

American Journal of Electrical and Computer Engineering
2019; 3(1): 38-45

http://www.sciencepublishinggroup.com/j/ajece

doi: 10.11648/j.ajece.20190301.15

ISSN: 2640-0480 (Print); ISSN: 2640-0502 (Online)

An Efficient Fault Detection of FPGA and Memory Using
Built-in Self Test [BIST]

Mahesh Kumar

Department of Electronics, PSG College of Arts & Science, Coimbatore, India

Email address:

To cite this article:
Mahesh Kumar. An Efficient Fault Detection of FPGA and Memory Using Built-in Self Test [BIST]. American Journal of Electrical and

Computer Engineering. Vol. 3, No. 1, 2019, pp. 38-45. doi: 10.11648/j.ajece.20190301.15

Received: November 29, 2018; Accepted: January 5, 2019; Published: July 2, 2019

Abstract: In this paper, a new technique for localization of fault detection and diagnosis in the interconnects and logic

blocks of an arbitrary design implemented on a Field-Programmable Gate Array (FPGA) using BIST is presented. This

technique can uniquely identify any single bridging, open or stuck-at fault in the interconnect as well as any single functional

fault, a fault resulting a change in the truth table of a function, in the logic blocks. The test pattern generator and output

response analyzer are configured by existing CLBs in FPGAs; thus, no extra area overhead is needed for the proposed BIST

structure. The scheme also rests on partitioning of rows and columns of the memory array by employing low cost test logic. It

is designed to meet requirements of at-speed test thus enabling detection of timing defects. Experimental results confirm high

diagnostic accuracy of the proposed scheme and its time efficiency.

Keywords: Fault Diagnosis, Built-in Self-Test (BIST), Configurable Logic Block (CLB),

Field-Programmable Gate Array (FPGA), Testing

1. Introduction

Field-Programmable Gate Arrays (FPGAs) are 2-D arrays

of Configurable Logic Blocks (CLBs) and programmable

switch matrices, surrounded by programmable input/output

blocks on the periphery. FPGAs are widely used in many

applications such as networking, storage systems,

communication, and adaptive computing, due to their

reprogrammability, flexibility, and reduced time-to-market.

The reprogrammability of FPGAs results in faster design and

debug cycle compared to Application-Specific Integrated

Circuits (ASICs). However, once the design is finalized and

fixed, the programmability becomes useless and costly, if

infield further customization and reprogrammability are not

required. In order to reduce the manufacturing costs

associated with FPGAs, application-specific FPGAs have

been introduced in the FPGA industry which restricts the use

of the FPGA device for only one application (design).

Xilinx’s Easy path solution is an example [1]. The cost

reduction is mainly due to using devices that may contain

defects in the areas not used by the particular application.

This, in turns, increases the manufacturing yield compared to

the traditional scenario in which any defective device is

thrown away.

During the system operation, application-dependent test

and diagnosis are very crucial in online self-repair schemes

for fault tolerant applications [2]. In these applications, the

existence of faults in the system is first identified and then

the faulty resources are precisely diagnosed. After that, the

design is remapped to avoid the faulty resources occurring in

it. Because of that the test and diagnosis procedures are

performed during the system operation (online), the number

of test vectors and configurations must be minimized. Note

that the test time is dominated by loading the exact test

configurations rather than applying test vectors. Compared to

application-independent test and diagnosis, application-

dependent test and diagnosis provides faster test and

diagnosis time while achieving a higher diagnosis resolution

over a more comprehensive fault list. This is because

application-dependent test and diagnosis focus only on the

FPGA resources used for that particular design, rather than

all FPGA resources.

For interconnect diagnosis, the configuration of used logic

blocks is modified, and the configuration of the interconnects

remains unchanged. Any single fault (open, stuck-at, or

bridging fault) in the interconnects can be uniquely identified

 American Journal of Electrical and Computer Engineering 2019; 3(1): 38-45 39

in a small number of test configurations. For logic diagnosis,

a Built-in Self Diagnosis (BISD) method is presented in

which the configuration of used logic blocks remains

unchanged while the configurations of the interconnect

resources and unused logic blocks are modified. Any single

functional fault, inclusive of all stuck-at faults, in logic

blocks is precisely diagnosed in only one test configuration.

