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Abstract
This paper deals with the problem of finite-time dissipative-based distributive non-
fragile filter design for a class of discrete-time complex systems subject to randomly
occurringmultiple delays, dynamic quantization andmissingmeasurements. Themain
intention of this work is to propose a distributive non-fragile filter that ensures the
stochastic finite-time boundedness together with prescribed dissipative performance
in the presenceofmultiple delays.To characterize the randomnature of delays, stochas-
tic variables are introduced which satisfy the Bernoulli binary distribution. Moreover,
the two factors such as missing measurements and dynamic quantization are imple-
mented in themeasurement signal. By employing S-procedure and constructing proper
Lyapunov–Krasovskii functional, a set of linear matrix inequality (LMI)-based suffi-
cient conditions that guarantee the stochastic finite-time boundedness with dissipative
performance of the augmented filtering error system is obtained. Finally, the effi-
ciency of the proposed distributive non-fragile filter design is proved by presenting
three numerical examples including the continuous stirred tank reactor (CSTR) and a
quarter-car suspension model.
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1 Introduction

The dynamical systems with many interacting components whose behavior is intrin-
sically difficult to model due to dependencies between the components which are
represented in the form of complex systems. Such systems appear widely in a variety
of fields such as power grid, economic systems, transportation systems and commu-
nication systems [4, 7, 11, 16–20]. On the other hand, it is well known that state
variables are not available at any time for measurement, so a state estimation strategy
should be used with the available measurement to estimate the unavailable states of
the complex system. Moreover, the distributive filtering or state estimation problems
have been received significant attention in industrial processes and control systems
[1, 9, 10, 13, 21, 31, 36]. Meanwhile, in the distributive filter design, each node can
accumulate required information from its neighborhood nodes. Further, it should be
mentioned that distributive filtering can effectively reduce the cost and save energy sig-
nificantly. In [1], the authors investigated the distributive filtering problem for a class
of discrete-time T–S fuzzy systems subject to deception attacks and event-triggering
protocols.

The existence of time delay is inevitable in most of the physical processes such
as communication systems and biological systems. Further, the presence of delay
significantly deteriorates the system performance or instantaneously leads to insta-
bility. Consequently, the studies on distributed delay and infinitely distributed delay
have gained remarkable research interest in recent years [3, 5, 15, 22, 26, 32]. By
employing stochastic analysis method, sufficient conditions are derived in [15] for
finite-time synchronization of complex-valued neural networks error system in the
presence of multiple time-varying delays and infinite distributed delays. The authors
in [32] focused on H∞ filtering problem for a class of networked systems with random
distributed delays, and the random variables are assumed to follow Bernoulli distribu-
tion. However, the insertion of communication networks introduces some unavoidable
technological imperfections such as dynamic quantization and missing measurements
due to the unreliability of communication channels. Particularly, while comparing
with a static quantizer, dynamic quantizer gives better results with their varying para-
metric values. For this purpose, some related studies on the dynamic quantizer in the
filter design problems have been observed in [2, 12, 27, 30]. Specifically, in [30] the
dynamic quantized measurement is introduced in fault detection filtering problem for
uncertain linear systems. Furthermore, in [2] a fault detection filter is designed to
ensure the asymptotic stability of discrete-time nonlinear impulsive switched systems
with a dynamic quantizer.

It is worth mentioning that dissipative theory plays an important role in the study
of system stability. Moreover, compared with H∞ and passivity performances, dis-
sipativity is a more general criterion. Also, it provides a less conservative and more
flexible filter design since it manages a better trade-off between the gain and phase



1744 Circuits, Systems, and Signal Processing (2023) 42:1742–1772

performances. However, there are only a few results that have been proposed regarding
dissipative-based filtering [24, 29, 35]. Most of the existing results in the literature
regarding distributive filter design are focused on the Lyapunov asymptotic stability
defined over an infinite-time interval. However, in practical applications, analyzing
the behavior within a finite-time is significant and meaningful. Finite-time stability
and boundedness admit that the states of the system do not exceed a certain bound
during a finite-time interval. In recent years, many results on finite-time stability or
boundedness are obtained [6, 8, 14, 23, 25, 28]. In [28], the authors studied finite-time
H∞ filter design problem for a class of Itô stochastic Markovian jump systems based
on Lyapunov technique and LMI approach.

Based on the above discussions, a finite-time distributive non-fragile filter design
problem for complex systems with multiple delays, missing measurements and
dynamic quantization is investigated in this work. The main concerns of this paper are
as follows:

– Adissipative-based distributive non-fragile filter design problem is investigated for
a class of complex systems with stochastic multiple delays, missingmeasurements
and dynamic quantization.

– A unified system model over the sensor nodes is proposed to describe the phe-
nomena of missing measurements and dynamic quantization.

– By using Lyapunov stability theory, S-procedure lemma together with stochastic
system analysis, a new set of sufficient conditions is established for the existence
of desired distributive non-fragile filter.

Finally, the feasibility and effectiveness of the developed distributive non-fragile filter
design methodology are illustrated by using numerical examples including CSTR
model and a quarter-car suspension model.

2 Problem Formulation and Preliminaries

In this work, we consider the sensor network in the form of interconnection topology
with � number of sensor nodes. The sensor networks are distributed in the space as
direct graph G = (V, E,A), where V = {1, 2, . . . , �} is the set of nodes; E contained
in sensors mapping set is the collection of edges and A = (ai j )n×n is the positive
adjacency matrix correlated with the edges of the directed graph, i.e., ai j > 0 implies
edge (i, j) ∈ E. Furthermore, the sensors are self-connected, i.e., aii = 1 for every
i ∈ V. Finally, Ni = {i ∈ V : (i, j) ∈ E for all j ∈ V determines that sensor node i
can gather data from its neighboring sensor node j .

Consider the complex system with stochastic distributed time-varying delays,
infinitely distributed delays and dynamic quantization in the following form:

x(k + 1) = Ax(k) + Ad1

h∑

r=1

βr (k)x(k − dr (k))

+ ξ(k)Ad2

∞∑

τ̃=1

μτ̃ x(k − τ̃ ) + Bw̃(k),
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z(k) = Lx(k),

x(t) = �(t), −∞ ≤ t ≤ 0, (1)

where x(k) ∈ R
n1 is the state vector, z(k) ∈ R

n2 is the output vector, w̃(k) is the dis-

turbance input satisfying
N∑
k=0

wT (k)w(k) ≤ ϕ, for any scalar ϕ > 0 and A, Ad1, Ad2,

B and L are known constant matrices with proper dimensions. dr (k) (r = 1, 2, . . . , h)

is the distributed time-varying delay which satisfies the condition dm ≤ dr (k) ≤ dM ,
where the positive integers dm and dM are the lower and upper bound of the time-

varying delay. The infinitely distributed time delay is represented as
∞∑

τ̃=1
μτ̃ x(k − τ̃ ),

where μτ̃ (τ̃ = 1, 2, . . . ,∞) is greater than or equal to zero and also satisfies the

convergence condition μ̄ =
∞∑

τ̃=1
≤

∞∑
τ̃=1

τ̃μτ̃ < +∞. �(t) is the initial condition;

βr (k) (r = 1, 2, . . . , h) and ξ(k) are the stochastic variables which are assumed for
the distributed time-varying delay and infinitely distributed time delay, respectively.
Moreover, the stochastic variables satisfy the Bernoulli distributed white sequences
in the following form: Pr{βr (k) = 1} = E{βr (k)} = β̄, Pr{βr (k) = 0} = 1 − β̄ and
Pr{ξ(k) = 1} = E{ξ(k)} = ξ̄ , Pr{ξ(k) = 0} = 1 − ξ̄ . The local measurement based
model of i th sensor node is considered as follows:

yi (k) = Ci x(k), i = 1, 2, . . . , n, (2)

where yi (k) ∈ R
�2i is the measured output of the i th sensor, Ci is the known matrix,

and it denotes the state which is to be measured.

