. Therefore, it is customary to scale down the calculated harmonic wavenumber in order to improve the agreement with the experimental values. After applying a uniform scaling factor, the theoretical calculations agreed well with the experimental data. Vibrational assignments are based on

the observations of the animated modes in Gauss View and assignments reported in the literature.

Table 2						
Calculated vibrational frequencies (cm ⁻¹) assignments of						
(Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-						
one based on B3LYP/6-311++ $G(d,p)$ basis set.						

			-		- 1 - 1- /		
Mo	Experim wave nu	nental Imber	Theo wave nu	retical mber(cm ⁻	I _{IR} c	I _{RA}	Assignments
no	FTIR	FT- RA MA	Unscal ed	scaled		d	
		N					
69			3296	3167	2	4	YCH(95)
68			3263	3135	1	3	YCH(97)
67			3248	3122	2	9	YCH(95)
66			3239	3113	11	5	Y CH(97)
65			3219	3094	0	5	YCH(99)
64			3206	3080	0	5	YCH(97)
63			3185	3060	1	5	YCH(99)
62	2935 (m)		3157	3034	1	2	ÝCH(74)
	1676 (vs)	165 4	47.47	4070		10	¥00(70)
61	1581	(m) 159	1/4/	1679	63	10	YOC(76)
60	(vs)	7 (vs)	1653	1588	90	10 0	YCC(61)
50			1617	1554	65	70	YCC(36) +
- 59	1516	152	1017	1554	05	19	
58	(vs)	3 (vs)	1576	1515	2	5	YCC(33)
57			1564	1503	8	4	YCC(75)
56	1440 (s)		1503	1444	4	3	β HCC(17)+ YCC(28)
		143 4(s)			10		βHCC(16) + YCC(23)+
55	1200		1496	1438	0	1	βHCN(18)
54	(m)		1468	1411	20	3	βHCC(57)
53	1382 (m)		1417	1362	8	8	βHCC(17)
52		131 5(s)	1397	1342	21	1	YCC(16) + YNC(15)
51	1283 (vs)		1354	1301	6	16	βHC(35) + YCC(15)
50	1257 (vs)	125 6(s)	1307	1256	5	4	βHCC(11) + βHCN(30)
49			1296	1245	1	2	βHCC(23) + YCC(12)
48			1294	1244	59	1	βHCC(12) + βHCN(14)
47			1276	1227	4	0	βHCC(19)
46	1197 (s)		1254	1205	18 5	0	YNC(14) + βHCN(22)
15	1170 (vs)	116 3	1209	1161	0	Λ	βHCC(11) +
40	1115	(11)	1200	1101	0	4	YCC(20) +
44	(s) 1106		1167	1121	8	4	YCIC(13) YNC(35) +
43	(s)		1125	1081	8	0	βHCN(30)
42			1118	1075	20	6	YCIC(16)

