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Abstract
The theoretical approach of Trajectory(T-)controllability of Hilfer fractional neutral sto-
chastic differential equation with deviated arguments, Rosenblatt process and Poisson 
jumps has been elaborated. By knowing trajectories one can minimize the cost involved in 
the system. Our result extends the works of Chalishajar et al. (J Franklin Inst 347(7):1065–
1075, 2010), Chalishajar et al. (Appl Math 3:1729–1738, 2012), Chalishajar et al. (Differ-
ential Equations and Dynamical Systems, Springer, Berlin, 2014) and the concept of Riem-
man-Liouville (R-L) and Caputo’s derivatives. A Hilfer Fractional Stochastic differential 
equation proposed here remains untreated in the literature and its solvability is acquired by 
using fractional calculus, stochastic analysis, semigroup theory and Krasnoselskii’s fixed 
point theorem. In the later part the T-controllability of the aforementioned system is cal-
culated. An abstract phase space deinition has been used for the infinite delay T-control 
problem. Finally an illustration is given to validate our obtained results.
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Introduction

Fractional calculus is one of the beneficiary tools in demonstrating long-memory or nonlo-
cal effects for validating physical occurrence more precisely. Fractional Differential Equa-
tions (FDEs) describe the potentiality of integer order models with fractional order. In real 
life phenomena, FDEs are applied and are modeled as HIV immune system, neural network 
and non-linear collision of earthquake, see [1–6]. Fractional derivatives includes Riemann-
Liouville, Caputo, Hadamard, Coimbra, Atangana-Baleanu, Caputo-Hadamard derivatives 
where the finest fractional derivative relies on the experimental data more appropriate to 
the conceptual model. To overpower the already existing concepts of fractional derivative, 
Hilfer investigated a new generalized form referred as Hilfer fractional derivative (HFD) 
which combines number of definitions of fractional derivative operators, refer [7]. The 
type-parameter exhibits different kinds of stationary states and provides an excess degrees 
of freedom on initial data. Yang and Wang [8] established the existence results of a class of 
Hilfer fractional evolution equations with nonlocal conditions. Gu and Trujillo [9] obtained 
sufficient conditions ensuring existence of mild solution for evolution equation of HFD 
using Ascolli-Arzela theorem. Many authors have investigated solvability and controllabil-
ity properties of Hilfer FDEs, refer the monographs [10–17] and the references therein.

The theory of neutral differential equations has considerable interest for its usefulness 
in various fields of science and engineering where it relies on past and present values of 
the function and also on the derivatives with delays. The neutral differential system in 
fractional order is extensive mainly in the infinite dimensional space, refer [18]. When an 
unknown quantity and its corresponding derivatives are present in different values in their 
parameters then differential equations with deviated arguments take place which is a gen-
eralized form of delay differential equation. Differential equations involving deviated argu-
ments are used in various domains includes mathematical physics, mechanics, mathemati-
cal control models in integer and FDEs, see [19, 20].

Due to regular fluctuations in the deterministic models and due to noise which is ran-
dom or appears to be so, researchers have moved on to the stochastic ones. Stochastic Dif-
ferential Equations (SDEs) gain considerable popularity with greater interest because of 
their applications in many fields such as mechanical, electrical and control engineering. 
Moreover, fractional noise constitutes a vital tool in the description of credit risk sensi-
tive instruments, see [21]. Mandelbrot and Van Ness [22] initiated that fractional Brownian 
motion (fBm) is a family of centered Gaussian processes with continuous sample paths 
indexed by Hurst parameter H ∈ (0, 1) . The notable features includes similarity, station-
ary increments and long memory. The fBm being a generalization of classical Brownian 
motion has enormous applications in the fields of filtering theory, queuing networks and 
mathematical finance.