2.1 Dynamic Quantizer

In this paper, the transmission of local measurement takes place only after quantization
by considering the dynamic quantizer as the general form given in [27]. Specifically,
qδ (yi (k)) is the quantized signal of the local measurement yi (k) and is defined as

qδ (yi (k)) = δ(k)q

(
yi (k)
δ(k)

)
= yi (k) + δ(k)

(
q

(
yi (k)
δ(k)

)
− yi (k)

δ(k)

)
= yi (k) + ϑi (k),

(3)

where δ(k) is the quantized parameter of the dynamic quantizer yqi (k) and q
( yi (k)

δ(k)

)
is

the static quantizer which satisfies the condition:

‖qδ (yi (k)) − yi (k)‖ ≤ 
δ, if ‖yi (k)‖ ≤ Mδ, (4)

‖qδ (yi (k)) − yi (k)‖ > 
δ, if ‖yi (k)‖ > Mδ, (5)
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where 
δ represents the quantization error bound and Mδ denotes the range of the
static quantizer q

( yi (k)
δ(k)

)
. In particular, 
δ andMδ are the range and quantization error

bound of the dynamic quantizer q
( yi (k)

δ(k)

)
, respectively.

Remark 1 The parameter δ(k) can be seen as the zooming variable according to the
variation of yi (k). If yi (k) is large and the zooming variable δ(k) is decreased, then we
can obtain the quantization with broadest range and quantized error bound, whereas if
the zooming variable δ(k) is increased, then we can obtain the quantization with lower
range and quantized error bound. Thus, the parameter δ(k) is revised only based on
the system output.

Now, we introduce the complete affix of the uncertainty terms into the measurement
model together with the stochastic variables as follows:

ȳi (k) = λ1i (k)yi (k) + λ2i (k)qδ (yi (k)) + Di w̃(k), (6)

where w̃(k) is the exogenous disturbance and Di is a matrix which is constant in the
communication channel.

Letλ1i (k) andλ2i (k) be the stochastic variables that satisfy theBernoulli distributed
white sequence. Moreover, the stochastic variables λci (k) (c = 1, 2) have the property

that
2∑

c=1
λci (k) = 1. Finally, the local measurement with energy constraints for the

distributive filter can be defined as

ỹi (k) = �ρi (k)ȳi (k), (7)

where ȳi (k) is the raw measurement and �ρi (k) is the structure matrix to choose a
particular component of measurement for transmission. Then, the switching signal
ρi (k) belongs to�i = {1, 2, . . . , n2i }, and also, we prescribe a mapping from ρi (k) to
ρ(k) for all sensors where ρ(k) ∈ � = {1, 2, . . . , n21×n22× . . .×n2n}. In particular,
when �ρi (k) = [1 0 0 · · · 0], the first component is selected for transmission, if the
second component is selected for transmission, then �ρi (k) = [0 1 0 · · · 0], and also

if both the components are selected for transmission, then �ρi (k) =
[
1 0 · · · 0
0 1 · · · 0

]
.

2.2 Distributed Filtering

As is widely known, one of the most difficult aspects of developing distributed filters
for sensor networks is combining the information available to the filter on the sensor
node i from both the sensor i itself and its neighbors. Therefore, the distributive
non-fragile filter is designed for the i th sensor node with filter gain uncertainties as
follows:
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Fig. 1 Block diagram of distributed filtering error system

x̂i (k + 1) =
∑

j∈Ni

ai j (Ki j + �Ki j (k))x̂ j (k) +
∑

j∈Ni

ai j (Hi j + �Hi j (k))ỹ j (k),

ẑ(k) = Lii xi (k), (8)

where x̂ j (k) ∈ R
n1 is the filter state of the i th sensor node; ẑ(k) ∈ R

n2 is the estimated
signal of z(k); and Ki j , Hi j and Lii are filter gain matrices to be determined. Also,
the uncertain parametric matrices are defined as [�Ki j �Hi j ] = M �(k) [N1i j N2i j ],
where M, N1i j and N2i j are constant matrices; Let �(k) be the time-varying matrix
function which is assumed to satisfy �T (k)�(k) ≤ I . A typical block diagram of the
considered distributed filtering system is shown in Fig. 1.

For our convenience, we denote

x̄(k) = 1n×n ⊗ xT (k), x̂(k) = [x̂ T1 (k) . . . x̂ Tn (k)]T , A = diag{A, . . . , A},
Ad1 = diag{Ad1, . . . , Ad1}, Ad2 = diag{Ad2, . . . , Ad2}, Di = [C1, . . . ,Cn]T ,

B = [B, . . . , B]T , Di = [D1, . . . , Dn]T , L = diag{L, . . . , L},
Li i = diag{L11, . . . , Lnn}, β̃r (k) = βr (k) − β̄r (r = 1, 2, . . . , h),

ξ̃ (k) = ξ(k) − ξ̄ ,

λ̃cp(k) = λcp(k) − λ̄cp (c = 1, 2), �βh(k) = diag{β̃1(k)I , . . . , β̃h(k)I },
�ξ(k) = diag{ξ̃ (k)I , . . . , ξ̃ (k)I },
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�λcp = diag{λ̃c1 I , . . . , λ̃cn},
�ρ(k) = diag{�ρ1(k), . . . ,�ρn(k)}, �λ̄c

= diag{λ̄c1, . . . , λ̄cn},
�β̄h

= diag{β̄1 I , . . . , β̄h I },
�ξ̄ = diag{ξ̄ , . . . , ξ̄}, θλc =

√
λ̄cp(1 + 2λ̄cp), θβh =

√
β̄h(1 + 2β̄h),

θξ =
√

ξ̄ (1 + 2ξ̄ ),

K̂i j =
{
ai j [Ki j + �Ki j ] i ∈ V j ∈ Ni

0, i ∈ V, j /∈ Ni
and

Ĥi j =
{
ai j [Hi j + �Hi j ] i ∈ V, j ∈ Ni

0, i ∈ V, j /∈ Ni
.

Now, let us define the error estimation as e(k) = z(k) − ẑ(k) and the switching signal
as ρ(k) = l. Then, from (1) to (8), the augmented filtering error system is obtained as
follows:

η(k) = ˜A η(k) + (β̄h + β̃h(k)) ˜Ad1η(k − dh(k)) + (ξ̄ + ξ̃ (k)) ˜Ad2

∞∑

τ̃=1

μτ̃ η(k − τ̃ )

+ D̃w̃(k) + Ẽ ν(k) + W1η(k) + W2η(k) + WEν(k),

e(k) = L̃η(k),

yi (k) = C̃iη(k), (9)

where

η(k) = [x̄ T (k) x̂ T (k)]T ,

η(k − dh(k)) = [η(k − d1(k)), η(k − d2(k)), . . . , η(k − dh(k))]T ,

e(k) = [zT (k) − ẑT1 (k) · · · zT (k) − ẑTn (k)]T ,

W1 =
n∑

i=1

λ̃1i (k)W
i
1 , W2 =

n∑

i=1

λ̃2i (k)W
i
1 ,

WE =
n∑

i=1

λ̃2i (k)W
i
E , ˜A =

[
A 0

Ĥi j�l�λ̄c
Ci K̂i j

]
,

˜Ad1 =
[
Ad1 0
0 0

]
, ˜Ad2 =

[
Ad2 0
0 0

]
,

D̃ =
[

B

Ĥi j�lDi

]
, Ẽ =

[
0

Ĥi j�l�λ̄2

]
,

W i
1 =

[
0 0

Ĥi j�lφlCi

]
, W i

E =
[

0
Ĥi j�lφl

]
,

L̃ = [L − Lii ], E{β̃r (k)} = 0, E{ξ̃ (k)} = 0, E{λ̃ci (k)} = 0, E{β̃2
m(k)} = θβm ,
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E{ξ̃2(k)} = θβ, E{λ̃ci (k)} = θλci .

Now, we present the following Lemma and Definition which are useful in obtaining
the main results.