ISSN 2277-8616

		1			1	r		1					T	T	1	
41			1096	1053	61	5	$\gamma = \gamma =$	2				19	18	0	0	THCCO(15) + THCCC(4
		102			•.	Ű		1				14	13	0	1	THCCC(48)
		4					βHCC(34) +				1			1		
40	1042	(m)	1062	1021	17	0	YCIC(21)	aγ-s	tretc	hing,	γ _a -Syr	nmetrica	al stretchir	ıg,γ _{as} .	asym	nmetrical
	(s)						BHCN(13) +	stre	tchin	g, β-	- inplar	ne bendi	ng ,ω- ou	tplane	e beno	ding, т-
39	(-)		1052	1011	6	1	YCC(14)	tors	ion, י	vs-ve	ery stro	ong, s- s	trong, m-r	nediu	m, w-	-weak.
20	971	999(4000	000			-11000(00)	SCa	ling	facto	or:0.9	61 for B	3LYP/6-3	11+G	(d,p)	
38	(m)	S)	1026	986	1	4	THCCC(20)	۳Re	ative	abs	sorption	n intensi	ties norma	alized	with	highest
37			995	956	4	0	тHCCC(14)	pea	k ab	sorpt	tion eq	ual to 10)().	l 4-	400	
26			070	0/1	64	1	β HCN(13) +	с ц		e Rai	man in	tensities	normaliz	ea lo	100.	
30	891		919	941	04	1	100(13)	Tho	nre	sonc	ns re of C	-H strat	china vih	ration	e ie d	evnected in
35	(w)		908	873	0	1	βHCN(60)	the	regi	on :	3100-3	3000 cm	n ⁻¹ which	is th	ne ch	naracteristic
					07		βHCC(13) +	reai	on f	or th	ne rea	dv iden	tification	of C-	H [8]	1 stretching
34			898	863	27	0	THCCC(13)	vibra	ation	s. li	n this	region.	the bar	nds a	ire n	ot affected
33			891	857	0	0	тНССН(89)	app	recia	bly	by the	nature	of the s	ubstit	uent.	The weak
22	840 (m)		001	047	5	0		ban	d in	FT-I	R at 2	935 cm	⁻¹ is assig	ned t	o C-⊦	- stretching
32	(m)		001	647	5	0		VIDT	ation	and	scale	d freque	ncy at 303	34 cm	-1	The
31			850	817	15	0	THCCC(51)	ban	ds	due	toC	-H in-p	plane be	nding	vibr	ations are
30	803 (m)		836	803	14	1	TCIC(13) + THCCO(14)	som	ewh	at m	ixed w	vith C-C	stretching	gand	are	observed in
50	(11)		000	000	14			exp	ərim	ental			per of ban	ds fro	om 14	140 to 1257
29	706	-	815	784	23	1	THCCC(23) + TCCC	<u>CIÇIO)</u>	and	B31	_YP/6-	31 G (0	, p) meth	od as	a 14	44 to 1227
	786 (m)						THCNC(10) + THCCC(10) +	bon	· /	vibr	znagai	in et al [9 nave a	1551GI		$r^{-\Pi}$ in-plane
28	(,		815	783	5	0	THCCO(12) + TCCC		of_pl	ano	hondir	n ule n	ione in the		00 CII 00 10	$100-750 \text{ cm}^{-1}$
27			765	735	٩	0		¹ F	or or	ur title	e mole	cule the	strong h	and c	hser	ved at 1042
21			705	755	3	0		to 7	86 c	m ⁻¹ i	respec	tivelv in	FT-IR sp	ectrur	n for	C-H out-of-
26			750	720	7	1	THCCC(39)	- plar	ie be	ndin	a vibra	ations. t	he scaled	value	e (B3l	LYP/6-31 G
25			709	682	6	0	$\Upsilon C C (2) + \Upsilon C C (13)$	(d, p	o) in	the r	egion	1052 to	815 cm ⁻¹ .	Thes	se`C-l	H vibrations
	653					Ŭ		sho	wed	go	od co	ncurren	ce with	scale	ed v	alues and
24	(m)		684	657	3	3	THCCC(45)	exp	erim	ental	freque	encies.				
22	634 (m)		659	622	0	0				_						
25	(11)		000	000	0	0	YCC(15) +	<u>C-(</u>	Str	etch	ing Vi	bration	S			
22			652	627	5	1	YCIC(13)	Ger	eral	y the			ng vibratio		cur ir	n the region
21			614	591	1	1	THCNC(58)	OI	l020 Ichin	-143	0 CM	[10]. 1	n the pre	-sent	1591	y, the C-C
	586		-				(/	whic	h is	y at nor	mally	strona h	and for t	he titl	e mo	lecule The
20	(m)		603	580	4	0	βHCC(10)	calc	ulate	ed va	alues c	of C-C st	tretching v	/ibrati	ons a	are found to
19	525 (m)		560	539	2	0	THCCC(39)	be 1	588	, 155	54, 15 ⁻	15 and 1	503 cm ⁻¹	(B3L)	YP/6-	31 G (d, p).
10	(11)				-			Bot	n sca	aled	value	s and e	xperiment	tal fre	quen	icies are in
18			516	496	1	1	YCC(15)	- goo	d ag	reem	nent wi	th the lit	erature da	ata.		
17			468	450	5	3	тНССС(38)									
16	416		401	405	5	0		C=C) and	d C=	N Vib	rations				1
10	(w)		421	405	5	0	- внсс(14) +	_ I he	stre	tchin	ig mod	le C=O \	was calcu	lated	at 16	76 cm ⁺ and
15			415	399	1	1	YCIC(13)	assi	yne(u 10	1118 S	sirong D s ⁻¹ The	idontificat	ione	11 (II A O bo	-i-irc peak
14			402	387	3	0	-	free	JIA	αι Ιά ιρε	are a	rather d	identincat ifficult tae	k ein	n U-ľ na th	n succomposition
40			077	2007			01100(14)	vibr	ation	s is	no a Dossi	ble in t	nis region	n, Sill	• C-N	stretching
13			377	362	2	0	рнос(11)	vibra	ation	s us	ually li	e in the	region 13	382-12	266 c	m ⁻¹ [8]. The
12			311	299	7	0	βHCC(43)	C-N	str	etch	ing is	calcul	ated at	1342	cm	¹ in FTIR
11			275	265	1	0	THCCC(32)	spe	ctrun	h. Tł	ne cha	racterist	ic peak of	C=N	stret	ching mode
							βHCC(10) +	was	ider	htified	d as br	oad pea	iks at 119	7 in F	T-IR	spectrum in
10			226	217	1	0	βCCC(16)	the	figur	es 3	& 4.T	he calcu	lated valu	ie at '	1205	cm ⁻¹ for the
9			201	193	0	0	-	title	mol	ecule	ə. Exp	erimenta	al and cal	Iculate	ed va	lues are in
8			168	162	0	0	THCCCI(84)	goo	d ag	reem	nent wi	th the lit	erature da	ata.		
					Ť		тНССО(19) + тНСС	C(11)	+							
7			153	147	1	0	TCCCCI(21)									
6			120	122	0	0	βHCC(14) +									
0			130	153		U	THCC(25) +									
5			125	120	1	0	тССССІ(10) + тНСС	CC(10)								
4			70	68	1	0	THCCC(48)									
3			55	53	0	0	THCCC(27)									