The use of memory cores in SOC designs is rising quickly.

As memory cores are dominating the silicon area of typical

SOC designs, and the density of memory circuits is normally

higher than logic circuits, the chip yield is mainly determined

by the memory yield. To improve the chip yield, whether by

process enhancement or design improvement, diagnosis of

the memory cores after testing is necessary. Embedded

memory testing is normally done by Built-in Self-Test

(BIST) [3, 4]. A BIST scheme that also collects and exports

the diagnostic data for subsequent online or offline analysis

has been called a Built-in Self-Diagnosis (BISD) scheme [5,

6].

Just as test data compression for logic circuits, memory

test data compression has also received attention recently. In

[7], the bit-maps for large memories are compressed by using

fail patterns. Another work considers the compression of the

output response of the BIST circuit [8]–[10]. The method is

similar to signature analysis in logic BIST. The BIST circuit

may export the test information, called fault-syndrome, to

test for failure analysis. The size of fault-syndrome affects

total test cost directly.

However, except diagnosis data compression, using a

redundancy repair approach to enhance memory yield is the

other important issue in recent years. It has become

imperative to deploy effective means for testing and

diagnosing non-volatile memory failures. A functional model

employed for these memories remains similar to that of

RAMs with relevant fault types such as stuck-ats and bridges

being tackled through functional test algorithms [11]. Also,

all addressing malfunctions are covered by memory cell

stuck-at fault tests as there are no overwrites in the mission

mode. Typically, the basic test reads successive memory

cells, and processes output responses by performing a

polynomial division to compute a cyclic redundancy code

(signature). The same procedure can be used to detect certain

classes of dynamic faults provided memory cells are

designed with additional DFT features [12].

A novel BIST design with comprehensive on-the-fly

exhaustive redundancy search and analysis method is

presented in [13], which allows on-chip optimal redundancy

allocation without having to construct the complete failed

bitmap. It however has high hardware overhead for a

reasonably big number of spare (redundant) elements. We

find the failure patterns into three types: faulty words, faulty

rows, and faulty columns. The faulty row/column is the

continuous faults on the same row/column. Different fail

patterns exhibit different syndrome characteristics. The built-

in syndrome compressor is designed to efficiently compress

the fault syndromes. Our approach reduces the amount of

data that needs to be transmitted from the chip under test.

Moreover, the proposed method does not increase the test

time for the fault-free memories. It results in a much shorter

diagnosis time than the conventional BISD schemes.

Simulation results for memories under various fault pattern

distributions show that in most cases the data can be

compressed to less than that of its original size. Furthermore,

based on fail pattern identification technique, the faulty

row/column can be replaced by redundancy row/column.

Therefore, the complexity of RA algorithms can be reduced.

An acceptable RA algorithm for BIST implementation

should be considered not only for the repair efficiency but

also the hardware overhead of the BISR circuit.

2. Basic BIST Architecture

A representative architecture of the BIST circuitry as it

might be incorporated into the CUT is illustrated in the

Figure 1. This BIST architecture also includes two essential

functions as well as two additional functions that are

necessary to facilitate execution of the self-testing feature

within the system.

Figure 1. Basic BIST Architecture.

The two essential functions include the Test Pattern

Generator (TPG) and Output Response Analyzer (ORA).

While the TPG produces a sequence of patterns for testing

the CUT, the ORA compacts the output responses of the

CUT into some type of Pass/Fail indication. The other two

functions needed for system-level use of the BIST include

the test controller (or BIST controller) and the input isolation

circuitry. Aside from the normal system I/O pins, the

incorporation of BIST may also require additional I/O pins

for activating the BIST sequence (the BIST Start control

signal), reporting the results of the BIST (the Pass/Fail

indication), and an optional indication (BIST Done) that the

BIST sequence is completed and that the BIST results are

valid and can be read to determine the fault-free/faulty status

of the CUT.