Lemma 1 (S-procedure) [30] Given quadratic function η ∈ Ri , H0(η) = ηT J0η,
H1(η) = ηT J1η,H2(η) = ηT J2η, . . . ,Hg(η) = ηT Jgη,Ht = J+ t (t−1, 2, . . . , g).
Then, we have H(η) < 0 with J1(η) ≥ 0, J2(η) ≥ 0, · · · , J0(η) ≥ 0, if there exist
scalars ρ1 > 0, ρ2 > 0, . . . , ρg > 0 satisfying

J0 + ρ1J1 + ρ2J2 + · · · + ρgJg < 0. (10)

Definition 1 [29] For any positive definite matrixJ , scalars 0 < σ1 < σ2, γ > 0, the
augmented filtering error system (9) is said to be stochastically finite-time bounded
with (X ,Y ,Z )− γ dissipative performance subject to (σ1, σ2,N, γ,J , ϕ), if it is
stochastically finite-time bounded subject to (σ1, σ2,N,J , ϕ), w(k) ∈ l2[0,∞) and
under zero initial conditions the estimation error e(k) satisfies

E

{ N∑

k=0

[eT (k)X e(k) + 2eT (k)Y w̃(k) + w̃T (k)Z w̃(k)]
}

≥ γE

{ N∑

k=0

w̃T (k)w̃(k)

}
,

whereX , Y andZ are real constant matrices with symmetricX andZ . Also, it is
assumed that X is less than or equal to zero, and then, we have −X = (X̄ 1/2)2.

3 Main Results

In this section, a set of sufficient conditions that guarantee the stochastic finite-time
boundedness of the augmented filtering error system (9) with (X ,Y ,Z )−γ dissipa-
tive performance index will be derived. Moreover, the desired distributive non-fragile
filter system is described in the form of (8) in order that the augmented filtering error
system (9) in the existence of distributed time-varying delay, infinitely distributed
time delay, incomplete measurements, energy constraints and dynamic quantization
is stochastically finite-time bounded with (X ,Y ,Z ) − γ dissipative performance
index.

The following theorem discusses about stochastic finite-time boundedness with
(X ,Y ,Z )−γ dissipative performance index of the augmented filtering error system
(9) with known filter gain parameters.

Theorem 1 Let dm, dM, λ̄1i , λ̄2i , β̄r (r = 1, 2, . . . , h), ξ̄ , χ , θλ̄ci
(c = 1, 2) be

known positive scalars and X ≤ 0, Y , Z = Z T , J ≥ 0 be known constant
matrices. The augmented filtering error system (9) is stochastically finite-time bounded
with (X ,Y ,Z ) − γ dissipative performance index subject to (σ1, σ2,N, γ,J , ϕ)

if there exist positive symmetric matrices Pl , Qrl (r = 1, 2, . . . , h), Rl and non-
negative scalars αa (a = 1, 2, . . . , 5) such that the given LMIs hold for any l =
1, 2 . . . n2i × n2i ∈ �:
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[ϒ]9×9 < 0, (11)

�σ1 + αW ϕ < σ2α1χ
−k, (12)

α1 ≤ Pl ≤ α2 , 0 < Rl < α3 , 0 < Qrl < α4r , (13)

where

ϒ1,1 = −χ Pl + (dM − dm + 1)
h∑

r=1

Qrl + μ̄Rl ,

ϒ1,4 = −L̃ TY , ϒ1,6 = ˜A T , ϒ1,7 = θλ̄1i
W iT

1 ,

ϒ1,8 = θλ̄2i
W iT

2 , ϒ1,9 = L̃ T
√−X , ϒ2,2 = −diag{Q1l , . . . , Qhl},

ϒ2,6 = β̄h ˆA T
d1 + θβh

ˆA T
d1,

ϒ3,3 = −χ

μ̄
Rl , ϒ3,6 = ξ̄ ˜A T

d2 + θξ
˜A T
d2, ϒ4,4 = −Z + γ I , ϒ4,6 = B̃T ,

ϒ5,5 = −Mδ


δ

I ,

ϒ5,6 = Ẽ T , ϒ6,6 = −P−1
l , ϒ7,7 = −P−1

l , ϒ8,8 = −P−1
l ,

ϒ9,9 = −I , ˆAd1 = Ih ⊗ Ad1,

� =
{
α2 + μ̄α3 + dMλdM−1α4r + λdMα4r

(dM − dm)(dM + dm − 1)

2

}
.

Proof Let us consider the dynamic quantizer q(�) for the measured output yi (k), it is

effortless to obtain that whenever ‖ yi (k)
δ

‖ ≤ Mδ , we have

∥∥∥∥q
(
yi (k)
δ(k)

)
− yi (k)

δ

∥∥∥∥ ≤ 
δ. (14)

Now, we consider the Euclidean norm together with inequality (9), and we obtain

‖ν(k)‖ =
∥∥∥∥δ

(
q

(
yi (k)
δ(k)

)
− yi (k)

δ(k)

)∥∥∥∥ = δ(k)

∥∥∥∥

(
q

(
yi (k)
δ(k)

)
− yi (k)

δ(k)

)∥∥∥∥ ≤ δ(k)
δ.

(15)

Defining δ(k) = �

M ‖yi (k)‖, where � is an additional scalar and satisfies � ≥ 1.

Obviously, this definition guarantees that the condition ‖ yi (k)
δ(k) ‖ ≤ Mδ is established.

Using δ(k) in Eqs. (14) and (15), we get

νT (k)ν(k) ≤ �2
2
δ

M 2
δ

yTi (k)yi (k). (16)

Then, from (9) the aforementioned inequality can be rewritten as

ζ T (k)ϒ1ζ(k) ≥ 0, (17)
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where ϒ1 = diag
{
C̃ T C̃ , 0, 0, 0,− M 2

δ

�2
2
δ

}
and

ζ T (k) =
[
ηT (k) ηT (k − dh(k))

∞∑
τ̃=1

ηT (k − τ̃ ) w̃T (k) νT (k)
]

.

Now, we define the Lyapunov–Krasovskii functional for the augmented filtering
error system (9) as follows:

V (k) =
4∑

t=1

Vt (k), (18)

where

V1(k) = ηT (k)Plη(k),

V2(k) =
∞∑

τ̃=1

μτ̃η
T (k)Rlη(k),

V3(k) =
h∑

r=1

k−1∑

j=k−dr (k)

χk− j−1ηT ( j)Qrlη( j),

V4(k) =
h∑

r=1

−dm∑

j=−dM

k−1∑

s=k+ j

χk−s−1ηT (s)Qrlη(s).

Then, by calculating the derivatives of V (k) along the trajectories of augmented
filtering error system (9) and taking mathematical expectation, we have

E{�V1(k + 1) − (χ − 1)V1(k)}
= E{ηT (k + 1)Plη(k + 1) − ηT (k)Plη(k)},
≤ E{ηT (k)[ ˜A T Pl ˜A + W T

1 PlW1 + W T
2 PlW2]η(k)

+ β̄2
hη

T (k − dh(k)) ˜A T
d1Pl ˜Ad1η(k − dh(k))

+ θ2βhη
T (k − dh(k)) ˜A T

d1Pl ˜Ad1η(k − dh(k))

+ ξ̄2
( ∞∑

τ̃=1

μτ̃η(k − τ̃ )

)T ˜A T
d2Pl ˜Ad2

( ∞∑

τ̃=1

μτ̃η(k − τ̃ )

)

+ θ2ξ

( ∞∑

τ̃=1

μτ̃η
T (k − τ̃ ) ˜A T

d2

)T

Pl ˜Ad2

( ∞∑

τ̃=1

μτ̃η(k − τ̃ )

)

+ w̃T (k)D̃T PlD̃w̃(k) + νT (k)[Ẽ T Pl Ẽ + W T
E PlWE ]ν(k)}, (19)
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E{�V2(k + 1) − (χ − 1)V2(k)}

= E{
∞∑

τ̃=1

μτ̃η
T (k + 1)Rlη(k + 1) − χ

∞∑

τ̃=1

μτ̃η
T (k)Rlη(k)},

≤ E

{
μ̄ηT (k)Rlη(k) − χ

∞∑

τ̃=1

μτ̃η
T (k − d)Rlη(k − d)