Fig. 3. FT- IR spectra of (Z)-3-(2,4-dichlorophenyl)1-(1Himidazol-1-yl)prop-2-en-1-one. (Experimental, B3LYP/6-311++G(d,p))

Fig. 4. FT-Raman spectra of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one. (Experimental, B3LYP/6-311++G (d,p)

3.3 NMR Studies

Nuclear magnetic resonance (NMR) spectroscopy can be used to determine the isotropic chemical shifts of atom nucleus in different chemical environment, ionic species in the molecule and the content and purity of a compound [11], [12], [13]. The ¹H and ¹³C NMR isotropic chemical shifts of the title compound were experimentally recorded in chloroform-d. The recorded proton and carbon-13 NMR chemical shift spectra are depicted in Figure 5, 6. The 1H and 13C NMR chemical shifts computed for the title compound were obtained at the B3LYP/6-311G(d,p) level using IEFPCM model and GIAO method in chloroform. The recorded and computed proton and carbon-13 NMR chemical shifts for (Z)-3-(2,4-dichlorophenyl)1-(1Himidazol-1-yl)prop-2-en-1-one molecule are listed in Table 3. The carbon-13 NMR chemical shifts for the title molecule can be evaluated in the titled carbons. The electronegativity, conjugation and inductive effects can cause an increase in carbon-13 NMR chemical shifts due to polarization of the electron distribution of the molecule. Carbonyl carboxylic acids, imidazole, and aldehyde groups, which are attached by a π -bond to the highly electronegative oxygen atom, give rise to the occurrence of NMR chemical shifts between 160-220 ppm [11-13]. The recorded and computed NMR chemical shift values for C11 carbon atom in imidazole group of the title compound were found at 184.900 ppm and 184.527 ppm, respectively. The NMR chemical shift signals of carbons in aromatic rings can be observed in the region of 100-175 ppm, depending on species of the substituent groups bonded to these carbons [11], [12], [13]. In this connection, the C3, C4, C5, C6, C7, C9, C14, C16 and C17 phenyl carbons in the title compound give rise to NMR resonance signals at the interval of 138,360-111,330 ppm. The computed values for these carbons were obtained in the region of 138.833-110.042 ppm. The saturated sp3 carbon atoms can cause NMR signals in the region of 8-60 ppm of highest field [12]. If these carbons attach an electronwithdrawing or particular group, they shift towards the downfield and give signals at highest chemical shift values, due to a reduction in the electron density [11], [12], [13]. The aromatic ring protons with sp2 hybrid give a large chemical shift at the region of 6.5-8.0 ppm [11-13]. The five identical phenyl protons (H18, H19, H20, H21, H22, H23, H24, and H39) of the title molecule gave rise to a strong singlet NMR signal at 7.41 ppm.

Fig.5. ¹³C NMR spectrum of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one. (Experimental)

Fig. 6. ¹H NMR spectrum of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one. (Experimental)

The computed NMR chemical 286 shift values for these five phenyl protons were obtained at the interval of 7.623-7.774 ppm.

Table 3

Theoretical and experimental ¹³C and ¹H isotropic chemical shifts [with respect to TMS, all values in ppm] for (Z)-3-

(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one molecule

Atom	Chemical shifts (ppm)						
	Experimental	B3LYP/6- 311++G(d,p)					
C ₁₁	184.900	184.527					
C ₉	138.360	138.833					
C ₆	137.000	131.375					
C ₂	129.010	130.144					
C ₁₄	124.080	125.685					
C ₄	123.400	124.802					
C ₃	122.060	121.191					
C ₁₆	120.760	120.095					
C ₇	119.720	117.930					
C ₅	117.120	117.228					
C ₂₀	112.610	112.682					
C ₁₇	111.330	110.042					
H ₁₈	9.807	9.7535					
H ₂₃	8.112	8.1194					
H ₂₁	8.081	7.9376					
H ₂₅	7.774	7.8916					
H ₂₀	7.623	7.6869					
H ₁₉	7.617	7.6045					
H ₂₄	7.365	7.357					
H ₂₂	7.309	7.2178					
H ₁₈	9.807	9.7535					
		1					

