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Abstract—By solving analytically two 1D coupled Gross–Pitaevskii equations with a time-dependent har-
monic trap, we find Peregrine solutions that can be effectively controlled by modulating the external potential
frequency. Indeed, one observes the onset of instability in the dynamical system as the frequency is varied.
This leads to the possibility of stabilizing the Peregrine solitons.
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1. INTRODUCTION
Freak (or rogue) waves are mainly rare events, but

appear in so many different areas of physics, ranging
from the large amplitude ocean wave events [1] to
optics [2–5], and also as solutions of the nonlinear
Schrödinger equation. The main feature of these
waves is their ability to suddenly emerge from
nowwhere with an amplitude significantly larger than
that of the surrounding wave crests and disappear
without leaving a noticeable trace. They are in many
limiting cases described by Peregrine solitons [6]
which represent a spatially localized breather with only
one oscillation in time. They constitute one of the
group of breathers family along with Akhmediev and
Kuznetsov–Ma breather. Generally, they are mathe-
matically expressed by rational polynomials [7].

It is a matter of fact that in order to establish a link
with observed rare events, the excitations of these solu-
tions should be as random as possible. Otherwise, one is
led to describe them as deterministic rogue waves [8, 9].
In this context, one may use special initial configurations
to excite higher order rogue waves as solutions of the non-
linear Schrödinger equation [10, 11], the Hirota equation
[12, 13], the Sasa Satsuma equation, and the coupled
nonlinear Schrödinger equations [9, 14, 15].

In the latter cases, and in particular in BEC exper-
iments, Feshbach resonances [16–18] allows for a tun-
ability of the interatomic interactions, thus managing
the nonlinearity of the underlying equations at will.
The control of the trapping fields also provides a pow-
erful tool for manipulating rogue waves.

In the case of binary mixtures, the situation is
rather original. The appearance of rogue waves in
these systems bears an interest of its own, both math-

ematical and physical. From the mathematical point
of view, finding exact solutions can lead to a better
understanding of the conditions under which the sys-
tem can sustain Peregrine solitons. On the other hand,
nowadays running experiments may determine
whether these solutions can indeed be observed by a
fine tuning of the various parameters at hand.

In the present work, we are mainly interested in
finding and describing analytically the Peregrine soli-
ton solutions of two component BEC described by a
set of two coupled Gross–Pitaevskii equations
(CGPE) in one dimension or quasi-one dimensional
space. By considering a harmonic trap with time-
dependent frequency, we will focus on the formation
mechanism of these solutions, which may lead to a
kind of controllability of these rogue waves.

It is worthwhile noticing that the recently pub-
lished paper [19] considers only two coupled nonlin-
ear Schrödinger (CNLS) equations with coherent
coupling terms, fixed attractive interactions and with-
out external potentials. Here, we analyze the solutions
of two coupled NLS equations with external time-
dependent harmonic potential. The time-dependence
of its frequency will lead to novel phenomena such as
the stabilization of the solitons. The presence of the
trap breaks the translation invariance of the system
and this will have dramatic consequences on the solu-
tions. The various interaction parameters are left free
to make the formalism as f lexible as possible.

We begin in Sec. 2 by transforming our CGPE into
a Manakov system by using a similarity transformation
[20–22]. In Sec. 3, we discuss the corresponding Lax-
pair and analytical methods which we employ to con-
struct the exact solutions. The Darboux transforma-
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tion method allows us in Sec. 4 to determine and
examine the dynamics of the exact solutions. The
results are summarized in Sec. 5.

2. THE MODEL
Consider the following system of two CGPE:

(1a)

(1b)

where  and  denote, respectively, the first and
second derivatives with respect to  and . The (posi-
tive) terms  represent the attractive interactions and

 is the time-dependent trapping
field. We first convert the system (1a, 1b) to a Mana-
kov system via a similarity transformation (Appendix):

(2a)

(2b)

Then, we look for analytic solutions using the Dar-
boux transformation [23] method.

The generalized CNLS (2a, 2b) equations require
finding a linear system of equations for an auxiliary
fields . The linear system is usually written in
compact form in terms of a pair of matrices as follows:

(3a)

(3b)

where U and V, known as the Lax pair, are functionals
of the solutions of the model equations. The consis-
tency condition of the linear system  must be
equivalent to the model equation under consideration.