}
,

≤ E

{
μ̄ηT (k)Rlη(k) − χ

μ̄

( ∞∑

τ̃=1

μτ̃η(k − d)

)T

Rl

×
( ∞∑

τ̃=1

μτ̃η(k − d)

)}
(20)

E{�V3(k + 1) − (χ − 1)V3(k)}

= E

{ h∑

r=1

[ k∑

j=k+1−dr (k+1)

χk− jηT ( j)Qrlη( j)

−
k−1∑

j=k−dr (k)

χk− j−1ηT ( j)Qrlη( j)

]}
,

≤ E

{ h∑

r=1

[
ηT (k)Qrlη(k) +

k−dm∑

j=k−dM+1

χk− jη( j)Qrlη( j)

]

− χdMηT (k − dh(k))diag{, Q1l , Q2l · · · , Qhl}
× η(k − dh(k))

}
, (21)

E{�V4(k + 1) − (χ − 1)V4(k)}

= E

{ h∑

r=1

[ −dm∑

j=−dM

k∑

s=k+1+ j

χk−sηT (s)Qrlη(s)

−
−dm∑

j=−dM

k−1∑

s=k+ j

χk−s−1ηT (s)Qrlη(s)

]}
,

≤ E

{ h∑

r=1

[
(dM − dm)ηT (k)Qrlη(k)

−
k−dm∑

j=k−dM+1

χk− jη( j)Qrlη( j)

]}
. (22)

In particular, the dissipative performance γ for the augmented filtering error system
(8) has to be established. For this purpose, we consider the performance index defined
in Definition 1 as
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J = E

{ N∑

k=0

[e(k)TX e(k) + 2eT (k)Y w̃(k) + w̃T (k)(Z − γ I )w̃(k)]
}
. (23)

On the other hand, by combining (19)–(22) together with dissipative performance
index (23), it is obvious to get the inequality as

E{�V (k) − (χ − 1)V (k) − J} ≤ E{ζ T (k)[ϒ0]5×5ζ(k)}, (24)

where

[ϒ0]1,1 = −χ Pl + (dM − dm + 1)
h∑

r=1

Qrl + μ̄Rl + ˜A T Pl ˜A + θλ̄1i
W iT

1 Plθλ̄1i
W i

1

+ θλ̄1i
W iT

2 Plθλ̄1i
W i

2 + L̃ TX L̃ ,

[ϒ0]1,4 = −L̃ TY , [ϒ0]2,2 = −diag{Q1l , . . . , Qhl } + β̄2
h

ˆA T
d1Qrl ˆAd1 + θ2βh

ˆA T
d1Qrl ˆAd1,

[ϒ0]3,3 = −χ

μ̄
Rl + ξ̄2 ˜A T

d2Pl ˜Ad2 + θTξ
˜A T
d2Pl ˜Ad2, [ϒ0]4,4 = −Z + γ I + B̃T PlB̃,

[ϒ0]5,5 = −Mδ


δ

I + Ẽ T Pl Ẽ ,

In addition, by applying Lemma 1 together with H0(ζ ) = ζ T (k)[ϒ0]5×5ζ(k) and
H1(ζ ) = ζ T (k)ϒ1ζ(k), then H0(ζ ) < 0 holds if there exists a positive scalar � such
that

ϒ̂ = [ϒ0]5×5 + �2ϒ1 < 0. (25)

Moreover, by implementing Schur complement lemma to inequality (25), we have

[ϒ]9×9 < 0, (26)

where the elements of ϒ are defined in theorem statement. Thus, inequality (26) is
equivalent to (11). Hence, if the inequality (11) holds, it is obvious that

E{�V (k) − (χ − 1)V (k) − w̃T (k)W w̃(k)} ≤ 0,

E{V (k + 1) − V (k)} ≤ (χ − 1)E{V (k)} + E{w̃T (k)W w̃(k)},
E{V (k + 1)} ≤ χE{V (k)} + αW E{w̃T (k)w̃(k)}, (27)

where αW = αmax(W ). Furthermore, there exists any positive scalar χ ≥ 1 such that
N∑
k=0

wT (k)w(k) ≤ ϕ, and then, we have

E{�V (k)} ≤ χE{V (0)} + αW E{
k−1∑

s=0

χk−s−1wT (s)w(s)} ≤ χE{V (0)} + χkαW ϕ,

(28)
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Moreover, from the Lyapunov–Krasovskii functional (18), we obtain

E{V (0)} = E

{ ∞∑

τ̃=1

μτ̃ ηT (0)Rlη(0)
}

+ E

{ h∑

r=1

−1∑

j=k−dr (0)

χ− j−1ηT ( j)Qrlη( j)
}

(29)

+ E

{ h∑

r=1

−dm∑

j=−dM

−1∑

s= j

χ−s−1ηT (s)Qrlη(s)
}
,

≤ α2E

{
ηT (0)J η(0)

}
+ α3E

{ ∞∑

τ̃=1

μτ̃ ηT (0)J η(0)
}

+ α4rE

{ h∑

r=1

−1∑

j=k−dr (0)

χ− j−1ηT ( j)J η( j)
}
,

+ α4rE

{ h∑

r=1

−dm∑

j=−dM

−1∑

s= j

χ−s−1ηT (s)J η(s)
}
,

≤
{
α2 + μ̄α3 + dMλdM−1α4r + λdM α4r

(dM − dm)(dM + dm − 1)

2

}
σ1 ≤ �σ1,

(30)

where α1 = αmin{Pl}, χ2 = αmax {Pl}, α2 = αmax {Rl} and α4r = αmax {Qrl} (r =
1, 2, . . . , h).

Moreover, from (24) we can obtain

E{V (k)} ≥ E{ηT (k)Plη(k)} ≥ E{ηT (k)J 1/2 P̃lJ
1/2η(k)} ≥ α2E{ηT (k)J η(k)}.

(31)

Then, it is clear to obtain from (25)–(31) that

E{ηT (k)J η(k)} ≤ (�σ1 + αWϕ)χk

α1

. (32)

Then, from (12), it is obvious that E{ηT (k)J η(k)} < σ2 for all k = {1, 2, . . . ,N}.
Hence, fromDefinition 2.1 of [6], the augmented filtering error system (9) is stochasti-
cally finite-time bounded with (X ,Y ,Z )−γ dissipative performance index subject
to (σ1, σ2,N, γ,J , ϕ). This completes the proof. 	


Next, the results are extended by taking the uncertain parameters into account to
obtain the desired distributive non-fragile filter design for the augmented filtering error
system (9).

Theorem 2 Let dm, dM, λ̄1i , λ̄2i , β̄r (r = 1, 2, . . . , h), ξ̄ , χ , θλ̄ci
(c = 1, 2) be known

positive scalars and X ≤ 0, Y , Z = Z T , J ≥ 0 be known constant matrices.
The augmented filtering error system (9) is stochastically finite-time bounded with
(X ,Y ,Z ) − γ dissipative performance index subject to (σ1, σ2,N, γ,J , ϕ) if
there exist positive definite matrices P̄1l , P̄2l , P̄3l , Q1rl , Q2rl (r = 1, 2, . . . , h), R1l
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R2l , any matrices Y1, Y2, Y3 and positive scalars α1, α2, α3r (r = 1, 2, . . . , h) such
that the given LMIs together with (13) hold for every l = 1, 2 . . . n2i × n2i ∈ �:

⎡

⎢⎢⎢⎢⎣

[ϒ̄]9×9 ε1N̄
T
1i j M̄1 ε2N̄

T
2i j M̄2

∗ −ε1 0 0 0
∗ ∗ −ε1 0 0
∗ ∗ ∗ −ε2 0
∗ ∗ ∗ ∗ −ε2

⎤

⎥⎥⎥⎥⎦
< 0, (33)

where

ϒ̄1,1 =
[
ϒ̄111 −χ P2l

∗ ϒ̄113

]
, ϒ̄1,4 =

[−L TY

L T
FiiY

]
, ϒ̄1,6 =

[
ϒ̄161 ϒ̄162
K̂ T
Fi j K̂ T

Fi j

]
, ϒ̄1,7 =

[
ϒ̄171 ϒ̄172
0 0

]
,

ϒ̄1,8 =
[
ϒ̄181 ϒ̄182
0 0

]
, ϒ̄1,9 =

[
L T √−X

−L T
Fii

√−X

]
, ϒ̄2,2 =

[
ϒ̄221 0

∗ ϒ̄222

]
, ϒ̄2,6 =

[
ϒ̄261 ϒ̄262
0 0

]
,

ϒ̄3,3 =
[− χ

μ̄
R̄1l 0

∗ − χ
μ̄
R̄2l

]
, ϒ̄3,6 =

[
ϒ̄361 ϒ̄362
0 0

]
, ϒ̄4,4 = −Z + γ I , ϒ̄4,6 =

[
ϒ̄T
461

ϒ̄T
462

]T
,

ϒ̄5,6 =
[
ϒ̄T
561

ϒ̄T
562

]T
, ϒ̄5,8 = [

ϒ̄581 ϒ̄482
]
, ϒ̄6,6 = 
, ϒ̄7,7 = 
, ϒ̄8,8 = 
, ϒ̄9,9 =

[−I 0
∗ −I

]
,


 =
[

̄1 
̄2
∗ 
̄3

]
, ϒ̄111 = −χ P1l + (dM − dm + 1)

h∑

r=1

Q̄1rl + μ̄R̄1l ,

ϒ̄113 = −χ P3l + (dM − dm + 1)
h∑

r=1

Q̄2rl + μ̄R̄2L ,

ϒ̄161 = A T Y1 + C T
i �T

λ̄1
�T
l Ĥ T

Fi j + C T
i �T

λ̄2
�T
l Ĥ T

Fi j ,

ϒ̄162 = A T Y3 + C T
i �T

λ̄1
�T
l Ĥ T

Fi j + C T
i �T

λ̄2
�T
l Ĥ T

Fi j ,

ϒ̄171 = θλ1iC
T
i φl�

T
l Ĥ T

Fi j , ϒ̄172 = θλ1iC
T
i φl�

T
l Ĥ T

Fi j , ϒ̄181 = θλ2iC
T
i φl�

T
l Ĥ T

Fi j ,

ϒ̄182 = θλ2iC
T
i φl�

T
l Ĥ T

Fi j , ϒ̄221 = −diag{Q̄11l , . . . , Q̄1hl }, ϒ̄222 = −diag{Q̄21l , . . . , Q̄2hl },
ϒ̄261 = β̄hA

T
d1Y

T
1 + θβhA

T
d1Y

T
1 , ϒ̄262 = β̄hA

T
d1Y

T
3 + θβhA

T
d1Y

T
3 , ϒ̄361 = ξ̄A T

d2Y
T
1 + θξA

T
d2Y

T
1 ,

ϒ̄362 = ξ̄A T
d2Y

T
3 + θξA

T
d2Y

T
3 , ϒ̄461 = BT Y T

1 + DT
i �T

l Ĥ T
Fi j , ϒ̄462 = BT Y T

3 + DT
i �T

l Ĥ T
Fi j ,

ϒ̄561 = �T
λ̄2

�T
l Ĥ T

Fi j , ϒ̄562 = �T
λ̄2

�T
l Ĥ T

Fi j , ϒ̄581 = φT
l �l Ĥ

T
Fi j , ϒ̄582 = φT

l �l Ĥ
T
Fi j ,


̄1 = P̄1l − Y T
1 − Y1, 
̄2 = P̄2l − Y T

3 − Y2, 
̄3 = P̄3l − Y T
2 − Y2,

N̄1i j = [0 N1i j 0 · · · 0︸ ︷︷ ︸
13

], M̄1 = [0 · · · 0︸ ︷︷ ︸
8

MT Y T
2 MT Y T

2 0 · · · 0︸ ︷︷ ︸
5

],

N̄2i j = [N1 0 · · · 0︸ ︷︷ ︸
5

N7 N8 0 · · · 0︸ ︷︷ ︸
7

],

M̄2 = [0 · · · 0︸ ︷︷ ︸
8

MT Y T
2 MT Y T

2 MT Y T
2 MT Y T

2 MT Y T
2 MT Y T

2 0],

N1 = C T
i �T

λ̄1
�T
l N

T
2i j + C T

i �T
λ̄2

�T
l N

T
2i j + θλ1iC

T
i φT

l �T
l N

T
2i j + θλ2iC

T
i φT

l �T
l N

T
2i j ,

N7 = DT
i �T

l N
T
2i j and N8 = �T¯λ2i

�T
l N

T
2i j .
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Moreover, the gain matrices of the distributive non-fragile filter (8) are given as
K̂i j = Y−1

2 K̂Fi j , Ĥi j = Y−1
2 ĤFi j and Lii = LFii .

Proof For convenience and to accomplish the required results, the matrices are

defined as follows: Pl =
[
P̄1l P̄2l
P̄T
2l P̄3l

]
, Y =

[
Y1 Y2
Y3 Y2

]
, Rl = diag{R̄1l , R̄2l} and

Qrl = diag{Q̄1rl , Q̄2rl}(r = 1, 2, . . . , h). Further, let K̂i j = K̂Fi j , Ĥi j = ĤFi j

and Lii = LFii . Using the above given partition matrices Pl , R̄l , Qrl , Y and applying
Lemma 3 in [10] to the matrix inequality (11) together with parametric uncertainties,
we have

ϒ̂ = [ϒ̄]9×9 + ε1N̄
T
1i j�(k)M̄1 + ε2M̄

T
1 �(k)N̄2i j , (34)

where the elements of [ϒ̄]9×9, N1i j , N2i j , M̄1 and M̄2 are defined in Theorem 2. On
the other hand, by using Lemma 3 in [30], the matrix term in (34) can be expressed as

ϒ̂ = [ϒ̄]9×9 + ε1N̄
T
1i j N̄1i j + ε1M̄1M̄

T
1 + ε2N̄

T
2i j N̄2i j + ε2M̄2M̄

T
2 . (35)

The expression in (35) can be shown to be equivalent to the matrix terms in (33).
Hence, if the LMIs in (33) together with (12) hold, then the augmented filtering error
system (9) is stochastically finite-time bounded with (X ,Y ,Z ) − γ dissipative
performance index subject to (σ1, σ2,N, γ,J , ϕ). This completes the proof. 	

Next, if we assume the system (1) without distributed time-varying delay and infinitely
distributed delay, then the augmented filtering error system (8) can be modified as
follows:

η(k) = ˜A η(k) + D̃w̃(k) + Ẽ ν(k) + W1η(k) + W2η(k) + WEν(k),

e(k) =L̃η(k),

yi (k) =C̃iη(k). (36)

Corollary 1 Let λ̄1i , λ̄2i , χ , θλ̄ci
(c = 1, 2) be known positive scalars andX ≤ 0, Y ,

Z = Z T ,J ≥ 0 be known constant matrices. The augmented filtering error system
(9) is stochastically finite-time boundedwith (X ,Y ,Z )−γ dissipative performance
index subject to (σ1, σ2,N, γ,J , ϕ) if there exist positive definite matrices P̄1l , P̄2l ,
P̄3l , any matrices Y1, Y2, Y3 and positive scalars α1 α2, such that the below given
LMIs hold for every l = 1, 2 . . . n2i × n2i ∈ �:

⎡

⎢⎢⎢⎢⎣

[�]7×7 ε1N̄
T
1i j M̄1 ε2N̄

T
2i j M̄2

∗ −ε1 0 0 0
∗ ∗ −ε1 0 0
∗ ∗ ∗ −ε2 0
∗ ∗ ∗ ∗ −ε2

⎤

⎥⎥⎥⎥⎦
< 0, (37)