3.4 Frontier Molecular Orbital Analysis

The Frontier Molecular Orbital theory plays an important role in the electric and optical properties. The HOMO is the orbital that primarily acts as an electron donor and the LUMO is the orbital that largely acts as the electron acceptor [14]. The value of the energy separation between the HOMO and LUMO is 4.0551 eV. This electronic absorption corresponds to the transition from the ground to the first excited state and is mainly described by one electron excitation from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). HOMO and LUMO orbital not only determine the way in which the molecule interacts with other species, but also their energy gap helps to characterize the chemical reactivity and kinetic stability of the molecule [15] and explains the eventual charge transfer interactions that take place within the molecules. As seen from Fig. 7, in HOMO electrons are mostly localized on chlorine atoms, C=O, C=C and the methoxy group at O12.On the other hand in LUMO electrons are mainly localized on phenyl, C=O, C=C and methoxy group at O12. Both HOMO and LUMO are mostly localized on rings which show that they are p type orbital. For understanding various aspects of pharmacological sciences including drug design and the possible ecotoxicological characteristics of the drug molecules, several new chemical reactivity descriptors have been proposed. Conceptual DFT based descriptors have helped in many ways to understand the structure of the molecules and their reactivity by calculating the chemical potential, global hardness and electrophilicity. Using HOMO and LUMO orbital energies, the ionization energy and electron affinity can be expressed as: I = - E_{HOMO} , A = - E_{LUMO} , η = (- $E_{HOMO} + E_{LUMO})/2$ and $\mu = (E_{HOMO} + E_{LUMO})/2$ [16]. Parr et al. [17] proposed the global electrophilicity power of a ligand as $\omega = \mu^2/2\eta$. This index measures the stabilization in energy when the system acquires an additional electronic charge from the environment. Electrophilicity encompasses both the ability of an electrophile to acquire additional electronic charge and the resistance of the system to exchange electronic charge with the environment. It contains information about both electron transfer (chemical potential) and stability (hardness) and is a better descriptor of global chemical reactivity. The hardness g and chemical potential I are given by the following relations : $\eta = (I - A)/2$ and $\mu = -(I + A)/2$, where I and A are the first ionization potential and electron affinity of the chemical species [18]. For the title compound, E_{HOMO} = -6.9746 eV, E_{LUMO} = -2.9195 eV, Energy gap = HOMO -LUMO = 4.0551 eV, Ionization potential I = 6.9746 eV, Electron affinity A = 2.9195 eV, global hardness g = 2.027 eV, chemical potential μ = 4.94 eV and global electrophilicity = $\mu^2/2\eta$ = 2.436 eV. The calculated values are shown in table 4. It is seen that the chemical potential of the title compound is negative and it means that the compound is stable. They do not decompose spontaneously into the elements they are made up of. The hardness signifies the resistance towards the deformation of electron cloud of chemical systems under small perturbation encountered during the chemical process. The principle of hardness works in chemistry and physics but it is not physically observable. Soft systems are large and highly polarizable, while hard systems are relatively small and are much less polarizable. NBO analysis provides the most accurate possible 'natural Lewis structure', because all orbital details are mathematically chosen to include the highest possible percentage of the electron density. A useful aspect of the NBO method is that it gives information about interactions in both filled and virtual orbital spaces that could enhance the analysis of intra- and intermolecular interactions. The NBO analysis of the cumene molecule was calculated by B3LYP method with 6-31++(d,p) basis set. The calculated values are given in Table 5.

Fig. 7. Atomic orbital HOMO – LŪMO composition of the frontier molecular orbital for (Z)-3- (2,4dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one

 Table 4

 Calculated energy values of (Z)-3-(2,4-dichlorophenyl)1

 (1H-imidazol-1-yl)prop-2-en-1-one compound by B3LYP/6

 311++G(d.p) method.

= = =	
Basis set	B3LYP/6-311+G(d,p)
HOMO(eV)	-6.9746
LUMO(eV)	-2.9195
Ionization potential	6.9746
Electron affinity	2.9195
Energy gap(eV)	4.0551
Electronegativity	4.9471
Chemical potential	-4.9471
Chemical hardness	2.0276
Chemical softness	0.2466
Electrophilicity index	6.0352

Table 5

Second order perturbation theory analysis of Fock matrix in NBO basis for (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one.

^aE⁽²⁾ means energy of hyper conjugative interaction (stabilization energy)

^bEnergy difference between donor and acceptor i and j NBO orbitals.

 $^{\rm c}\mathsf{F}(i,j)$ is the Fock matrix element between i and j NBO orbitals