We find the following linear system which corre-
sponds to the class of generalized CNLS:

(4a)

(4b)

where

where  are the spectral parameters. The consistency
condition leads to  which should
generate the CNLS equations. The next step is to use the
darboux transformation to find the solutions.

3. PEREGRINE SOLITON SOLUTIONS 
AND THEIR DYNAMICS

3.1. Symmetric Case: Same Seed Solutions 

Consider the following version of the Darboux
transformation [23]:

where  [1] is the transformed field and ,
 being a known solution of the linear system (4).

Requiring the transformed linear system to be covari-
ant with the original one yields the condition
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which in turn gives the solutions
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Fig. 1. (Color online) Trapless bright vector solitons. The parameters are ,  and , , ,
, , and .
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with  are arbitrary real constants. The localized solu-
tions are obtained provided .

Finally, we get the Peregrine solutions

(7)

where

To understand the dynamics of these solutions, we
first consider the homogeneous system by choosing

 ( ), which leads to the well-known

Manakov model [24]. The behavior of the Peregrine
soliton under the above condition is shown in Fig. 1.
The upper and lower panels in these figures show,
respectively, the projected square moduli of the solu-
tions.

Consider now a static harmonic trap with

( ) . The behavior changes dramat-
ically since the densities grow abruptly as shown in the
Figs. 5 and 2. The solitons become highly unstable.

In order to overcome this instability and to increase
the lifetime of the solitons, a fine tuning of the trap
frequency may be helpful [25]. Indeed, choosing arbi-

trarily  yields a significant stabilization
of both modes  and  as shown in the Figs. 6 and 3.
This may be well understood since for this set of
parameters, the trap is very tight for all times, as its
curvature is rapidly growing. One may wonder
whether the reduction of the trap frequency will
induce instabilities once more. In fact, as we show in
Fig. 7, even with a very slowly varying frequency, that
is with a very f lat trap, the system is still stable.

3.2. Non-Symmetric Case: Distinct Seed Solutions 
, 

In order to confirm our findings, the question is
whether they depend on the seed solutions. We there-
fore consider different seed solutions. Following the
same procedure as in the previous section, we get
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Fig. 2. (Color online) The onset of instability in the densities for a static harmonic trap with , , ,
, , , , and .
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Fig. 3. (Color online) The density profiles of the bright vector solitons in the time dependent trap with , ,

, , , , , and .
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where  are arbitrary real constants. The spectral param-
eters have been chosen such that .

The relations between the ’s and the ’s (see
Appendix) yield the Peregrine solutions:
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(9b)
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Fig. 4. (Color online) Trapless bright vector solitons. The parameters are , , , , and
 (see text for details).
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Fig. 6. (Color online) Trapped bright vector solitons in a time dependent trap, , , ,

, , , and .
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Fig. 7. (Color online) Trapped dark and bright solitons for , , , ,
, , and .
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The results are discussed below. Figure 4 depicts
the densities for a homogeneous system ( ,

). For a static harmonic trap ( ,
), Fig. 5, the solitons are destabilized. Upon

tuning the trap frequency with a rapidly growing cur-

vature ( , ) significantly
stabilizes the two modes  and  as shown in Fig. 6.
Finally, even with a very slowly varying frequency, the
system is not only still stable, but a novel phenomenon
takes place. The system now sustains the coexistence
of both a bright and a dark soliton (Fig. 7). This result
is quite interesting by itself since, to the best of our
knowledge, the existence of a stable bright-dark soli-
ton pair in a binary mixture has attracted very little
attention.

4. CONCLUSION

The coupled Gross–Pitaevskii equations with a
time-dependent harmonic trap are solved analytically
by transforming to a Manakov system (via a similarity
transformation) and using the Lax pair method. The
Darboux transformation is used in two cases. The
symmetric case with the same seed solutions yields in
the homogeneous case bright vector solitons which are
destabilized by the introduction of a static harmonic
confinement. Upon modulating the frequency of the
trap, the solitons are stabilized being a pair of bright
solitons for a growing tight confinement.

These results are almost independent of the seed
solutions. Indeed, if one begins with nonsymmetric
seed solutions, the overall behavior does not dramati-
cally change. The system still sustains bright vector
solitons which are destabilized (for a static trap), then
stabilized by a rapidly growing tight confinement. For
an almost f lat confinement, the solutions consist of a
dark-bright soliton pair. The latter situation is quite
original and requires much more attention.