The concept of controllability [introduced by Kalman in 1960] leads to considerable results 
in the behavior of linear and nonlinear dynamical systems. There are many different defini-
tions of controllability, including: complete controllability [23] [any two state vectors may 
possibly be connected by a trajectory], approximate controllability [24] [any state vector may 
be steered to the neighborhood of the desired state vector], exact controllability [25–27] [the 
control may steer the complete state (�(�),u(t)) of a system to the desired state] and the null 
controllability [23] [any state vector may be steered to zero state]. Trajectory (T)-controlla-
bility is the new notion of the controllability initiated by Chalishajar [28]. In this context, we 
look for a control which steers the system along a prescribed trajectory rather than a control 
steering the given system from an initial state to desired final state. If we know the trajectories 
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of the system then we can minimize the cost involved in steering the system and also we can 
safeguard the system. Based on this benefits, Chalishajar et al. [28] extended it to abstract non-
linear integro-differential systems in finite and infinite dimensional spaces. Chalishajar et al. 
[29] further studied numerical approach of T-controllability of nonlinear integro-differential 
system. Later on, Chalishajr et al. [30] further discussed numerical approach of T-controllabil-
ity of second order nonlinear integro-differential system using sine and cosine operators with 
counter examples. Malik and George [31] then studied the Trajectory controllability of the 
nonlinear systems governed by fractional differential equations. In the view of the above men-
tioned works, still the T-controllability of Hilfer fractional neutral stochastic dynamical sys-
tems in Hilbert space with deviated arguments, Rosenblatt process and Poisson jumps remains 
untreated in the literature which serves as a motivation for this paper work. In this paper, we 
extend the works of Chalishajar et al. [28–30]. The main contribution and novelties of the arti-
cle are listed below. 

1. Initially, a Hilfer type fractional derivative neutral stochastic differential system is for-
mulated and T-controllability which is new to the stochastic sense is investigated.

2. An abstract phase space deinition has been used for the infinite delay T-control problem.
3. By the already published works, there has not been any research that focuses on the 

theoretical approach of solvability and T-controllability of Hilfer fractional neutral SDEs 
with deviated argument using Rosenblatt process and Poisson jumps where the deviated 
argument generalizes the delay differential system.

4. The obtained concepts generalize the existing results of Caputo and R-L fractional 
derivative SDEs. Also, it extends the works of Chalishajar et al. [28–30].

5. The obtained results are validated using an example.

We may take into account the following Hilfer fractional neutral SDEs with deviated argu-
ment, Rosenblatt process and Poisson jump of the form:

where ��,�

0+
 is the Hilfer fractional derivative of order � and type � with 0 ≤ � ≤ 1 , 

1

2
< 𝛽 < 1 . X  be the real separable Hilbert space furnished with the inner product < ., . > 

provided with the norm ‖.‖ and the state variable �(.) ∈ X  . � ∶ �(�) ⊂ X → X  is the 
infinitesimal generator of an analytic semigroup of bounded linear operators T(t), t ≥ 0 
on X  . The time history values �t ∶ (−∞, 0] → X  being defined by �t(�) = �(t + �) 
that belongs to an abstract phase space B and � ≤ 0 . The deviated argument � is the 
mapping from X × J

�
→ R

+ . Assuming J ∶= [0, �] , � > 0 . The nonlnear functions 
� ∶ J × B ×X → X  , Ξ ∶ J × B → X  and � ∶ J × B ×Z → X  are continuous and 
� ∶ J → L

0
2
 is the deterministic function where L0

2
(Y,X) represents the Q-Hilbert Schmidt 

operators from Y  to X  . Let the closed subspace of � be L2
ℑ
(J,�) , with all measurable 

and ℑ−adapted, �−valued stochastic process satisfying � ∫ t

0
‖�(t)‖2

�
dt < ∞ and ℕ̃ is a 

Poisson random measure. Let W  be a non-empty bounded closed convex subset of � . Rep-
resent Wad = {�(.) ∈ L

2
ℑ
(J,�) ∶ �(t) ∈ W a.e, t ∈ J} as the set of admissible control 

(1.1)

�
𝛼,𝛽

0

+

[

�(t) + Ξ(t, �
t
)
]

=��(t) + 𝔹(t) + �(t, �
t
, �(𝜎(�(t), t))) + 𝛾(t, �

t
)
dZH(t)

dt

+ ∫
Z

�(t, �
t
, 𝜗)ℕ̃(dt, d𝜗), t ∈ (0, �] ∶= J

�

I
(1−𝛿)

0

+ �(t) =𝜑 ∈ B, t ∈ (−∞, 0], 𝛿 = 𝛼 + 𝛽 − 𝛼𝛽;
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where the control variables take their values. The initial values 𝜑 = {𝜑(t) ∶ −∞ < t ≤ 0} is 
an ℑ−measurable, B−valued stochastic process.

This article is summarized as follows: Section   2 demonstrates certain basic defini-
tions and preliminary notions. Section   3 demonstrates the solvability of the proposed 
system by using fixed point theorem and fractional calculus. Section    4 is devoted 
to acquire T-controllability results for the considered Hilfer fractional system 1.1 by 
employing Gronwall’s inequality. Moreover Section  5 represents an example to validate 
our obtained results.