α2σ1 + αW ϕ < σ2α1χ
−k, (38)
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α1 ≤ Pl ≤ α2 , (39)

where

�11 =
[−χ P1l −χ P2l ,

∗ −χ P3l

]
, �12 =

[−L TY
L T

FiiY

]
, �14 =

[
�141 �142

K̂ T
Fi j K̂ T

Fi j

]
, �15 =

[
�151 �152

0 0

]
,

�16 =
[
�161 �162

0 0

]
, �17 =

[−L T
√−X

L T
Fii

√−X

]
, �22 = −Z + γ I , �24 = [

�241 �242
]
,

�33 = −Mδ


δ

I , �34 =
[
�341

�342

]T
, �36 =

[
�361

�362

]T
, �44 =

[
�̂1 �̂2

∗ �̂3

]
, �55 =

[
�̂1 �̂2

∗ �̂3

]
,

�66 =
[
�̂1 �̂2

∗ �̂3

]
, �77 = −I , �141 = A T Y1 + C T

i �T
λ̄1

�T
l Ĥ

T
Fi j + C T

i �T
λ̄2

�T
l Ĥ

T
Fi j ,

�142 = A T Y3 + C T
i �T

λ̄1
�T

l Ĥ
T
Fi j + C T

i �T
λ̄2

�T
l Ĥ

T
Fi j , �151 = θλ1iC

T
i φT

l �T
l Ĥ

T
Fi j ,

ϒ̄152 = θλ1iC
T
i φT

l �T
l Ĥ

T
Fi j , �161 = θλ2iC

T
i φl�

T
l Ĥ

T
Fi j , �162 = θλ2iC

T
i φT

l �l Ĥ
T
Fi j ,

�241 = BT Y T
1 + DT

i �T
l Ĥ

T
Fi j , �242 = BT Y T

3 + DT
i �T

l Ĥ
T
Fi j , �341 = �T

λ̄2
�T

l Ĥ
T
Fi j ,

�342 = �T
λ̄2

�T
l Ĥ

T
Fi j , �361 = φT

l �l Ĥ
T
Fi j , �362 = φT

l �T
l Ĥ

T
Fi j , �̂1 = P̄1l − Y T

1 − Y1,

�̂2 = P̄2l − Y T
3 − Y2, �̂3 = P̄3l − Y T

2 − Y2, N̄1i j = [0 N1i j 0 · · · 0︸ ︷︷ ︸
9

],

M̄1 = [0 · · · 0︸ ︷︷ ︸
4

MT Y T
2 MT Y T

2 0 · · · 0︸ ︷︷ ︸
5

], N̄2i j = [N1 0 N3 N4 0 · · · 0︸ ︷︷ ︸
7

],

M̄2 = [0 · · · 0︸ ︷︷ ︸
4

MT Y T
2 MT Y T

2 MT Y T
2 MT Y T

2 MT Y T
2 MT Y T

2 0],

N1 = C T
i �T

λ̄1
�T

l N
T
2i j + C T

i �T
λ̄2

�T
l N

T
2i j + θλ1iC

T
i φT

l �T
l N

T
2i j + θλ2iC

T
i φT

l �T
l N

T
2i j ,

N3 = DT
i �T

l N
T
2i j , N4 = �T¯λ2i �

T
l N

T
2i j ,

Moreover, the gain matrices of the distributive non-fragile filter (8) are given as
K̂i j = Y−1

2 K̂Fi j , Ĥi j = Y−1
2 ĤFi j and Lii = LFii .

Proof The proof of this corollary is similar to Theorem 2 and hence it is neglected. 	


Remark 2 This paper proposes a new set of conditions for the considered complex
system (1) by using distributive filtering techniques. The main advantage of the pro-
posed filter technique is that it can ensure the desired result even in the presence of
packet losses and uncertainties in the filter components. On the other hand, dissipative
performance is a more generalized and effective technique in designing the filter for
linear and nonlinear systems. In addition, the addressed system (1) incorporates some
reality factors such as uncertainty, stochastic distributed time delays and packet losses,
so that the system model addressed is comprehensive and the results presented in this
paper are more applicable in practice.
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4 Numerical Simulation

In this section, we illustrate two examples to show the validity of the proposed theoret-
ical results. Specifically, the first example is presented to demonstrate the stochastic
finite-time boundedness with prescribed performance index for the augmented fil-
tering error system (9) with distributed time-varying delay, infinitely distributed time
delay, dynamic quantizer and energy constraints. Furthermore, the remaining example
is provided to prove the efficiency of the proposed results for system (36).

Example 1 In this example, the sensor network is presented in terms of direct graph
G = (V, E,A), with V = {1, 2} and E = {(1, 1), (1, 2), (2, 2)}, where V and E are the
set of nodes and edges of the graph, respectively. Moreover, we consider the adjacency
matrix as

A =
[
1 1
0 1

]
.

Let us assume the complex system (1) with corresponding matrices as

A =
⎡

⎣
−0.023 0.002 0.014
0.026 0.024 0.04
0.28 0.22 0.08

⎤

⎦ , Ad1 =
⎡

⎣
−0.003 0.001 0.003
0.002 −0.003 0.004
0.002 0.006 −0.001

⎤

⎦ ,

Ad2 =
⎡

⎣
−0.001 0.001 0.06
0.001 −0.001 0.003
0.001 0.004 −0.006

⎤

⎦ , B = [
0.8 0.5 0.2

]T and L = [
1 1 0

]
.

The parametric uncertainties are taken as

M = [
0.01 0.07 0.03

]T
, Na11 = [

0.2 0.8 0.1
]
, Na12 = [

0.7 0.4 0.2
]
,

Na21 = [
0.3 0.6 0.9

]
, Na22 = [

0.2 0.5 0.6
]
, Nb11 = 0.03, Nb12 = 0.07,

Nb21 = 0.06 and Nb22 = 0.03.

Specifically, the measurement output of the i th sensor node with i, j = 1, 2 is
described as in (6) and the parameter values are chosen as

C1 = [
1 0 1

]
, C2 = [

0 1 1
]
, D1 = 0.5 and D2 = 0.2.

Next, we assume that the distributed time delay satisfies 1 ≤ dr (k) ≤ 4, where
r = 1, 2 with d1(k) = 1.2 + 0.2 cos(k) and d2(k) = 2 + 0.9 sin(k). Further, the
communication delay bound satisfies 1 ≤ τ̃r (k) ≤ 3 (r = 1, 2) which occurs stochas-
tically. Moreover, the parameters Mδ = 10 and 
δ = 2.1 are the error bound and
range of the dynamic quantizer, respectively. The occurrence probabilities for packet
losses and dynamic quantization are taken for each sensor nodes. For the first and
second sensor nodes, we choose λ̄11 = 0.2, λ̄21 = 0.15, λ̄12 = 0.6 and λ̄22 = 0.15.
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The other parameters are chosen as χ = 1.1, � = 2.5, X = −0.5, Y = 0.3 and
Z = 2.6. Furthermore, the switching signal ρ(k) can be taken periodically as

ρ(k) =
{
1, 1 ≤ k ≤ 15,
2, 15 ≤ k ≤ 30.

By solving the LMI constraints derived in Theorem 2 together with the above given
parameters, we obtain the minimum value of γ as γ = 0.9754 and the filter gain
matrices as

K11 =
⎡

⎣
0.0098 0.0043 −0.0017
0.0024 0.0010 −0.0034
0.0018 0.0009 −0.0003

⎤

⎦ , K12 =
⎡

⎣
−0.0118 −0.0048 0.0016
−0.0035 −0.0012 0.0035
−0.0021 −0.0010 0.0003

⎤

⎦ ,

K22 =
⎡

⎣
0.0337 0.0542 −1.1035
0.0256 0.0471 −0.3342

−0.0015 0.0010 −0.1205

⎤

⎦ , H11 =
⎡

⎣
−0.6010
−0.3149
−0.2269

⎤

⎦ , H12 =
⎡

⎣
−0.3385
−0.3111
−0.0268

⎤

⎦ ,

H22 =
⎡

⎣
−0.0020
−0.0054
−0.0024

⎤

⎦ , L11 = [
0.8890 0.7778 0.2675

]
,

L22 = [
0.8939 0.7802 0.2540

]
.