5. APPENDIX: 
FROM GPE TO MANAKOV SYSTEM

Similarity transformation and analytical setup from
GPE to Manakov system: we apply the following
transformation to Eqs. (1):

where
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Substituting the above transformation given by 
and  in Eqs. (1) and reinforcing the following con-
straints:

will reduce the coupled GP equations to the coupled
NLS equations (2a, 2b) [20–22]

ACKNOWLEDGMENTS

The authors HCS, MB and HB acknowledge the support
provided by Hassiba Benbouali University of Chlef and the
Ministry of Higher Education and Scientific Research of Alge-
ria  through the grants HB00L02UN020120180002/2018-2019.
The authors PSV and UAK acknowledge the support of
UAE University through the grants UPAR(7)-2015,
UPAR(4)-2016, and UPAR(6)-2017. PSV wishes to extend
his gratitute to the Principal of PSG College of Arts and
Sciences, Coimbatore, Tamilnadu, India for her continu-
ous support, motivation and facilities.

REFERENCES
1. S. Wabnitz, Ch. Finot, J. Fatome, and G. Millot,

“Shallow water rogue wavetrains in nonlinear optical
fibers,” Phys. Lett. A. 377 (12), 932–939 (2013). 
https://doi.org/10.1016/j.physleta.2013.02.007

2. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harness-
ing and control of optical rogue waves in supercontinuum
generation,” Opt. Express. 16 (6), 3644–3651 (2008). 
https://doi.org/10.1364/OE.16.003644

3. R. Driben and I. Babushkin, “Accelerated rogue waves
generated by soliton fusion at the advanced stage of su-
percontinuum formation in photonic-crystal fibers,”
Opt. Lett. 37 (24), 5157–5159 (2012). 
https://doi.org/10.1364/OL.37.005157

4. A. Montina, U. Bortolozzo, S. Residori, and F. T. Are-
cchi, “Non-Gaussian statistics and extreme waves in a
nonlinear optical cavity,” Phys. Rev. Lett. 103 (17),
173901 (2009). 
https://doi.org/10.1103/PhysRevLett.103.173901

5. S. Residori, U. Bortolozzo, A. Montina, F. Lenzini,
and F. T. Arecchi, “Rogue waves in spatially extended
optical systems,” Fluctuation Noise Lett. 11 (1), 1240014

= ,

, = − + + ,




4 ( )

2
1 2

1( ) ( ) ( ) ( )
2

h t dt
T e dt

a x t x h t xh t h t

= = = = σγ ,

γ , σ = .
11 12 21 22

2 ( )

2 ( )

( ) 1 2
h t dt

R R R R t

t e

ψ1

ψ2

ω = − , = , = − ,2 2 21
2 1

1

''( ) ( ) '( ) ( ) ( ) ( ) ( )
2 2 ( )

h t h tt h t h t h t h t
h t

( ) = − − + ,
  

2 2
1 2 11 1

1
2t xxi Q Q QQ Q

( ) = − − + .
  

2 2
1 2 22 1

1
2t xxi Q Q QQ Q
20



312 CHAACHOUA SAMEUT et al.
(2012). 
https://doi.org/10.1142/S0219477512400147

6. D. H. Peregrine, “Water waves, nonlinear Schrödinger
equations and their solutions,” J. Austral. Math. Soc.
Ser. B. 25 (1), 16–43 (1983). 
https://doi.org/10.1017/S0334270000003891

7. N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves
that appear from nowhere and disappear without a
trace,” Phys. Lett. A. 373 (6), 675–678 (2009). 
https://doi.org/10.1016/j.physleta.2008.12.036

8. C. Bonatto, M. Feyereisen, S. Barland, M. Giudici,
C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “De-
terministic optical rogue waves,” Phys. Rev. Lett. 107 (5),
053901 (2011). 
https://doi.org/10.1103/PhysRevLett.107.053901

9. F. Baronio, A. Degasperis, M. Conforti, and S. Wab-
nitz, “Solutions of the vector nonlinear Schrödinger
equations: Evidence for deterministic rogue waves,”
Phys. Rev. Lett. 109 (4), 044102 (2012). 
https://doi.org/10.1103/PhysRevLett.109.044102

10. D. J. Kedziora, A. Ankiewicz, and N. Akhmediev,
“Second-order nonlinear Schrödinger equation
breather solutions in the degenerate and rogue wave
limits,” Phys. Rev. E. 85 (6), 066601 (2012). 
https://doi.org/10.1103/PhysRevE.85.066601