Preliminaries and Notations

Hilfer Fractional Derivative and Space Representation

Definition 2.1 The left-hand side HFD of order 0 ≤ � ≤ 1 and type 0 < 𝛽 < 1 of a function 
� ∶ [a,+∞) → R defined as

for the functions on the RHS exists.

Let L2(ℑ,X) = L
2(Ω,ℑt,ℙ,X) symbolizes the Hilbert space of all strongly ℑt−measura-

ble square integrable X−valued random variable satisfying �‖�‖2 < ∞ , �(.) denotes expec-
tation of the random variable. L2

ℑ
(J,X) denotes the Hibert space of all stochastic pro-

cesses ℑt−adapted measurable function defined on J  with values in X  with the norm 

‖𝔵‖L2
ℑ
=
�∫ �

0
�‖𝔵(t)‖2dt

�1∕2

< ∞ . Let C((−∞, �],L2(ℑ,X)) be the closed subspace of all 
continuous functions from (−∞, �] into L2(ℑ,X) ∋ the restriction 𝔵 ∈ C(J�,L2(ℑ,X)) . 
Let us define C1−� = {𝔵 ∈ C(J�,L2(ℑ,X)) ∶ t(1−�)𝔵(t) ∈ C(J,L2(ℑ,X))} equipped with 
the norm

It is obvious that C1−� is a Banach space.
In this manuscript, we suppose that the phase space is defined axiomatically [32]. 

Assume that B are developed for ℑ0-measurable functions from (−∞, 0] equipped with the 
norm ‖⋅‖B . Define the abstract phase space for an infinite time delay process by

Clearly, B is a complete Banach space equipped with the norm ‖�‖B = ∫ 0

−∞
h(�) sup�≤�≤0(E‖�‖2)1∕2d�

Lemma 2.1 Presume � ∈ X  , then ∀ � ∈ [0, T] , �� ∈ B and

�
�,�

a+
�(t) = I

�(1−�)

a+
d

dt
I
(1−�)(1−�)

a+
�(t),

‖�‖C1−�
=

�

sup
0≤t≤�

�
�

�

�

t(1−�)�(t)
�

�

�

2
�

1

2

.

B =
�

𝜁 ∶ (−∞, 0] → X for any 𝜏 > 0 (E‖𝜁‖2)1∕2 is bounded and measurable function

[𝜏, 0] and �
0

−∞

h(𝜄) sup
𝜄≤𝜏≤0

(E‖𝜁 (s)‖2)1∕2d𝜄 < +∞

�
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where l1 = ∫ 0

−∞
h(𝜒)d𝜒 < ∞.

The phase space defined above also satisfies the conditions of the following axioms of 
the phase space B developed by Hale and Kato [33] for ℑ0−measurable functions from 
(−∞, 0] equipped with the seminorm ‖.‖B.B : 

 (A1) If � ∶ (−∞, a) → X, a ≥ 0 is continuous on [0, a) and � ∈ B , then for every t ∈ [0, a) 
the following holds. 

 (i) �t is in B,
 (ii) ‖�(t)‖ ≤ �̃‖�t‖B,
 (iii) ‖�t‖B ≤ �(t − �) sup{‖�(s)‖, 0 ≤ s ≤ t} +�(t − �)‖�‖B , ̃� > 0 being constant, 

�,� ∶ [0,∞) → [0,∞) . � is continuous, � is locally bounded. Also �,�, �̃ 
are independent of �(.).

 (A2) The space B is complete.

Rosenblatt Process

Consider a time interval [0, �] with arbitrary fixed horizon � and let 
{

ZH(t), t ∈ [0, �]
}

 be 
one-dimensional Rosenblatt process with parameter H ∈

(

1

2
, 1
)

 . Also, the Rosenblatt pro-

cess with parameter H > 1

2
 admits the following representation [34]:

where KH(t, s) is defined by

for s > t , dH =

√

H(H−1)

�(2−2H,H−
1

2
)
 , H� =

H+1

2
 and cH =

1

H+1

√

H

2(2H−1)
 . For basic preliminaries 

and fundamental results on Rosenblatt process, one can refer the articles [35, 36] and the 
references therein.