Donor (i)	Туре	ED /e	Acceptor(i)	Туре	ED/e	^a E(2) (KJ mol ⁻¹)	^b E(J)-E(i) (a.u.)	^c F(I,j) (a.u.)
	INTER	NATIONAL J	DURNAL OF SC		& TECHN	LOGY RESEA	RCH VOLUM	
CI_1-C_2	2	1.98787	C ₃ -C ₄	σ [*]	0.02568	2.81	1.3	0.054
			C ₆ -C ₇	σ*	0.02978	2.06	1.3	0.046
C_2-C_3	Σ	1.9708	C ₂ -C ₇	σ*	0.02775	3.87	1.3	0.063
			C ₃ -C ₄	σ*	0.02568	4.38	1.28	0.067
C_2-C_3	П	1.67074	C ₄ -C ₅	π*	0.28023	17.02	0.31	0.066
			C ₆ -C ₇	π*	0.38227	21.26	0.28	0.07
			C ₉ -C ₁₀	π*	0.08876	6.31	0.29	0.041
C ₂ -C ₇	Σ	1.97152	C ₂ -C ₃	σ*	0.03906	4.56	1.29	0.069
2 .			C ₃ -C ₉	σ*	0.02599	3.49	1.19	0.058
			C ₆ -C ₇	σ*	0.02978	4.24	1.3	0.066
			Ce-Cla	σ*	0.0288	4.17	0.89	0.055
CC4	Σ	1.96068	CL-C	σ*	0.02863	4.56	0.86	0.056
03 04			Co-Co	σ*	0.03906	5	1.26	0.071
CC-	Σ	1.97215	CueHan	σ*	0.0173	3.26	1.09	0.053
CC-	Σ	1.96844	CarC4	σ*	0.02568	3.4	1.27	0.059
04-05			CarCa	σ*	0.02599	3.7	1.17	0.059
			03.0g	σ*	0.02899	4.17	1.28	0.065
<u> </u>	π	1.67175		π*	0.41556	19.84	0.27	0.067
04-05				π*	0.38227	22.51	0.27	0.07
<u>с п</u>	σ	1.97807		σ*	0.03906	4.17	1.08	0.06
	σ	1.97816	C ₂ -C ₃	σ*	0.01651	3.68	1.33	0.062
	σ	1 97689		σ*	0.02568	3.86	1.08	0.058
C ₅ -H ₁₉		1.07000		σ*	0.02978	4 25	1.00	0.061
		1 07173	C ₆ -C ₇	σ*	0.02863	4.20	0.88	0.056
C ₆ -C ₇	0	1.97173	Cl ₁ -C ₂	σ*	0.02003	4.51	0.00	0.050
		1 60211	C ₂ -C ₇	0 *	0.02775	4.3	0.20	0.067
C ₆ -C ₇		1.09311	C ₂ -C ₃	*	0.41550	17.05	0.29	0.007
		4.07540	C ₄ -C ₅	-*	0.28023	17.25	0.31	0.000
C ₇ -H ₂₀	σ	1.97518	C ₂ -C ₃	0"	0.03906	4.24	1.08	0.06
C ₉ -C ₁₀	Π	1.85728	C ₁₁ -O ₁₂	Π^	0.28081	25.59	0.29	0.08
C ₁₀ -C ₁₁	σ	1.97497	C ₉ -C ₁₀	σ^	0.01301	2.99	1.34	0.057
			N ₁₃ -C ₁₇	σ*	0.0254	4.6	1.16	0.065
C ₁₀ -H ₂₂	σ	1.97605	C ₃ -C ₉	σ*	0.02599	4.42	1	0.059
			C ₁₁ -O ₁₂	σ*	0.01494	4.12	1.14	0.061
			C ₉ -C ₁₀	π*	0.08876	5.28	0.41	0.042
C ₁₄ -N ₁₅	Π	1.88029	C ₁₆ -C ₁₇	π*	0.24419	21.29	0.35	0.079
C ₁₆ -C ₁₇	Π	1.84221	C ₁₄ -N ₁₅	π*	0.32841	19.41	0.28	0.069
CI1	LP (2)	1.96338	C_2 - C_3	σ*	0.03906	4.4	0.88	0.056
	/		C ₂ -C ₇	σ*	0.02775	4.55	0.9	0.057
CI1	LP (1.92191	C ₂ -C ₃	π*	0.41556	13.17	0.34	0.065
<u> </u>	3) LP (1.96987	0.0	σ*	0.02899	4.32	0.89	0.055
	2)		U5-U6	<u>م</u> *	0.02079	169	0.80	0.059
		1 01047	C ₆ -C ₇	о 	0.02310	4.00	0.03	0.000
Cl ₈	3)	1.91947	C ₆ -C ₇		0.30227	13.9	0.55	0.005
O ₁₂	LP (2)	1.86953	C ₁₀ -C ₁₁	σ*	0.05239	15.38	0.76	0.098
			C ₁₁ -N ₁₃	σ*	0.07899	24.5	0.73	0.121
N ₁₃	LP (1.52902	C ₁₁ -O ₁₂	π*	0.28081	55.31	0.28	0.118
	1)		Cu-Nic	π*	0.32841	39.39	0.29	0.099
			C14 1 15	π*	0.24419	26.44 IJST	R©2019	0.087
		1 0 2 2 9	- 10 - 1/	σ*	0.04179	<u>WWW</u>	<u>.ijsti.org</u> 0.79	0.07

12, DECEMBER 2019

ISSN 2277-8616

Molecular Electrostatic Potential (MEP) at a point in space around a molecule gives

information about the net electrostatic effect produced at that point by total charge distribution (electrons + protons) of the molecule and correlates with dipole moments, electro-negativity, partial charges and chemical reactivity of the molecules. It provides a visual method to understand the relative polarity of the molecule [19], [20]. An electron density isosurface mapped with electrostatic potential surface depicts the size, shape, charge density and site of chemical reactivity of themolecules. The MEP shown in Fig. 8 illustrates the charge distributions of the molecule three dimensionally. As it can be seen from Fig.8, the different values of the electrostatic potential at the surface are represented by different colours; red represents regions of most electronegative electrostatic potential, blue represents regions of the most positive electrostatic potential and green represents regions of zero potential. Potential increases in the order red < orange < yellow < green < blue. Blue indicates the strongest attraction and red indicates the strongest repulsion. Regions of negative potential are usually associated with the lone pair of electronegative atoms. As can be seen from the MEP map of the title molecule, negative region is mainly localized over the electronegative oxygen atoms, in the carbonyl group and the oxygen atom O_{12} of the methoxy group. The maximum positive region is localized on the phenyl rings. Further the MEP map of the title compound, show which of the regions having the negative potential are over the electro negative atoms, the regions having the positive potential are over the phenyl rings and the remaining species are surrounded by zero potential. From the MEP map, we can say that the phenyl rings atoms are sites for electrophilic attraction and O atoms are sites for nucleophilic activity.