11. P. Gaillard, “Degenerate determinant representation of
solutions of the nonlinear Schrödinger equation, higher
order Peregrine breathers and multi-rogue waves,”
J. Math. Phys. 54 (1), 013504 (2013). 
https://doi.org/10.1063/1.4773096

12. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev,
“Rogue waves and rational solutions of the Hirota
equation,” Phys. Rev. E. 81 (4), 046602 (2010). 
https://doi.org/10.1103/PhysRevE.81.046602

13. Y. Tao and J. He, “Multisolitons, breathers, and rogue
waves for the Hirota equation generated by the Darboux
transformation,” Phys. Rev. E. 85 (2), 026601 (2012). 
https://doi.org/10.1103/PhysRevE.85.026601

14. Li-Chen Zhao and Jie Liu, “Localized nonlinear waves
in a two-mode nonlinear fiber,” J. Opt. Soc. Am. B: Opt.
Phys. 29 (11), 3119–3127 (2012). 
https://doi.org/10.1364/JOSAB.29.003119

15. Li-Chen Zhao and Jie Liu, “Rogue-wave solutions of a
three-component coupled nonlinear Schrödinger
equation,” Phys. Rev. E. 87 (1), 013201 (2013). 
https://doi.org/10.1103/PhysRevE.87.013201

16. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,
“Theory of Bose–Einstein condensation in trapped
gases,” Rev. Mod. Phys. 71 (3), 463–512 (1999). 
https://doi.org/10.1103/RevModPhys.71.463

17. K. Staliunas, S. Longhi, and D. J. de Valcárcel, “Fara-
day patterns in Bose–Einstein condensates,” Phys. Rev.
Lett. 89 (21), 210406 (2002). 
https://doi.org/10.1103/PhysRevLett.89.210406

18. F. Kh. Abdullaev, J. G. Caputo, R. A. Kraenkel, and
B. A. Malomed, “Controlling collapse in Bose–Ein-
stein condensates by temporal modulation of the scat-
tering length,” Phys. Rev. A. 67 (1), 013605 (2003). 
https://doi.org/10.1103/PhysRevA.67.013605

19. Zai-Dong Li, Cong-Zhe Huo, Qiu-Yan Li, Peng-Bin
He, and Tian-Fu Xu, “Symmetry and asymmetry
rogue waves in two-component coupled nonlinear
Schrödinger equations,” Chin. Phys. B. 27 (4), 040505
(2018). 
https://doi.org/10.1088/1674-1056/27/4/040505

20. G. P. Agrawal, Nonlinear Fibre Optics (Academic, New
York, 2006).

21. S. V. Manakov, “On the theory of two-dimensional sta-
tionary self-focusing of electromagnetic waves,” Sov.
Phys.-JETP. 38 (2), 248–253 (1974).

22. D. J. Kaup and B. A. Malomed, “Soliton trapping and
daughter waves in the Manakov model,” Phys. Rev. A.
48 (1), 599–604 (1993). 
https://doi.org/10.1103/PhysRevA.48.599

23. V. B. Matveev and M. A. Salle, Darboux Transforma-
tions and Solitons (Springer, Berlin, 1991).

24. N. Vishnupriya, M. Senthilvelan, and M. Lakshmanan,
“Breathers and rogue waves: Demonstration with cou-
pled nonlinear Schrödinger family of equations,” Pra-
mana – J. Phys. 84 (3), 339–352 (2015). 
https://doi.org/10.1007/s12043-015-0937-4

25. R. Radha and P. S. Vinayagam, “Stabilization of matter
wave solitons in weakly coupled atomic condensates,”
Phys. Lett. A. 376 (8-9), 944–949 (2012). 
https://doi.org/10.1016/j.physleta.2012.01.029
PHYSICS OF WAVE PHENOMENA  Vol. 28  No. 3  2020


	1. INTRODUCTION
	2. THE MODEL
	3. PEREGRINE SOLITON SOLUTIONS AND THEIR DYNAMICS
	3.1. Symmetric Case: Same Seed Solutions
	3.2. Non-Symmetric Case: Distinct Seed Solutions ,

	4. CONCLUSION
	5. APPENDIX: FROM GPE TO MANAKOV SYSTEM
	REFERENCES

		2020-10-09T14:54:07+0300
	Preflight Ticket Signature




