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Abstract
The research reported in this paper deals with the existence of solutions of boundary value
problem (BVP) of nonlinear neutral pantograph equations by means of complex fractional
derivative in weighted spaces. The results were interpreted with the aid of classical fixed
point theorems. The Ulam–Hyers–Rassias stability and Ulam–Hyers stability of differential
equations are studied by utilizing the complex fractional derivative through the fixed point
method.
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1 Introduction

The purpose of this study confines to the problems in the area of fractional calculus. The
subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss,
and Newton invented this kind of calculation. In a note to L’Hospital in 1695 Leibniz posed
the following question: “Can the meaning of derivatives with integer order be generalized to
derivatives with non-integer orders ?” The story goes that L’Hospital was fairly interested
about that question and responded by another question to Leibniz. “What if the order will be
1
2 Leibniz in a communication dated September 30, 1695 answered: “Itwill lead to a paradox,
from which one day useful consequences will be drawn.” The query posed by Leibniz for a
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fractional derivative was an ongoing problem in the last 300 years. Several mathematicians
contributed to this subject over the years. Those like Liouville, Riemann, and Weyl made
major roles to the theory of fractional calculus. The story of the fractional calculusmaintained
with contributions from Fourier, Leibniz, Abel, Letnikov, and Grnwald. At the present time,
the fractional calculus attracts various scientists and engineers, for detailed study, the books
[16,24,25,28] and references therein. Emerging trends andwidespread applications in various
fields like physics, chemistry, engineering, finance and other sciences has made fractional
differential equations (FDEs) a special area of interest among scholars and researchers. The
reformulations and expressions of enormous models in terms of FDEs, has made their phys-
ical meaning inclusive in the mathematical models more reasonably. The interdisciplinary
applications which are elegantly modelled using fractional derivatives have laid an attrac-
tive platform to many physicists, biologists, engineers and mathematicians. In particular, the
existence of solutions to fractional BVP is currently under strong research, one can refer to
[3,5,6,13,14,36].

Last few decades have brought a rapid development of the non-integer order differential
and integral calculus, from which both the theory and its applications benefit significantly.
However, most of the work done in this field so far has been based on the use of real order
fractional derivatives and integrals. It is worth to mention that there are several authors who
also applied complex order fractional derivative. Fractional operators of complex order are
initiated as follows (see [23,32]). In 1977, Ross Bertram [30] considered a use for a derivative
of complex order in the fractional calculus. In [11], CarlaM.A. Pinto studied a complex order
van der Pol oscillator. Later, R. Andriambololona et al. [2] proposed some definitions of
complex order integrals and complex order derivatives using operator approach. For instance,
some basic theory for fractional differential equation with complex order was investigated
by Neamaty et al. [27]. They derived sufficient conditions for existence of solutions of
fractional boundary value problems with complex order. Recently, Teodor M. Atanackovi
et al. established complex order fractional derivatives in models that describe viscoelastic
materials in [4].

Recently, many studies about the delay differential equations (DDEs) have appeared in
science literature. The pantograph equation is one of the most important kinds of DDEs that
arise in a variety of applications in physics and engineering. Pantograph type always has the
delay term fall after the initial value but before the desire approximation being calculated.
When the delay termof pantograph type involvedwith the derivative(s), the equation is named
as neutral DDEs of pantograph type. Pantograph type equations have been studied widely
due to the several applications in which these equations arise. The pantograph equations
also appear in modeling of various problems in engineering and sciences such as biology,
economy, control and electrodynamics. In this point, it is usually solved these kinds of
DDEs analytically and numerically. Therefore, there are many efficient numerical methods
in literature that can be used to approximate solutions to the multi-pantograph DDEs. The
abstract fractional neutral pantograph equation was studied in the paper of K. Balachandran
et al. [7]. The authors investigated existence and uniqueness by using a classical fixed point
theorem. The existence of solutions of this kind of BVP has been studied by Benchohra et
al., for example, in [8–10].