Fig. 8. Total electron density mapped with molecular electrostatic potential surface of (*Z*)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one.

3.5 Heat Treatment Effect

The total energy of a molecule is the sum of translational, rotational, vibrational and electronic energies. i.e., E = Et + Er + Ev + Ee. The statistical thermo - chemical analysis of the title molecule is carried out considering the molecule to be at room temperature of 298.15 K and one atmospheric pressure. The thermodynamic parameters, like rotational constant, zero point vibrational energy (ZPVE) of the molecule etc, are calculated by DFT method (B3LYP levels). The title molecule is considered as an asymmetric top having rotational symmetry number 1 and the total thermal energy has been arrived as the sum of electronic, translational, rotational and vibrational energy (ZPVE) seem to be insignificant. The thermodynamic quantities such as

entropy (S), heat capacity at constant pressure (Cp), enthalpy (H - E)/T, Gibb's free energy (G -E)/T and internal thermal energy (E) for various ranges (100-1000 K) of temperatures are determined and these results are presented in the Table 8. The correlation equations thermodynamic these between properties and temperatures were fitted by parabolic formula. All the thermodynamic data provide helpful information for the further study on the title compound. From the Table 8 it can be inferred that the thermodynamic parameters are increasing with temperature ranging from 100 K to 1000 K, due to the fact that the vibrational intensities of molecule with temperature. The following equations are used to predict approximately the values of heat capacity at constant pressure, entropy and internal energy for other range of temperature. The regression coefficient is also given in the parabolic equation.

Fig. 9. Correlation plot of thermodynamic properties at different temperature of (Z)-3- (2,4dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one compound

Dipole moments reflect the molecular charge distribution and are given as a vector in three dimensions. Therefore, they can be used as descriptor to depict the charge movement across the molecule. Direction of the dipole moment vector in a molecule depends on the centers of positive and negative charges. Dipole moments are strictly determined for neutral molecule. For charged systems, their values depend on the choice of the origin and the molecular orientation. One of the important parameters of thermodynamics is the partition function. The partition function links thermodynamics, spectroscopy and quantum theory. The different types of partition functions are (i) translational partition function, (ii) rotational partition function, (iii) vibrational partition function and (iv) electronic partition function. Partition functions can be used to calculate heat capacities, entropies, equilibrium constants and rate constants. There are two ways to calculate the partition functions depending on the zero of energy to be either the bottom of the internuclear potential energy well, or the first vibrational level. If the zero reference point is set to be at the bottom of the well (BOT), then the overall vibrational partition function is calculated. On the other hand if the first vibrational energy level is set as the zero of energy (m = 0), then the overall partition function is calculated. Both of these are presented in the Table 6. The variation of the thermodynamic functions such as entropy, heat capacity, internal energy, enthalpy, and Gibb's free

energy with temperature are graphically represented in Fig. 9 respectively.

 Table 6

 Temperature dependence of the thermodynamic properties of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one at B3LYP /6-311++G(d,P)

T(K)	С <mark>р,т</mark> (J/ mol K)	S⁰ _m (J/ mol K)	H ⁰ _m (kJ/ mol)
100	105.957	364.897	7.242
200	168.514	457.188	20.913
298.15	234.371	536.743	40.684
300	235.593	538.196	41.119
400	297.438	614.667	67.849
500	348.486	686.733	100.24
600	388.9	753.989	137.19
700	420.838	816.431	177.738
800	446.436	874.357	221.147
900	467.304	928.185	266.868
1000	484.568	978.341	314.488

3.6 Non Linear Optical Activity

The molecules with large values of hyperpolarizabilities are more potential constituents of non-linear optical (NLO) materials, which find plentiful applications in the fields of physics, chemistry and engineering. The electric moments of a molecule are important quantities in structural chemistry. The dipole moment, polarizability and hyperpolarizability are characteristic features of a molecule in the presence of applied electric field [21]. When a molecule with permanent electric dipole moment $\Box e(E)$ interacts with an external constant electrostatic field E, the change in the dipole moment can be written in tensor notation as