3. FPGA Fault Detection

The interconnected resources in FPGAs can be categorized

as inter-CLB and intra-CLB resources. Inter-CLB routing

resources provide interconnections among CLBs. Inter-CLB

resources include programmable switch blocks and wiring

channels connecting switch blocks and CLBs. Intra-CLB

resources are located inside each CLB. Intra-CLB

interconnects include programmable multiplexers and wires

inside CLBs. Diagnosing faults in inter-CLB routing

40 Mahesh Kumar: An Efficient Fault Detection of FPGA and Memory Using Built-in Self Test [BIST]

resources are addressed in this section. For inter-CLB

interconnect test and diagnosis, the configuration of routing

resources remains unchanged while the configuration of logic

resources are modified.

Figure 2. FPGA Architecture.

Test and diagnosis of intra-CLB interconnects along with

logic resources are also discussed. For this purpose, the

configuration of used logic resources (inclusive of intra-CLB

interconnects) is kept unchanged whereas the configuration

of inter-CLB interconnects as well as unused logic resources

are changed. The separation between inter-CLB and intra-

CLB is made because in contemporary FPGAs the

programmable logic resources are not limited to lookup

tables (LUTs); other logic resources such as carry

generation/propagation logic and cascade chains are included

in CLBs. For inter-CLB interconnect test and diagnosis, these

logic elements, if used in the original configuration, will be

bypassed.

A single-term function F is a logic function which has only

one minterm or only one maxterm. In other words, the truth

table of a single-term function consists of only one minterm

or one maxterm. The input pattern corresponding to that

minterm (or maxterm) of function F is called Activating

Input (AIF).

Figure 3. Single-term Function with Activating Input Pattern.

A single-term function can be viewed as an AND (OR)

function with possible inversions at the inputs and/or output.

For a single-term function, if the applied input vector is the

activating input, all sensitized faults are detected. An

example is shown in Figure 3, which has only one maxterm.

Since the activating input (0101) is applied, A/1 (A stuck-

at 1 fault), B/0, C/1 and D/0 are detected. Moreover the

bridging faults between A and B are also detected. It should

be noted that if a bridging fault is sensitized, i.e., two nets

have opposite values, detection under various bridging fault

models, namely wired-OR, wired-AND, and dominant, is

guaranteed. This is because the value of at least one of the

signals is modified and the condition of single-term function

and activating inputs guarantee the propagation of faulty

value(s) to the reachable primary output(s).

Detection of feedback bridging faults requires logic-level

sensitization and propagation of the fault. In addition to that,

depending on the polarity of feedback path, which may result

in oscillation, some extra timing conditions must be satisfied.

The use of single term functions guarantees the logic-level

requirements of such detection.

Single-term functions guarantee the detection of all

sensitized faults. However, some mechanism is required to

sensitize all faults in the fault list. We implement single-term

functions in all used LUTs in the design. By implementing

different single-term functions in used logic blocks such that

each fault in the fault list is sensitized in at least one test

configuration, all faults can be detected. Since these test

configurations target faults in inter-CLB interconnect, all

additional logic resources in CLBs, if used, will be bypassed.

Hence, CLBs are configured as LUTs followed by flip-flops.

The following subsections describe the proposed diagnosis

procedures based on various fault models.

(1) Diagnosis of Stuck-At Faults: A circuit with ‘n’ nets

has 2n stuck-at faults. Based on the above assumption, in

order to uniquely identify any single stuck-at fault at least

log22n = 1 + log2n test configurations are required.

(2) Diagnosis of Open Faults: An open fault on a net can

be detected by applying a sequence of stuck-at fault tests for

that net. Since an open fault can behave either as stuck-at-1

or stuck-at-0 faults, it is required to test for both stuck-at

faults to guarantee the detection of open faults. If the logic

behavior of an open is equivalent to a stuck-at-1 (or stuck-at-

0) fault, then the diagnosis procedure identifies the open as a

stuck-at-1 (or stuck-at-0) fault due to fault equivalency.