Let us set the initial conditions as x(0) = x f (0) = [0 0]T for the system and
filter states. Moreover, we assume w̃(k) = 4 cos(k) exp(−0.1k) to be the disturbance

input, and from (16), we take ν(k) =
√
2.5×2.1
10 y(k). Further, with the above-mentioned

values the simulation results for the considered system (1) are represented in Figs. 2,
3, 4, 5 and 6. Figure 2 shows the system states and their corresponding estimates.
Eventually, the trajectories of the output z(k) and its estimate ẑ(k) are displayed
in Fig. 3. Moreover, Fig. 4 displays the response of error system with and without
quantization of the augmented filtering error system (9). To be more particular from
Fig. 4, it is clear that the proposed filter works efficiently even in the presence of
quantization. The switching signal throughout the simulation process is presented
in 5. Furthermore, the time history of the filtering error system (9) is depicted in
Fig. 6. Finally, Table 1 presents the calculated γ value for different upper bounds
for various performances. Hence, it is evident from this example that the augmented
filtering error system (9) is stochastically finite-time bounded with (X ,Y ,Z ) − γ

dissipative performance index subject to (0.4, 20.4739, 30, 0.9754, I , 0.1) under the
proposed distributive non-fragile filter design.

Example 2 In this example, a CSTR model as in [33] is considered to show the effi-
ciency of proposed distributive filter design. The complete reaction is given as follows:
cyclopentadiene (A) → cyclopentanol (B) → cyclopentanediol (C), and 2 cyclopen-
tadiene (A)→ dicyclopentadiene (D). Also, the production of cyclopentanol (B) from
cyclopentadiene (A) is considered. By assuming constant density and an ideal resi-
dence time distribution within the reactor, the balance equations can be described in
the following form:
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(a) (b)

(c)

Fig. 2 Responses of the states and their corresponding estimates

Fig. 3 Trajectories of z(k) and ẑ(k)
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Fig. 4 Trajectories of error system (9)

Fig. 5 Switching signal
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Fig. 6 Evolution of xT (k)J x(k)

Table 1 Calculated γ for various values of dM

dM 2 3 4

Dissipative case (χ = 1.1) 0.5844 0.7826 0.9754

H∞ case (χ = 1.3) 0.9168 1.2153 1.3473

Mixed H∞ and passivity case (χ = 1.4) 1.1761 1.3267 1.5892

dCA

dt
= V̇

VR
(CA0 − CA) − k1CA − k3C

2
A,

dCB

dt
= − V̇

VR
CB + k1CA − k2CB,

dϑ

dt
= V̇

VR
(ϑ0 − ϑ) + kwAR

ζCpVR
(ϑK − ϑ)

−k1CA�H AB
R + k2CB�HBC

R + k3C2
A�H AD

R

ζCp
, (40)

where CA denotes the concentration of educt A; CB represents the concentration
of the desired product B within the reactor; and ϑ is the reactor temperature. The
rate components k1, k2 and k3 depend exponentially on the react temperature ϑ via
Arrhenius law given by ki (ϑ) = k0i exp(

−EAi
Rϑ

) (i = 1, 2, 3). Let us assume that the
first and second rate components are equal for the reaction system, that is k1 = k2.
Further, the values for model parameters are defined as k01 = k02 = 1.287×1012 h−1,
k03 = 9.043 × 109 l/mol/h−1, EA1/R = EA2/R = 9758.3K, EA3/R = 8560.0K,
�H AB

R = 4.2 kJ/mol, �HBC
R = −11 kJ/mol, �H AD

R = −41.85 kJ/mol, CP =
3.01 kJ/kgK, AR = 0.215m2, V = 10.01, ϑ0 = 403.15K, kw = 4032 kJ/hm2 K.
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Now, linearizing the balance equations (40) at the operating point, we can obtain the
state-space model in the following form:

ẋ(t) = Apx(t) + Bpu(t), (41)

where x =
⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
CA − CAs

CB − CBs

ϑ − ϑs

⎤

⎦ , u =
[
u1
u2

]
=

[
V̇ − V̇s

CA0 − CA0s

]
, and the matrices

Ap and Bp are given by

Ap =
⎡

⎣
−86.0962 0 4.2077
50.6146 −69.4446 −0.9974
172.2263 197.9985 −65.5149

⎤

⎦ and Bp =
⎡

⎣
0.3861 18.83

−0.0899 0
−0.4136 0

⎤

⎦ .

The steady-state values of the main operating point of the reactor are given by
CAs = 1.235mol/l, CBs = 0.9mol/l, ϑs = 407.29K , V̇ /VR = 18.83h−1,
CA0s = 5.1mol/l. It should be noted that the control input can be treated as the
unknown input signal in the state estimation problem. According to this point, the
discrete-time state representation of (41) with the sampling period T0 = 1min can be
represented by the following equation:

x(k + 1) = Ax(k) + Bw̃(k), (42)

where

A =
⎡

⎣
0.2747 0.0345 0.0206
0.2323 0.3152 0.0033
1.2566 1.1042 0.3671

⎤

⎦ and B =
⎡

⎣
1
1
1

⎤

⎦ .

Here, we have considered two sensor nodes for the combined measurements (6)
and are taken as

C1 = [
1 0 0

]
, C2 = [

0 0 1
]
, D1 = 0.3, D2 = 0.2 and L = [

0 1 0
]
.

Suppose the disturbance variation occurs in the range which lies between [−1, 1] and
also, the missing measurements are taken as λ̄11 = 0.15, λ̄21 = 0.35, λ̄12 = 0.48
and λ̄22 = 0.2. Moreover, the additional parameter values are chosen as χ = 1,
β̄1 = 0.547, β̄2 = 0.5, ξ̄ = 0.22, � = 1.5, X = −0.01, Y = 1.4, Z = 3.6
and other parameter values are same as in Example 1. Then, by solving the LMIs in
Corollary 1 and using the above given values, we obtain minimum γ = 1.4121 and
the gain matrices as follows:

K11 =
⎡

⎣
−0.3157 −0.0199 0.0611
−0.2953 −0.0178 0.0566
−0.1736 −0.0117 0.0320

⎤

⎦ , K12 =
⎡

⎣
0.3082 0.0110 −0.0336
0.2853 0.0112 −0.0324
0.1673 0.0062 −0.0228

⎤

⎦ ,
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Fig. 7 Trajectories of z(k) and ẑ(k)

K22 =
⎡

⎣
−0.0197 −0.0139 −0.0158
−0.0200 −0.0126 −0.0145
−0.0122 −0.0087 −0.0101

⎤

⎦ , H11 =
⎡

⎣
−4.3194 0
−3.8751 0
−2.1170 0

⎤

⎦ ,

H21 =
⎡

⎣
−3.2841 −0.2437
−3.0214 −0.1788
−1.7366 −0.0344

⎤

⎦ , H22 =
⎡

⎣
−0.2439 −0.2439
−0.1789 −0.1789
−0.0345 −0.0345

⎤

⎦ ,

L11 =
⎡

⎣
0.5394

−1.5832
1.3528

⎤

⎦
T

, L22 =
⎡

⎣
0.5533

−1.6499
1.4737

⎤

⎦
T

.

The initial conditions for the state and filter are chosen as x(0) = [0 0]T and
x f (0) = [0 0]T , respectively. With the aid of initial conditions and aforementioned
parameters, the simulation results are presented in Figs. 7, 8, 9 and 10. In particular,
the trajectories of the output signal z(k) and its estimation ẑ(k) are displayed in Fig. 7.
The error responses of the augmented filtering error system (36) are plotted in Fig. 8.
The switching signal at each time instant is depicted in 9. Further, Fig. 10 depicts
the time evaluation of ζ T (k)J ζ(k) with optimum bound value σ2. In particular, it
is clear that the state trajectories do not exceed the maximum allowable bound value
σ2. Moreover, Table 2 shows the maximum allowable bound value of σ2 for different
values of σ1. Finally, Table 3 displays the minimum γ value for different methods, and
also, it is evident that Corollary 1 is less conservative than Theorem 2 of Zhang et al.
[33]. Hence, it can be concluded from this example that the augmented filtering error
system in (36) is stochastically finite-time bounded with (X ,Y ,Z ) − γ dissipative
performance subject to (0.2, 34.4040, 100, 1.4121, I , 0.05).