In 1940, Ulam [17] raised a problem whether an approximate solution of a functional
equation can be approximated by a solution of the corresponding equation. This question
was first answered by Hyers 1 year later; we refer the readers to [20,31]. Since then, several
results havebeenpublished in connectionwith various generalizations ofUlam’s type stability
theory or the Ulam’s–Hyers (U–H) stability theory. U–H stability definition has applicable
significance since it means that if one is studying a U–H stable system then one does not
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have to reach the exact solution which usually is quite difficult or time consuming. All that
is required is to get a function which satisfies the stability definition; see [1,18,26,29,34,35]
and references therein. U–H stability guarantees that there is a close exact solution. This is
reasonably useful in many applications e.g. numerical analysis, optimization, biology and
economics etc., where finding the exact solution is rather difficult.

Let the fractional BVPs for the nonlinear neutral pantograph equationswith complex order
be given by{
Dθ
0+x(t) = f

(
t, x(t), x(λt), Dθ

0+x(λt)
)
, θ = m + iα, λ ∈ (0, 1), t ∈ J := [0, T ],

ax(0) + bx(T ) = c,

(1.1)

where Dθ
0+ is the Caputo fractional derivative of order θ ∈ C. Let α ∈ R

+, 0 < α < 1,
m ∈ (0, 1], and f : J ×R

3 → R is given continuous function. Here a, b, c are real constants
with a + b �= 0. The key point of this manuscript is explained step by step as follows:

• Nonlinear fractional neutral pantograph differential system with complex order is con-
sidered.

• Common fractional derivative, fixed point theorems and hypotheses on nonlinear terms
are utilized to prove the existence of fixed point.

• U–H and U–H–Rassias stability of the problem (1.1) are given.

The rest of this paper is systematized as follows: In Sect. 2, we give some notations; recall
some concepts and preparation results. In Sect. 3, by utilizing fixed point techniques and
hypotheses on nonlinear terms, some sufficient conditions are established for existence and
uniqueness of solution to the system (1.1). In Sect. 4, Ulam–Hyers stability and UlamHyers–
Rassias stability of the problem (1.1) is proved.

2 Preliminaries

In the present section, we deal with several basic definitions and properties of fractional
calculus which is base for the forthcoming sections. The results in this section are taken from
[4,23,32].

By C(J ,R) we denote the Banach space of all continuous function J into R with the
norm

‖x‖∞ := sup {|x(t)| : t ∈ J } .

By L1(J ) we denote the space of Lebesgue-integrable function x : J → R with the norm
‖x‖L1 = ∫ T

0 |x(t)| dt .
Definition 2.1 ([28]) TheRiemann–Liouville fractional integral of order θ ∈ C, (Re(θ) > 0)
of a function f : (0,∞) → R is

I θ
0+ f (t) = 1

�(θ)

∫ t

0
(t − s)θ−1 f (s)ds.

Definition 2.2 ([28]) For a function f given by on the interval J , the Caputo fractional-order
θ ∈ C, (Re(θ) > 0) of f , is defined by

(Dθ
0+ f )(t) = 1

�(n − θ)

∫ t

0
(t − s)n−θ−1 f (n)(s)ds,
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where n = [Re(θ)] + 1 and [Re(θ)] denotes the integral part of the real number ν.

Definition 2.3 ([21]) The Stirling asymptotic formula of the Gamma function for z ∈ C is
following

�(z) = (2π)
1
2 z

z−1
2 e−z

[
1 + O

(
1

z

)]
, (|arg(z)| < π; |z| → ∞), (2.1)

and its results for |�(u + iv)|, (u, v ∈ R) is

|�(u + iv)| = (2π)
1
2 |v|u− 1

2 e−u−π |v|/2
[
1 + O

(
1

v

)]
, (v → ∞). (2.2)

Lemma 2.4 (see Lemma 7.1.1, [17]) Let z, w : [0, T ) → [0,∞) be continuous functions
where T ≤ ∞. If w is nondecreasing and there are constants k ≥ 0 and 0 < ν < 1 such
that

z(t) ≤ w(t) + k
∫ t

0
(t − s)ν−1z(s)ds, t ∈ [0, T ),

then

z(t) ≤ w(t) +
∫ t

0

( ∞∑
n=1

(k�(ν))n

�(nν)
(t − s)nν−1w(s)

)
ds, t ∈ [0, T ).