 $\Box e(E) = \Box e(0) + \Box ijEj + \Box ijk EjEk +....$

Where,

 \Box e(0) is the permanent dipole moment in the absence of electric field,

 $\Box e(E)$ is the dipole moment in the presence of the field,

 $\Box\,\textsc{ij}$ are the components those define the polarizability tensor,

□ijk are the components those define the first order hyperpolarizability. The values of total static dipole moment (\Box t), total polarizability (\Box t), anisotropy of polarizability (\Box) and first order hyperpolarizability (\Box t) and its components of the molecules under investigation are evaluated using the equations that are available in literature [22], [23] to determine their NLO behavior by DFT

employing B3LYP/6-33++G(d,p) basis set using Gaussian 09w program. The determination of $\Box \Box$ component is very useful as it clearly specifies the direction of charge delocalization. The dominance of a component of $\Box\Box$ in a particular direction substantiates the significant delocalization of charges in that direction. The large value of hyperpolarizability (
) along a particular direction is associated with the intra-molecular charge transfer, resulting from the electron cloud movement, through the □ conjugated frame work of electron [24]. From Table 7, it can be seen that the value of first order hyperpolarizability is large along \square_{xxx} in the molecules under investigation. This indicates that the
- electron delocalization has been extended towards \Box_{xxx} direction and hence it is more enhanced for second harmonic generation along this direction. Such materials are suitable for growing crystals along this direction for NLO applications. Urea is an ideal molecule used in the NLO properties of molecular systems. Hence, the total molecular dipole moment $(\Box t)$ 1.3732 Debye and the mean first order hyperpolarizability (□t) 0.3728 x 10-30 cm⁵/esu of Urea are considered as threshold values for the purpose of comparison. The total molecular dipole moment (1) values of the title molecule was calculated as 0.7853 Debye and the mean first order hyperpolarizability (Dt) values were obtained and calculated as 13.5550X10⁻³⁰ /esu. Thus, it can be seen that the values of dipole moment $(\Box t)$ and first order hyperpolarizability (Dt) of the titled molecules are greater than the threshold values of Urea. Hence, the title molecules may be considered as the potential applicants in the development of NLO materials based on the large value of the dipole moment and the first order hyperpolarizability.

Table 7

The values of calculated dipole moment \Box (D), polarizability (\Box_0), first order hyperpolarizability (β tot) components of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1yl)prop-2-en-1-one.

Paramete rs	B3LYP/ 6-311++ G(d,p)	Paramet ers	B3LYP /6-311++G(d,p)
$\Box_{\mathbf{x}}$	0.6069	β _{xxx}	-1545.9225
$\Box_{\mathbf{y}}$	0.1183	β _{xxy}	359.3970
	0.4842	β _{xyy}	-104.0437
□(D)	0.7853	β _{yyy}	55.1013
□ _{xx}	306.3632	β_{zxx}	110.1636
□ _{xy}	-11.8126	β_{xyz}	17.9658
□уу	190.3692	β_{zyy}	71.0161
□ _{xz}	-3.8475	β _{xzz}	156.4012
□ _{yz}	-2.6372	β _{yzz}	39.9001
	106.2540	β _{zzz}	-24.7396
□ _□ □□e.s. u□	2.9788x10 ⁻²³	βtot	13.5550X10 ⁻³⁰
∆□□e.s.u	8.2762 x10 ⁻²³	(0.3.0)	

3.7 Antibacterial Activity and Antifungal Activity

Various aspects of pharmacological behavior and biological characteristics of a material can be evaluated based on. The title molecule was screened for its in vitro antimicrobial activity against bacterial stains by agar well diffusion method [25], [26]. The antibacterial activity of the compound was tested against Escherichia coli and Staphylococcus aureus at three different concentrations and DMSO was used as positive control. It is to be noted that the solvent itself has no activity on the microbes and antibacterial activity is dose dependent. The inhibitory activity of the of (Z)-3-(2,4-dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one on the organisms is high activity at higher concentration of 100 µl. The compound has significant antibacterial activity as compared to that of standard kanamycin. The antimicrobial activity and solvent sensitivity of the title molecule are presented in Table 9. vitro antifungal activity of (Z)-3-(2,4-The in dichlorophenyl)1-(1H-imidazol-1-yl)prop-2-en-1-one was evaluated against three fungal strains, namely, Candida albicans, A.niger and Trichophyton at different concentrations. Table 9 illustrates the antimicrobial activity of the titled molecule. The data indicate that the compound shows good antifungal activity against the tested microorganisms, at 100 µl concentration when compared to that of standard clotrimazole. The results clearly indicate that as the concentration of the compound increases, the inhibition of fungal strains also increases. Antibacterial and antifungal activities of (Z)-3-(2,4-dichlorophenyl)1-(1Himidazol-1-yl)prop-2-en-1-one are given in Table 8. The antibacterial and antifungal activities are shown in Fig. 10

Fig. 10. Antibacterial activity and antifungal activity of (Z)-3-(2,4-dichlorophenyl)1-(1H- imidazol-1-yl)prop-2-en-1-one molecule Table 8

Antimicrobial activity of (Z)-3-(2,4-dichlorophenyl)1-(1Himidazol-1-yl)prop-2-en-1-one.