(3) Diagnosis of Bridging Faults: The bridging fault list for

‘n’ a circuit with net contains n(n-1)/2 distinct pair-wise

bridging faults. Hence, at least log2 [n(n-1)]/2 = 2log2 n-1 test

configurations are required for single bridging fault

diagnosis.

The number of test configurations for bridging fault

diagnosis can be reduced if a smaller fault list is used. Note

that a considerable number of n(n-1)/2 bridging faults (in a

design with ‘n’ nets) cannot happen based on physical layout

information using inductive fault analysis (IFA) techniques

[14]. If such faults are removed from the fault list, the

number of test configurations can be reduced in a logarithmic

scale. After faulty nets are diagnosed, if the exact failing

interconnect resources (line segment, programmable switch,

or multiplexer) within the faulty nets are required to be

identified, high resolution interconnect diagnosis methods

similar to those presented in [15] can be exploited afterwards.

Consider an FPGA with N LUTs, such that each LUT has

K inputs. The maximum number of nets for any designs to be

mapped into this FPGA is N x (K+1). This means that one

separate net is associated with every input and the output of

 American Journal of Electrical and Computer Engineering 2019; 3(1): 38-45 41

each LUT in the FPGA.

4. Configuration Logic Block Detection

For logic block (including intra-CLB interconnects)

testing and diagnosis, the configuration of the original used

logic blocks is preserved while the configuration of

interconnects and unused logic blocks are changed to

exhaustively test and diagnose all used logic blocks. This is

in contrast to the method presented in the previous section for

interconnects in which the configurations of used CLBs are

replaced by appropriate single-term functions.

Figure 4. Application-dependent Self-test Architecture for Logic Blocks (a)

Original Configuration (b) BIST Configuration.

The idea of application-dependent logic block testing is

presented in [16]. In this BIST scheme, each used logic block

is exhaustively (or super-exhaustively, i.e., all possible

transitions) tested while all these logic blocks are tested

concurrently. The global interconnect is reprogrammed in

such a way that the test signals are routed to each logic block.

A Linear Feedback Shift Register (LFSR) or a binary counter

for generating test vectors is connected to the inputs of all

used logic blocks. The logic block outputs are observed

through an internal response compactor (e.g., an XOR tree).

The response compactor can be combined with a response

(parity) predictor, as will be explained shortly, such that a

unique pass/fail signal can be generated. The LFSR and the

XOR tree are implemented in the available unused logic

blocks. Since the LFSR or binary counter generates all

possible patterns (2
n
 patterns for an-input logic block) and

the XOR tree propagates any single fault to its output, any

single functional fault in the used logic blocks are propagated

to the output of the XOR tree and is detected. Functional

faults is any fault that changes the truth-table of an LUT,

including stuck-at faults.

Figure 4 shows an example of this scheme. In Figure 4(a)

the original design, with used logic blocks F1 to F9 with

original interconnections, is shown. In the BIST

configuration, the original interconnections are modifies such

that LFSR outputs, implemented in unused blocks, are

connected to the inputs of all used blocks F1-F9 in parallel.

The outputs of used blocks along with the parity predictor

block are connected to the response compactor, which is also

implemented in the available unused resources. The classical

XOR tree does not provide any diagnosis capability. In order

to improve the diagnostic resolution of this scheme, a

combinational compactor based on error correcting schemes

can be exploited instead of the XOR tree. If a compactor with

more than one output is used and logic block outputs are

selectively connected to the compactor outputs (through the

network of XOR gates), the failing pattern at the outputs of

the compactor can identify failing logic block(s). Test

patterns generators (TPGs), such as LFSR, and Output

Response Analyzers (ORAs) have been used in the context of

FPGA BIST [17, 18, 19, 20, 21]. However, the use of

parity/checksum precomputation (which requires only one

LUT/block rather than a full XOR-tree) and response

comparator which uniquely codes the failing block(s),

particularly in the context of application-dependent

diagnosis, is novel.

5. Fail Pattern Identification in Memory

In this work, the BIST and BISR design are based on fail

pattern identification, and this section describes the fail-

pattern identification scheme in detail. A defect in different

parts of the memory may lead to different faults and/or fail

patterns [22, 23, 24]. Fault identification is not trivial, and

can be aided by using the fail pattern information. We will

describe the approach to distinguish the fail patterns during

the test process.