Remark 2.5 Under the hypothesis of Lemma 2.4, let w(t) be a nondecreasing function on
[0, T ). Then we have z(t) ≤ w(t)Eν,1(k�(ν)tν).

Now we consider the Ulam stability for the problem

Dθ
0+x(t) = f

(
t, x(t), x(λt), Dθ

0+ x(λt)
)
, λ ∈ (0, 1), t ∈ [0, T ], (2.3)

and the following inequations:∣∣Dθ
0+ z(t) − f

(
t, z(t), z(λt), Dθ

0+ z(λt)
)∣∣ ≤ ε, t ∈ [0, T ], (2.4)∣∣Dθ

0+ z(t) − f
(
t, z(t), z(λt), Dθ

0+ z(λt)
)∣∣ ≤ εϕ(t), t ∈ [0, T ], (2.5)∣∣Dθ

0+ z(t) − f
(
t, z(t), z(λt), Dθ

0+ z(λt)
)∣∣ ≤ ϕ(t), t ∈ [0, T ]. (2.6)

Definition 2.6 Equation (2.3) is U–H stable if there exists a real numberC f > 0 such that for
each ε > 0 and for each solution z ∈ C(J ,R) of the inequality (2.4) there exists a solution
x ∈ C(J ,R) of Eq. (2.3) with

|z(t) − x(t)| ≤ C f ε, t ∈ J .

Definition 2.7 Equation (2.3) is generalized U–H stable if there exists ψ f ∈ C ([0,∞),

[0,∞)) , ψ f (0) = 0 such that for each solution z ∈ C(J ,R) of the inequality (2.4) there
exists a solution x ∈ C(J ,R) of Eq. (2.3) with

|z(t) − x(t)| ≤ ψ f ε, t ∈ J .

Definition 2.8 Equation (2.3) is U–H–Rassias stable with respect to ϕ ∈ C(J ,R) if there
exists a real number C f > 0 such that for each ε > 0 and for each solution z ∈ C(J ,R) of
the inequality (2.5) there exists a solution x ∈ C(J ,R) of Eq. (2.3) with

|z(t) − x(t)| ≤ C f εϕ(t), t ∈ J .
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Definition 2.9 Equation (2.3) is generalizedU–H–Rassias stablewith respect toϕ ∈ C(J ,R)

if there exists a real numberC f ,ϕ > 0 such that for each solution z ∈ C(J ,R)of the inequality
(2.6) there exists a solution x ∈ C(J ,R) of Eq. (2.3) with

|z(t) − x(t)| ≤ C f ,ϕϕ(t), t ∈ J .

Remark 2.10 A function z ∈ C(J ,R) is a solution of (2.4) if and only if there exists a function
g ∈ C(J ,R) (which depend on z) such that

1. |g(t)| ≤ ε, t ∈ J ;
2. Dθ

0+ z(t) = f
(
t, z(t), z(λt), Dθ

0+ z(λt)
) + g(t), t ∈ J .

Remark 2.11 Clearly,

1. Definition 2.6⇒ Definition 2.7.
2. Definition 2.8⇒ Definition 2.9.

Remark 2.12 A solution of the fractional neutral pantograph differential equations with com-
plex order inequality∣∣Dθ

0+ z(t) − f
(
t, z(t), z(λt), Dθ

0+ z(λt)
)∣∣ ≤ ε, t ∈ J ,

is called an fractional ε-solution of the problem (2.3).

Theorem 2.13 [15] (Banach’s fixed point theorem) Let C be a non-empty closed subset of a
Banach space X, then any contraction mapping T of C into itself has a unique fixed point.

Theorem 2.14 [15] (Schaefer’s fixed point theorem). Let P : C(J ,R) → C(J ,R) com-
pletely continuous operator. If the set

ζ = {x ∈ C(J ,R) : x = δ(Px) for some δ ∈ [0, T ]}
is bounded, then P has at least a fixed point.