Example 3 Now, we will apply the conditions derived in Corollary 1 to deal with the
distributive filter problem for a quarter-car suspension system as in [34]. Moreover,
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Fig. 8 Response of error system (36)

Fig. 9 Switching signal

the corresponding parametric values are borrowed from Zhang et al. [34], which are
given as follows:

A =

⎡

⎢⎢⎣

0.5610 0.7804 0.0447 0.0037
0.3297 −0.0001 0.0436 0.0014

−1.9618 −4.5284 0.7529 0.0274
−1.3703 −1.2849 0.2335 −0.2335

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

−0.0024
−0.0023
0.0110
0.0503

⎤

⎥⎥⎦ , and L = [
0 0 1 0

]
.

Further, the uncertain parametric matrix values are assumed as

M = [
0.06 0.03 0.06 0.02

]T
, Na11 = [

0.01 0.04 0.01 0.03
]
,

Na12 = [
0.02 0.05 0.03 0.01

]
, Na22 = [

0.07 0.04 0.02 0.01
]
,
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Fig. 10 Evolution of ζ T (k)J ζ(k)

Table 2 Maximum σ2 bound for
various σ1 values

σ1 0.2 0.4 0.6 0.8 1

σ2 34.4040 35.1248 35.8765 36.59874 37.1549

Table 3 Comparison of
minimum γ by various methods

Methods γ

Corollary 1 1.4121

[33] 1.9069

Fig. 11 Topological structure of
sensor network

Na32 = [
0.06 0.01 0.04 0.02

]
, Na33 = [

0.05 0.04 0.03 0.02
]
,

Nb11 = 0.02, Nb12 = 0.03, Nb22 = 0.05, Nb32 = 0.07 and Nb33 = 0.02.

In this example, we assume that the sensor with three nodes and the corresponding
graph topologies are displayed in Fig. 11. In particular, the measurement output in (6)
is assumed with three sensor nodes and the parametric values are taken as

C1 =
[
1 0 0 0
0 1 0 0

]
, C2 = [

0 0 0 1
]
, C3 = [

0 0 0 1
]
,
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D1 = [
0.11 0.2

]
, D2 = 0.02 and D3 = 0.03.

Here, only one node of Yi is selected at each time instant for transmission and for
three nodes �ρi (k) (i = 1, 2, 3) is assumed as �ρi (k) ∈ {[10], [01]}, �ρ2(k) = 1
and �ρ3(k) = 1. Moreover, the error bound and the range of the dynamic quantizer
parametric values areMδ = 10 and 
δ = 1.5, respectively. The probability of packet
loss encountered for each sensor node is chosen as ¯α11 = 0.35, ¯α12 = 0.4, ¯α13 = 0.6,
¯α21 = 0.2, ¯α22 = 0.5 and ¯α23 = 0.75. The remaining parametric values are taken

same as in Example 2. By using aforementioned values and solving the derived LMIs
in Corollary 1, we obtain γ = 0.3358 and the gain matrices are as follows:

K11 =

⎡

⎢⎢⎣

−0.5847 −0.5461 −0.8705 −0.4925
−0.5893 0.5495 −0.7181 −0.4339
0.3271 −0.2972 −0.2342 −0.1025

−0.3312 −0.3140 −0.1574 −0.1932

⎤

⎥⎥⎦ ,

K12 =

⎡

⎢⎢⎣

−0.5485 0.54019 −0.79291 −0.5553
−0.5649 0.5460 −0.7216 −0.4726
0.39105 −0.3099 0.2322 0.9003
0.3383 −0.3153 −0.1592 −0.1946

⎤

⎥⎥⎦ ,

K22 =

⎡

⎢⎢⎣

0.1079 0.26546 −0.3538 0.3163
0.1286 0.18047 −0.1279 0.8635
0.4378 0.1422 0.2781 −0.2212
0.3276 −0.2604 −0.6663 −0.4616

⎤

⎥⎥⎦ ,

K32 =

⎡

⎢⎢⎣

0.1829 0.2554 −0.4062 0.2803
0.2417 0.1268 −0.1403 0.8194
0.3233 −0.1775 −0.3000 −0.2170
0.3226 −0.2501 −0.3959 −0.5026

⎤

⎥⎥⎦ ,

K33 =

⎡

⎢⎢⎣

0.1722 0.2296 −0.3831 0.2572
0.2706 −0.6602 −0.1448 0.7833
0.1372 −3.3003 0.3325 −0.2123
0.2955 −0.2272 −0.4792 −0.4831

⎤

⎥⎥⎦ ,

H11 =

⎡

⎢⎢⎣

−0.4042
−0.1532
−0.1258
−0.2017

⎤

⎥⎥⎦ , H12 =

⎡

⎢⎢⎣

−0.4173
−0.1738
−0.1229
−0.1938

⎤

⎥⎥⎦ , H22 =

⎡

⎢⎢⎣

0.0521
−0.1324
−0.3422
−0.4163

⎤

⎥⎥⎦ ,

H32 =

⎡

⎢⎢⎣

−0.4342
−0.1193
−0.3253
−0.4252

⎤

⎥⎥⎦ , H33 =

⎡

⎢⎢⎣

−0.4342
−0.1193
−0.3254
−0.4254

⎤

⎥⎥⎦ , L11 =

⎡

⎢⎢⎣

3.6090
−3.2170
−4.6092
−1.1311

⎤

⎥⎥⎦

T

,

L22 =

⎡

⎢⎢⎣

5.4983
−4.9722
−8.0638
−1.2694

⎤

⎥⎥⎦

T

and L33 =

⎡

⎢⎢⎣

3.9953
−3.5837
−5.0567
−1.1203

⎤

⎥⎥⎦

T

.
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(a) (b)

(d)(c)

Fig. 12 Responses of the states and their corresponding estimates

Fig. 13 Trajectories of z(k) and ẑ(k)

The initial conditions for the system and filter state are taken as x(0) = x f (0) =
[0 0 0 0]T . Moreover, we assume w̃(k) = 15 exp(−0.7k) sin(0.55k) to be the
disturbance input. Further, with the aforementioned values the simulation results are
displayed in Figs. 12, 13, 14, 15 and 16. The system states xb(k) and their correspond-
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Fig. 14 Response of error system (36)

Fig. 15 Switching signal

ing estimates x̂b(k) (b = 1, 2, 3, 4) are shown in Fig.12. Further, the trajectories of
the output z(k) and its estimate ẑ(k) are exhibited in Fig. 13. Besides, the response of
error system with quantization of the augmented filtering error system (36) is shown
in Fig. 14. The switching signals throughout the simulation process are depicted in
Fig. 5. Finally, the time history of the filtering error system (36) is illustrated in Fig. 6.
To be more specific, Fig. 6 clearly shows that the state trajectories lie within the
obtained values σ2. Hence, it is evident that the addressed system (36) is stochasti-
cally finite-time bounded with (X ,Y ,Z )−γ dissipative performance index subject
to (0.2, 0.3946, 100, 0.3358, I , 0.1) under the proposed filtering problem.
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Fig. 16 Evolution of ζ T (k)J ζ(k)

5 Conclusion

In thiswork, thefinite-timedissipative-baseddistributive non-fragile filter designprob-
lem is investigated for a class of discrete-time complex systems with multiple delays.
Moreover, the sequences of stochastic variables are taken into account for the miss-
ing measurement phenomena which satisfies the Bernoulli distribution. In particular,
the distributed filtering problem has been analyzed by designing the measured out-
put over sensor nodes which includes dynamic quantization and missing phenomena
for the addressed system. By applying S-procedure lemma and Lyapunov–Krasovskii
functional method, a finite-time distributed non-fragile filter has been designed such
that the augmented filtering error system is stochastically finite-time bounded with
prescribed (X ,Y ,Z ) − γ dissipative performance index over a finite period of
time. Finally, three numerical examples including the CSTR model and a quarter-car
suspension model are provided to prove the efficiency of the proposed distributive
non-fragile filter design techniques.

Data Availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.
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