Figure 5. Memory Cell Array Being Tested.

Figure 5 shows the memory cell array being tested. The

shaded region represents the Word Under Test (WUT). If the

WUT has a different output than the expected value when we

read it, then the word fails and a fault is detected. In a typical

BISD design, when a fault is detected the test process pauses,

and the fault data is either registered or shifted out before the

test process resumes. However, whether it is shifted out

immediately or registered and then shifted out later, the cost

(time complexity and ATE capture memory size) can be high

if there are many faults. We use a more advanced approach,

i.e., identify the faulty rows, faulty columns, and faulty

words simultaneously during the test process.

1. Faulty Row: When the WUT is faulty, we test the next

word in the same row, i.e., Word 1 as shown in Figure

1. If Word 1 is also faulty, we continue to test the next

word in the same row until we reach a fault-free word

or the end of the row.

2. Faulty Column: Identification of a faulty column,

assuming the WUT has been tested faulty, consists of

42 Mahesh Kumar: An Efficient Fault Detection of FPGA and Memory Using Built-in Self Test [BIST]

several condition-checking steps.

a. Word 1 is tested fault free, so a faulty row can be

excluded.

b. The word above the WUT in the same column (i.e.,

Word 2 as shown in Figure 1) is tested fault free;

otherwise the WUT has been covered by the previous

faulty column test.

c. The word under the WUT in the same column (i.e.,

Word 3 as shown in Figure 1) is tested faulty. We

continue to test the subsequent words in the same

column until we reach a fault-free word or the end of

the column.

3. Single Faulty Word: When the WUT is faulty but not in

a faulty row or column, i.e., Word 1, Word 2, and Word

3 are all tested fault-free, we consider the WUT as a

single faulty word.

This process does not increase the test time for a fault-free

memory, because the test algorithm is the same as in the

original BIST design. If the memory is faulty, then there will

be a slight time penalty for fail pattern identification.

However, compared with original BISD scheme, the size of

memory diagnosis data to be exported and the total test data

diagnosis time can be reduced greatly. Considering BISR

applications, the fail pattern identification approach can

replace the must-repair phase and the time penalty can be

compensated by RA time reduction.

Diagnosis Syndrome Format

The proposed fault syndromes for the three fail patterns,

as well as the original syndrome, are shown in Figure 5.

The original syndrome is composed of three fields-

sessions, address, and word syndrome. The Session field

records the Read operation that detects the fault. The

Address field stores the address of the faulty word, so its

length is equal to the length of a normal word address.

The Word Syndrome field stores the compressing word

syndrome of the faulty word at the current state, which

represent the faulty cells in this word. The proposed

syndrome for single faulty word has four fields-Syndrome

ID, Session, Address, and Compressed Word Syndrome.

The Syndrome IDs are used to distinguish the fail

patterns: 00, 11, and 01 represent the single faulty word,

row fault, and column fault, respectively.

Figure 6. Simulation for Single-term Function.

The Faulty-Row syndrome is composed of four fields. It

does not include the Word Syndrome, but it needs to

record the addresses of the first and last faulty words.

Since the last faulty word has the same row address with

the first faulty word, we only need to store the column

address of the last faulty word (the End Column field).

The Faulty-Column syndrome is similar to the Faulty-Row

syndrome, except that it has the Compressed Word

Syndrome field. Since all words are in the same column,

only the address of the last faulty word in the column is

recorded in the End Row field. Because the memory is

word-oriented, the Word Syndrome is needed to locate the

faulty bits (columns) in the word. It is also compressed by

the Huffman code. Note that the Faulty-Column syndrome

may be longer than the original syndrome, but it actually

represents multiple faulty words in the same column, so it

still has high compression efficiency. Furthermore, to identify

more number of fault types, ex. multirow fault or

multicolumn fault, the number of Syndrome ID may be

increased. Different memory has different fault types. And

different fault types require different data format and

compression method. Moreover, the hardware cost may also

 American Journal of Electrical and Computer Engineering 2019; 3(1): 38-45 43

increase to identify different fault types. In this manuscript,

we target on three typical fault types: faulty-row, faulty-

column, and faulty word.