3 Solution representation and existence results

Let us start by defining what we mean by a solution of the problem (1.1). We adopt some
ideas in [10,33].

Definition 3.1 A function x ∈ C(J ,R) is said to be a solution of (1.1) if x satisfies the
equation Dθ

0+x(t) = f (t, x(t), x(λt), Dθ
0+ x(λt))on J , and the conditionax(0)+bx(T ) = c.

For the existence of solutions for the problem (1.1), we need the following auxiliary lemma.

Lemma 3.2 Let θ = m + iα, 0 < m ≤ 1, α ∈ R
+ and f : J × R

3 → R be continuous. A
function x is a solution of the fractional integral equation

x(t) = x0 + 1

�(θ)

∫ t

0
(t − s)θ−1 f (s, x(s), x(λs), Dθ

0+ x(λs))ds (3.1)

if and only if x is a solution of the initial value problem for the following fractional neutral
pantograph differential equation with complex order

Dθ
0+x(t) = f (t, x(t), x(λt), Dθ

0+ x(λt)), λ ∈ (0, 1), t ∈ J := [0, T ], (3.2)

x(0) = x0. (3.3)
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As a consequence of Lemma 3.2 we have the following result which is useful in what follows.

Lemma 3.3 Let θ = m + iα, 0 < m ≤ 1, α ∈ R
+ and f : J × R

3 → R be continuous. A
function x is a solution of the fractional integral equation

x(t) = 1

�(θ)

∫ t

0
(t − s)θ−1 f (s, x(s), x(λs), Dθ

0+ x(λs))ds

− 1

a + b

[
b

�(θ)

∫ T

0
(T − s)θ−1 f (s, x(s), x(λs), Dθ

0+ x(λs))ds − c

]
(3.4)

if and only if x is a solution of the BVP for fractional neutral pantograph differential equations
with complex order

Dθ
0+x(t) = f (t, x(t), x(λt), Dθ

0+ x(λt)), λ ∈ (0, 1), t ∈ [0, T ], (3.5)

ax(0) + bx(T ) = c. (3.6)

Our first result is based on the Banach contraction principle.

Theorem 3.4 Assume that the following hypotheses are fulfilled.

(H1) f : J × R
3 → R is continuous function.

(H2) There exist constants K > 0 and L > 0 such that

| f (t, u, v, w) − f (t, u, v, w)| ≤ K (|u − u| + |v − v|) + L |w − w| ,
for any u, v, w, u, v, w ∈ R and t ∈ J .

If K ,L,m,T ,a,b,θ < 1, then the problem (1.1) has a unique solution on J .

Proof Transform the problem (1.1) into a fixed point problem.
On considering the operator P : C(J ,R) → C(J ,R), it is equivalent Volterra integral

equation can be represented in the operator form as:

(Px)(t) = 1

�(θ)

∫ t

0
(t − s)θ−1Kx (s)ds − 1

a + b

[
b

�(θ)

∫ T

0
(T − s)θ−1Kx (s)ds − c

]
.

(3.7)

For sake of brevity, let us take

Kx (t) = Dθ
0+x(t)

= f (t, x(t), x(λt), Dθ
0+ x(λt))

= f (t, x(t), x(λt), Kx (t)).

Clearly, the fixed points of the operator P are solution of the problem (1.1). We shall use
the Banach contraction principle to prove that P defined by (3.7) has a fixed point. We shall
show that P is a contraction.