ORGANISM	DMSO Extract added and Zone of inhibition (mm/ml)						
	Control	25 µl	50 μΙ	75 μΙ	100 µl		
Moraxella	12	10	20	25	32		
Enterobacter	16	13	17	21	25		
Pseudomonas aeruginosa	12	12	16	20	26		
Candida albicans	15	15	20	25	30		
A.niger	10	12	20	27	36		
Trichophyton	10	20	25	35	40		

4 CONCLUSION

In this work, we have performed the experimental and theoretical vibrational analysis of ((Z)-3-(2,4dichlorophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (1). The molecular geometry, vibrational frequencies, FT-IR and FT-Raman spectra of the molecule in the ground state are calculated by using DFT (B3LYP) method 6-311++G(d,p) basis set. The vibrational wavenumbers are calculated and the complete assignments are performed on the basis of the PED of the vibrational modes. The results are compared with experimental FT-IR and FT-Raman spectra. The correlation graphic is plotted to see the harmony between the calculated and experimental wavenumbers and the graphic showed a very good coherence with FT-IR results. Nonlinear optical (NLO) behaviour of the title molecule has been investigated by the dipole moment, the polarizability and the first order hyperpolarizability. HOMO-LUMO gap is calculated as 4.0071eV. Additionally, the thermodynamic and the electronic properties of the tittle compound are calculated. Using NBO analysis the stability of the molecule arising

from hyper-conjugative interaction and charge delocalization has been analyzed. In short, this study made for ((Z)-3-(2,4-dichlorophenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one (1) gives a comprehensive view related to the geometry, vibrational properties (based on FT-IR, FT-Raman), NLO, HOMO-LUMO, NBO, MEP and thermodynamic properties.

REFERENCES

- [1] Arunkumar S Suvarna, "Research Journal of Chemical Sciences" 5(10) 67-72, (2015).
- [2] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, €O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., WallingfordCT, (2009).
- [3] GaussView, Version 5, Roy Dennington, Todd Keith, and John Millam, SemichemInc., Shawnee Mission, KS, (2009).
- [4] M.H. Jomroz, Vibrational Energy Distribution Analysis, VEDA4, (2004). Warsaw.
- [5] K. Wolinski, R. Haacke, J.F. Hinton, P. Pulay, "Methods for parallel computationof SCF NMR chemical shifts by GIAO method: efficient integral calculation,multi-Fock algorithm, and pseudodiagonalization, J. Comp. Chem". 18 (6) 816-825, (1997).
- [6] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. During, "Vibrationalspectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,Ndimethylthiocarbamate", Spectrochim. Acta A 49 (1993) 2007-2026.
- [7] G. Keresztury, in: J.M. Chalmers, P.R. Griffith (Eds.), "Raman Spectroscopy": Theory in Hand Book of Vibrational Spectroscopy, vol. 1, John Wiley& SonsLtd, New York, (2002).
- [8] G.Socrates, "Infrared Characteristic Group Frequencies", Wiley, Interscience Publications, NewYork, (1980).M.Silverstein, G.GlaytonBasseler, C.Morill, "Spectrometric Identification of OrganicCompounds", Wiley, New York, (1981).

- [9] M.Arivazhagan, K.Sambathkumar, S.Jeyavijayan, Indian J.Pure& Appl. Phys. 48, 869-874, (2010).
- [10] R.J. Anderson, D.J. Bendell, P.W. Groundwater, "Organic Spectroscopic Analysis", The RoyalSociety of Chemistry (RSC) Sunderland, England, (2004).D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, "Introduction to Spectroscopy",Brooks/Cole Cengage Learning, USA, (2009).
- [11] J.B. Lambert, H.F. Shurvell, R.G. Cooks. "Introduction to Organic Spectroscopy", Macmillan Publish, NewYork, USA, (1987).
- [12] P. Politzer, P.R. Laurence, K. Jayasuriya, J. McKinney, Environ. Health Perspect.61, 191–202, (1985).
- [13] I. Fleming, Frontier Orbitals, "Organic Chemical Reactions", John Wiley and Sons, New York, (1976).
- [14] T.A. Koopmans, Physica 1,104–113, (1993).
- [15] R.J. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922–1924, (1999).
- [16] R.J. Parr, R.G. Pearson, J. Am. Chem. Soc. 105,7512–7516, (1983).
- [17] S. Chidangil, M.K. Shukla, P.C. Mishra, J. Mol. Model 4, 250–258, (1998).
- [18] F.J. Luque, J.M. Lopez, M. Orozco, Theor. Chem. Acc. 103, 343–345, (2000).
- [19] A. Hinchliffe, R.W. Munn, "Molecular Electromagnetism", John Wiley and Sons Ltd: Chichester(1985).
- [20] D. A. Klienman, Phys. Rev. 126, 1977, 1962).
- [21] R. Zhang, B. Du, G. Sun, Y. X. Sun, Spectrochim. Acta A, 75,1115, (2002).
- [22] C. H. Choi, M. Kertez., J. Phys. Chem A. 101(1997)3821-3831
- [23] B. Lillian, R. Calhelha, I. Ferreira, P. Baptista, L. Estevinho, Eur. Food Res.Technol. 225 151-156, (2007).
- [24] A.H. Collins (Ed.), "Microbiology Method", second ed., Butterworth, London, (1976).