If the memory is fault-free, the Sequencer will only run in

the Test Execution states, i.e., BIST Idle, BIST Apply, and

BIST Done. It will then look like a typical BIST design, and

in this case the testing time does not increase.

6. Simulation Result

Simulation result for the Figure 3 single term function

without applying the BIST is shown in the Figure 6 same

thing for the fault detection in the CLBs and also in the

memory using BIST as shown in the Figure 7 and 8.

Figure 7. Simulation for Fault Detection in FPGA using BIST.

Figure 8. Simulation for Fault Detection in Memory.

44 Mahesh Kumar: An Efficient Fault Detection of FPGA and Memory Using Built-in Self Test [BIST]

7. Conclusion

A new BIST approach for fault detection and

diagnosis of FPGAs and memory has been proposed in this

paper. The proposed FPGA BIST structure has high fault

coverage on the modelled interconnect and CLB faults,

including short/open and delay faults in wire channels, stuck

on/off faults in PSs, and stuck-at-0/1 faults in LUTs. The test

results for various FPGAs have shown that adequate

performance in fault coverage, test time, and area overhead

can be achieved by using the proposed BIST structure. The

proposed FPGA BIST structure possesses the ability to

simultaneously detect and diagnose faults on both

interconnect resources and CLBs. For interconnect diagnosis,

multiple faults (open, stuck-at, or bridging fault) can be

uniquely identified.

References

[1] Xilinx Inc., San Jose, CA, “Xilinx EasyPath Solutions,” 2006.
[Online]. Available: www.xilinx.com.

[2] W. -J. Huang and E. J. McCluskey, “Column-based
precompiled configuration techniques for FPGA fault
tolerance,” in Proc. IEEE Symp. Field-Program. Custom
Comput. Mach., 2001, pp. 137–146.

[3] C. T. Huang, J. -R. Huang, C. -F. Wu, C. -W. Wu, and T. -Y.
Chang, “A programmable BIST core for embedded DRAM,”
IEEE Des. Test Comput., vol. 16, no. 1, pp. 59–70, Jan.–Mar.
1999.

[4] L. -T. Wang, C. -W. Wu, and X. Wen, Design for Testability:
VLSI Test Principles and Architectures. San Francisco, CA:
Elsevier (Morgan Kaufmann), 2006.

[5] R. P. Treuer and V. K. Agarwal, “Built-in self-diagnosis for
repairable embedded RAMs,” IEEE Des. Test Comput., vol.
10, no. 2, pp. 24–33, Jun. 1993.

[6] C. -W. Wang, C. -F. Wu, J. -F. Li, C. -W. Wu, T. Teng, K.
Chiu, and H. -P. Lin, “A built-in self-test and self-diagnosis
scheme for embedded SRAM,” J. Electron. Test.: Theory
Appl., vol. 18, no. 6, pp. 637–647, Dec. 2002.

[7] J. Vollrath, U. Lederer, and T. Hladschik, “Compressed bit fail
maps for memory fail pattern classification,” in Proc. IEEE
Euro. TestWorkshop (ETW), 2000, pp. 125–130.

[8] V. N. Yarmolik, S. Hellebrand, and H. Wunderlich, “Self-
adjusting output data compression: An efficient BIST
technique for RAMs,” in Proc. Conf. Des., Autom., Test Euro.
(DATE), 1998, pp. 173–179.

[9] S. Hellebrand, H. Wunderlich, A. Ivaniuk, Y. Klimets, and V.
N.Yarmolik, “Error detecting refreshment for embedded
DRAMs,” in Proc. IEEE VLSI Test Symp. (VTS), 1999, pp.
384–390.

[10] S. Hellebrand, H. Wunderlich, A. Ivaniuk, Y. Klimets, and V.
N.Yarmolik, “Efficient online and offline testing of embedded
DRAMs,” IEEE Trans. Comput., vol. 51, no. 7, pp. 801–809,
Jul. 2002.