Let x, y ∈ C(J ,R). Then, for each t ∈ J we have

|(Px)(t) − (Py)(t)| ≤ 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ ∣∣Kx (s) − Ky(s)

∣∣ ds
+ |b|

|�(θ)| |a + b|
∫ T

0

∣∣(T − s)θ−1
∣∣ ∣∣Kx (s) − Ky(s)

∣∣ ds. (3.8)
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Here ∣∣Kx (t) − Ky(t)
∣∣ ≤ ∣∣ f (t, x(t), x(λt), Kx (t)) − f (t, y(t), y(λt), Ky(t))

∣∣
≤ K (|x(t) − y(t)| + |x(λt) − y(λt)|) + L

∣∣Kx (t) − Ky(t)
∣∣

≤ 2K |x(t) − y(t)| + L
∣∣Kx (t) − Ky(t)

∣∣
≤

(
2K

1 − L

)
|x(t) − y(t)| . (3.9)

By replacing Eq. (3.9) in the inequality Eq. (3.8), we obtain

|(Px)(t) − (Py)(t)|
≤

(
2K

1 − L

)
1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ |x(s) − y(s)| ds

+
(

2K

1 − L

) |b|
|a + b|

1

|a + b|
1

|�(θ)|
∫ T

0

∣∣(T − s)θ−1
∣∣ |x(s) − y(s| ds

≤
(

2K

1 − L

)
1

|�(θ)| ‖x − y‖∞
∫ t

0
(t − s)m−1ds

+
(

2K

1 − L

) |b|
|a + b|

‖x − y‖∞
|�(θ)|

∫ T

0
(T − s)m−1ds

≤
(

2K

1 − L

Tm

m |�(θ)|
[
1 + |b|

|a + b|
])

‖x − y‖∞ .

Thus

‖Px − Py‖∞ ≤ K ,L,m,T ,a,b,θ ‖x − y‖∞ ,

where

K ,L,m,T ,a,b,θ :=
(

2K

1 − L

Tm

m |�(θ)|
[
1 + |b|

|a + b|
])

,

depends only on the parameters of the problem. And since K ,L,m,T ,a,b,θ < 1, the results
follows in view of the contraction mapping principle. 
�

We now can prove the following existence result.

Theorem 3.5 Under the hypotheses of Theorem 3.4 and

(H3) There exist l, p, q, r ∈ C(J ,R) with l∗ = supt∈J l(t) < t such that

| f (t, u, v, w)| ≤ l(t) + p(t) |u| + q(t) |v| + r(t) |w| ,
for t ∈ J , u, v, w ∈ R,

hold. Then the problem (1.1) has at least one solution on J .

Proof We shall use Schaefer’s fixed point theorem to prove that P defined by (3.7) has a
fixed point. The proof will be given in several steps.

First, we prove that P is continuous. Let {xn} be a sequence such that xn → x inC(J ,R).
Then for each t ∈ J
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|(Pxn) − (Px)(t)|
≤ 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ ∣∣Kxn (s) − Kx (s)

∣∣ ds
+ |b|

|�(θ)| |a + b|
∫ T

0

∣∣(T − s)θ−1
∣∣ ∣∣Kxn (s) − Kx (s)

∣∣ ds
≤ 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ sup
s∈J

∣∣Kxn (s) − Kx (s)
∣∣ ds

+ |b|
|�(θ)| |a + b|

∫ T

0

∣∣(T − s)θ−1
∣∣ sup
s∈J

∣∣Kxn (s) − Kx (s)
∣∣ ds

≤
∥∥Kxn (·) − Kx (·)

∥∥∞
|�(θ)|

[∫ t

0
(t − s)m−1ds + |b|

|a + b|
∫ T

0
(T − s)m−1ds

]

≤ Tm
∥∥Kxn (·) − Kx (·)

∥∥∞
m |�(θ)|

(
1 + |b|

|a + b|
)

.

Since f is a continuous function, we have

‖Pxn − Px‖∞ → 0 as n → ∞.

Second, we show to that P maps bounded sets into bounded sets in C(J ,R).
Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant χ such

that for each x ∈ Bη∗ = {x ∈ C(J ,R) : ‖x‖∞ ≤ η∗}, we have ‖Px‖∞ ≤ χ .

|(Px)(t)| ≤ 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ |Kx (s)| ds

|b|
|a + b|

∫ T

0

∣∣(T − s)θ−1
∣∣ |Kx (s)| ds + |c|

|a + b| , (3.10)

and by (H3), we have

|Kx (t)| ≤ | f (t, x(t), x(λt), Kx (t))|
≤ l(t) + p(t) |x(t)| + q(t) |x(λt)| + r(t) |Kx (t)|
≤ l∗ + p∗ |x(t)| + q∗ |x(λt)| + r∗ |Kx (t)|
≤ l∗ + p∗ |x(t)| + q∗ |x(λt)|

1 − r∗ . (3.11)

By replacing Eq. (3.11) in the inequality (3.10), we get

|(Px)(t)| ≤ 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ ( l∗ + p∗ |x(s)| + q∗ |x(λs)|

1 − r∗

)
ds

+ |b|
|a + b| |�(θ)|

∫ T

0

∣∣(T − s)θ−1
∣∣ ( l∗ + p∗ |x(s)| + q∗ |x(λs)|

1 − r∗

)
ds + |c|

|a + b| .
:=A1 + A2.

A1 = 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ ( l∗ + p∗ |x(s)| + q∗ |x(λs)|

1 − r∗

)
ds

= Tm

(1 − r∗) |�(θ)|
(
l∗

m
+ (p∗ + q∗) ‖x‖∞

m

)
.
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A2 = |a + b| |b|
|�(θ)|

∫ T

0

∣∣(T − s)θ−1
∣∣ ( l∗ + p∗ |x(s)| + q∗ |x(λs)|

1 − r∗

)
ds

= |b| Tm

(1 − r∗)m |�(θ)| |a + b|
(
l∗ + (p∗ + q∗) ‖x‖∞

)
. (3.12)

To substitute A1, A2 values into Eq. (3.12),we have

|(Px)(t)| ≤ Tml∗

(1 − r∗)
1

m |�(θ)|
(
1 + |b|

|a + b|
)

+ Tm(p∗ + q∗)
(1 − r∗)

1

m |�(θ)|
(
1 + |b|

|a + b|
)

‖x‖∞ + |c|
|a + b|

:= χ.

Next, we prove that P maps bounded sets into equicontinuous sets of C(J ,R).
Let t1, t2 ∈ [0, T ], t1 < t2, Bη∗ be a bounded set of C(J ,R) as in above steps,

and let x ∈ Bη∗ . Using the fact f is bounded on the compact set J × Bη∗ (these
sup(t,x)∈J×Bη∗ ‖Kx (t)‖ :=C0 < ∞). We will get

|(Px)(t2) − (Px)(t2)|
≤

∣∣∣∣ 1

�(θ)

∫ t1

0

[
(t2 − s)θ−1 − (t1 − s)θ−1] Kx (s)ds + 1

�(θ)

∫ t2

t1
(t2 − s)θ−1Kx (s)ds

∣∣∣∣
≤ C0

|�(θ)|
∫ t1

0

∣∣[(t1 − s)θ−1 − (t2 − s)θ−1]∣∣ ds + C0

|�(θ)|
∫ t2

t1

∣∣(t2 − s)θ−1
∣∣ ds

≤ C0

|�(θ)|
∣∣2(t1 − t2)

θ + tθ2 − tθ1
∣∣

which tends to zero as t1 − t2 → 0. Hence along with the Arzela-Ascoli theorem and above
discussion, it is concluded that P : C(J ,R) → C(J ,R) is continuous and completely
continuous.

Now it remains to show that the set

ζ = {x ∈ C(J ,R); x = δ(Px) for some 0 < δ < 1}

is bounded. Let x ∈ ζ , then x = δ(Px) for some 0 < δ < 1. Thus, for each t ∈ J , we have

x(t) = δ

�(θ)

∫ t

0
(t − s)θ−1Kx (s)ds − δ

a + b

[
b

�(θ)

∫ T

0
(T − s)θ−1Kx (s)ds − c

]
.

This implies by (H3) that for t ∈ J , we have

|(Px)(t)| ≤ Tml∗

(1 − r∗)
1

m |�(θ)|
(
1 + |b|

|a + b|
)

+ Tm(p∗ + q∗)
(1 − r∗)

1

m |�(θ)|
(
1 + |b|

|a + b|
)

‖x‖∞ + |c|
|a + b| .
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Thus for every t ∈ J , we have

‖Px‖∞ ≤ Tml∗

(1 − r∗)
1

m |�(θ)|
(
1 + |b|

|a + b|
)

+ Tm(p∗ + q∗)
(1 − r∗)

1

m |�(θ)|
(
1 + |b|

|a + b|
)

‖x‖∞ + |c|
|a + b|

:= R.