[11] A. K. Sharma, Semiconductor Memories: Technology, Testing
and Reliability. New York: Wiley, 2002.

[12] Y. -H. Lee, Y. -G. Jan, J. -J. Shen, S. -W. Tzeng, M. -H.
Chuang, and J. -Y. Lin, “A DFT architecture for a dynamic
fault model of the embedded mask ROM of SoC,” in Proc. Int.
Workshop Memory Technol. Design Testing, 2005, pp. 78–82.

[13] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and
H. Hidaka, “A built-in self-repair analyzer (CRESTA) for
embedded DRAMs,” in Proc. Int. Test Conf. (ITC), 2000, pp.
567–574.

[14] S. R. Patil, D. B. Musle, “Implementation of BIST technology
for fault detection and repair of the multiported memory using
FPGA”, International conference of Electronics,
Communication and Aerospace Technology (ICECA),
December 2017.

[15] M. B. Tahoori, “Diagnosis of open defects in FPGA
interconnects,” in Proc. IEEE Int. Conf. Field-Program.
Technol., 2002, pp. 328–331.

[16] M. B. Tahoori, “Application dependent testing of FPGAs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Circuits, vol. 14,
no. 9, pp. 1024–1033, Sep. 2006.

[17] M. Abramovici and C. Stroud, “BIST-based detection and
diagnosis of multiple faults in FPGAs,” in Proc. Int. Test
Conf., 2000, pp. 785–794.

[18] A. Doumar and H. Ito, “Detecting, diagnosing, and tolerating
faults in SRAM-Based field programmable gate arrays, a
survey,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 11, no. 3, pp. 386–405, Mar. 2003.

[19] W. Quddus, A. Jas, and N. A. Touba, “Configuration self-test
in FPGA based reconfigurable systems,” in Proc. ISCAS,
1999, pp. 97–100.

[20] C. Stroud, E. Lee, and M. Abramovici, “BIST based
diagnostics of FPGA logic blocks,” in Proc. Int. Test Conf,
1997, pp. 539–547.

[21] C. Stroud, S. Konala, C. Ping, and M. Abramovici, “Built-in
self-test of logic blocks in FPGAs (Finally, a free lunch: Bist
without overhead!),” in Proc. VLSI Test Symp., 1996, pp.
387–392.

[22] J. T. Chen, J. Khare, K. Walker, S. Shaikh, J. Rajski, and W.
Maly, “Test response compression and bitmap encoding for
embedded memories in manufacturing process monitoring,” in
Proc. Int. Test Conf. (ITC), 2001, pp. 258–267.

[23] Anita Aghaie, Mehran Mozaffari Kermani, Reza
Azarderakhsh, “Reliable and Fault Diagnosis Architectures for
Hardware and Software-Efficient Block Cipher KLEIN
Benchmarked on FPGA”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Volume 37,
Issue 4, April 2018, pp 901 – 905.

[24] Gehad I. Alkady, Nahla A. El-Araby, M. B. Abdelhalim, H. H.
Amer, A. H. Madian, “A fault-tolerant technique to detect and
recover from open faults in FPGA interconnects”, in the
proceedings of 14th Biennial Baltic Electronic Conference
(BEC), November 2015.

 American Journal of Electrical and Computer Engineering 2019; 3(1): 38-45 45

Biography

Mahesh Kumar obtained his B.Sc., Electronics and M.Sc., Applied Electronics from PSG College of Arts and Science,

Coimbatore in 1996 and 1998 and also M. Phil., in Electronics from PSG College of Arts & Science, Coimbatore in

2006 and Ph.D in Electronics from PSG College of Arts & Science, Coimbatore in 2018. He has been working in the

teaching field for about 19 years. He has also got the UGC Minor Research Project in the field of VLSI and completed it

in the year 2019. He has published many articles in the reputed national/international journals and also one book on the

topic “Textbook of Operational Amplifier and Linear Integrated Circuits” by Macmillan India Ltd., New Delhi.