This shows that the set ζ is bounded. Thus Schaefer’s fixed point theorem helps to deduct
the solution of the problem which states P has a fixed point which is a solution of problem.


�

4 U–H–Rassias stability

We arrive at a situation to state and prove our stability results for the problem (1.1).

Theorem 4.1 Suppose that the hypotheses (H1),(H2) andK ,L,m,T ,a,b,θ < 1 hold. Then, the
problem (1.1) is U–H stable.

Proof Let ε > 0 and let z ∈ C(J ,R) be a function which satisfies the inequality∣∣Dθ
0+ z(t) − f (t, z(t), z(λt), Dθ

0+ z(λt))
∣∣ ≤ ε, for some, t ∈ J , (4.1)

and let x ∈ C(J ,R) be the unique solution of the following problem

Dθ
0+x(t) = f (t, x(t), x(λt), Dθ

0+ x(λt)), t ∈ J , θ = m + iα,

x(0) = z(0), x(T ) = z(T ),

where m ∈ (0, 1], α ∈ R
+ and 0 < λ < 1.

Using Lemma 3.3, we obtain

x(t) = Ax + 1

�(θ)

∫ t

0
(t − s)θ−1Kx (s)ds

with

Ax = 1

a + b

[
c − b

�(θ)

∫ T

0
(t − s)θ−1Kx (s)ds

]
.

On the other hand, if x(T ) = z(T ) and x(0) = z(0), then Ax = Az .
Indeed,

|Ax − Az | ≤ |b|
|a + b| |�(θ)|

∫ T

0

∣∣(T − s)θ−1
∣∣ |Kx (s) − Kz(s)| ds

≤
(

2K

1 − L

) |b|
|a + b| I

θ
0+ |x(T ) − z(T )|

= 0.

Thus, Ax = Az . We have

x(t) = Az + 1

�(θ)

∫ t

0
(t − s)θ−1Kx (s)ds.
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By integration of the inequality (4.1) and using Remark 2.10, we obtain∣∣∣∣z(t) − Az − 1

�(θ)

∫ t

0
(t − s)θ−1Kz(s)ds

∣∣∣∣ ≤ εTm

m |�(θ)|
(
1 + |b|

|a + b|
)

.

We have for any t ∈ J

|z(t) − x(t)| ≤
∣∣∣∣z(t) − Az − 1

�(θ)

∫ t

0
(t − s)θ−1Kz(s)ds

∣∣∣∣
+ 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ |Kz(s) − Kx (s)| ds

≤
(
1 + |b|

|a + b|
)

εTm

m |�(θ)|+
(

2K

1 − L

)
1

|�(θ)|
∫ t

0
(t − s)m−1 |z(s)−x(s)| ds.

Using Gronwall inequality, Lemma 2.4 and Remark 2.5, we obtain

|z(t) − x(t)| ≤
(
1 + |b|

|a + b|
)

εTm

m |�(θ)| Em,1

(
2K

1 − L

1

|�(θ)|�(m)Tm
)

.

Thus, the problem (1.1) is U–H stable. 
�

Let us assume the following assumption for further discussion:

(H4) There exists an increasing function ϕ ∈ C(J ,R) and there exists λϕ > 0 such that for
any t ∈ J

I θ
0+ϕ(t) ≤ λϕϕ(t).

Theorem 4.2 If the assumptions (H1),(H2),(H4) and K ,L,m,T ,a,b,θ < 1 hold. Then, the
problem (1.1) is generalized U–H–Rassias stable.

Proof Let z ∈ C(J ,R) be solution of the following inequality∣∣Dθ
0+ z(t) − f (t, z(t), z(λt), Dθ

0+ z(λt))
∣∣ ≤ εϕ(t), t ∈ J , ε > 0, (4.2)

and let x ∈ C(J ,R) be the unique solution of the following problem

Dθ
0+x(t) = f (t, x(t), x(λt), Dθ

0+ x(λt)), t ∈ [0, T ], θ = m + iα,

x(0) = z(0), x(T ) = z(T ),

where m ∈ (0, 1], α ∈ R
+ and 0 < λ < 1.

By Lemma 3.3, we get

x(t) = Az + 1

�(θ)

∫ t

0
(t − s)θ−1Kx (s)ds

with

Az = 1

a + b

[
c − b

�(θ)

∫ T

0
(T − s)θ−1Kz(s)ds

]
.
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By integration of the inequality (4.2) and using (H4), we obtain∣∣∣∣z(t) − Az − 1

�(θ)

∫ t

0
(t − s)θ−1Kz(s)ds

∣∣∣∣ ≤
(
1 + |b|

|a + b|
)

ελϕϕ(t).

We have for any t ∈ J

|z(t) − x(t)|
≤

∣∣∣∣z(t) − Az − 1

�(θ)

∫ t

0
(t − s)θ−1Kzds

∣∣∣∣ + 1

|�(θ)|
∫ t

0

∣∣(t − s)θ−1
∣∣ |Kz(s) − Kx (s)| ds

≤
(
1 + |b|

|a + b|
)

ελϕϕ(t) +
(

2K

1 − L

)
1

|�(θ)|
∫ t

0
(t − s)m−1 |z(s) − x(s)| ds.

Using Gronwall inequality,

|z(t) − x(t)| ≤
(
1 + |b|

|a + b|
)

ελϕϕ(t)Em,1

(
2K

1 − L

1

|�(θ)|�(m)Tm
)

, t ∈ J .

Thus, the problem (1.1) is generalized U–H–Rassias stable. 
�

5 An example

Consider the following fractional neutral-pantograph equation with complex order

Dθ
0+x(t) =

(
6 + |x(t)| + ∣∣x ( t

2

)∣∣ + ∣∣Dθ
0+x

( t
2

)∣∣)
10et+1

(
1 + |x(t)| + ∣∣x ( t

2

)∣∣ + ∣∣Dθ
0+x

( t
2

)∣∣) , for eacht ∈ J := [0, 1], (5.1)

x(0) = 0, x(1) = 1, (5.2)

where θ = m + iα, α = 1
2 and m = 1.

Set

f (t, u, v, w) = 6 + |u| + |v| + |w|
10et+1 (1 + |u| + |v| + |w|) , t ∈ J , u, v, w ∈ R.

For every u, v, w, u, v, w ∈ R and t ∈ J ,

| f (t, u, v, w) − f (t, u, v, w)| ≤ 1

10e
(|u − u| + |v − v| + |w − w|) .

Hence, the condition (H2) holds with K = L = 1
10e .

Also, we have, for each u, v, w ∈ R and t ∈ J ,

| f (t, u, v, w)| ≤ 1

10et+1 (6 + |u| + |v| + |w|) .

Thus condition (H3) holds with l(t) = 3
5et+1 , p(t) = q(t) = r(t) = 1

10et+1 .

Clearly, l∗ = 3
5e , p

∗ = q∗ = 1
10e and r∗ = 1

10e < 1.
The condition of Theorem 3.4 is satisfied for the suitable values of α = 1

2 , m = 1 with
a = b = T = 1. Indeed, K ,L,m,T ,a,b,θ < 1.

It follows fromTheorem3.4 that problem (5.1–5.2) has a unique solution on J . In addition,
Theorem 4.1 implies that the problem (5.1–5.2) is Ulam–Hyers stable.
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6 Conclusion

The main idea of this paper is to give some significant and general results on stability anal-
ysis of neural pantograh equations with fractional complex order. Existence and uniqueness
of fixed point, U–H stability and U–H–Rassias stability for proposed problem have been
proved. With the intention of achieve this plan, fixed point theorems fractional calculus, non-
linear neutral pantograph theory and appropriate hypotheses on nonlinear terms have been
employed.
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