Poisson Jump

The Poisson random measure ℕ represents �−finite stationary ℑt - adapted Pois-
son point process �̃(.) taking values in a measurable space (,X) , and ℕ̃ denotes 
the compensated Poisson random measure ℕ̃(dt, dy) = ℕ(dt, dy) − 𝜋(dy)dt , where 
ℕ((0, t] ×△) ∶

∑

s∈(0,t] 1△(�̃(s)) for △ and � is the characteristic measure of ℕ.

l(E(‖�(�)‖2))
1

2 ≤ l1 sup
0≤�≤�

(E‖�(�)‖2)
1

2 + �

�

�0
�

�B
,

ZH(t) = d(H)∫
t

0 ∫
t

0

[

∫
t

y1∨y2

�KH
�

��
(�, y1)

�KH
�

��
(�, y2)

]

dB(y1)dB(y2),

KH = cHs
1

2
−H ∫

t

s

(� − s)H−
3

2 �
H−

1

2 d�, for t > s.
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Lemma 2.2 [37] Let � ∶ (−∞, 0] → X  be an ℑt−adapted measurable process such that 
the ℑ0−adapted process �(0) = � ∈ B , then

where �1 = supt∈J{�(t)} and �2 = supt∈J{�(t)}.

For � ∈ (0, 1) , the fractional power operator �� is defined as a closed linear operator on 
its domain �(��) being dense in X .

Theorem 2.1 [37] 

 (i)  For � ∈ (0, 1] , �(��) is a Banach space equipped with the norm ‖�‖� = ‖���‖ , 
� ∈ �(��).

 (ii)  If 0 < 𝜈 < 𝜇 ≤ 1 , then �(��) ↪ �(��) and the embedding is compact, whenever � 
is compact.

 (iii)  For all 0 < 𝜇 ≤ 1 , ∃ C𝜇 > 0 ∋

Lemma 2.3 [37] For any � ∈ X, 0 < y < 1 and � ∈ (0, 1] , we have

and

The family of operators {��,�(t) = I
�(1−�) ∶ t ≥ 0} and ��(t) ∶ t ≥ 0 can be specified as

where ��(Θ) =
∑∞

n=1

(−Θ)n−1

(n−1)!Γ(1−n�)
 , 0 < 𝛽 < 1, Θ ∈ (0,∞) is a function of Wright type 

fulfilling,

Lemma 2.4 [37] The considered operators ��,� and �� posses the following properties 

 (i)  �𝛽(t) ∶ t > 0 being continuous in the uniform operator topology.
 (ii)  ��,�(t) and ��(t) are linear bounded operators, for t > 0 being fixed 

�‖�t‖B ≤ �1 sup
0≤s≤t

�‖�(s)‖ +�2�‖�‖B,

‖��T(t)‖ ≤ C�

t�
, 0 ≤ t ≤ �.

�T�(t)� = �1−y
T�(t)�

y�

‖

‖

‖

��
T��

‖

‖

‖

≤ �C�

t��

Γ(2 − �)

Γ(1 + �(1 − �))
, t ∈ J.

(2.1)
��,�(t) = I

�(1−�)

0+
��(t), ��(t) = t�−1T�(t),

T�(t) = ∫
∞

0

�Θ��(Θ)T(t
�Θ)dΘ,

�
∞

0

Θ���(Θ)dΘ =
Γ(1 + �)

Γ(1 + ��)
, for Θ ≥ 0.
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 (iii)  {�𝛼,𝛽 ∶ t > 0} and {�𝛽(t) ∶ t > 0} are strongly continuous.

Let V be the collection of functions �(.) defined on J  with �(0) = �0 and 
�(�) = �

�
,∀t ∈ J  . Moreover HFD ��,�

0+
�(t) exists a.e on J′ . The set of all feasible trajecto-

ries for the control model 1.1 being denoted by V.

Definition 2.2 The control system 1.1 is said to be trajectory controllable on J  , if for 
every � ∈ V , such that the mild solution �(.) of 1.1 satisfies �(t) = �(t) almost everywhere.

Lemma 2.5 (Generalized Gronwall’s inequality) If 𝛽 > 0 , ã(t) is a non-negative function locally 
integrable on 0 ≤ t ≤ � and �(t) is a non-negative, non-decreasing continuous function on 
0 ≤ t ≤ � , �(t) ≤ � and suppose �̃(t) ≤ ã(t) + �(t) ∫ t

0
(t − s)𝛽−1�̃(s)ds , on this interval. Then

In particular, when ã(t) = 0 , then �̃(t) = 0 ∀ 0 ≤ t < �.

Theorem 2.2 (Bochner’s theorem) A measurable function � ∶ J → X  is Bochner integra-
ble if ‖�‖ is Lebesgue integrable.

Theorem 2.3 (Krasnoselskii’s fixed point theorem) Let X  be a Banach space and let �  be 
a non-empty bounded closed convex subset of X  . Suppose Φ1 and Φ2 be the mapping from 
�  onto X  , ∋

(a)  Φ1� + Φ2y ∈ �  whenever �, y ∈ � ,
(b)  Φ1 is a contraction mapping,
(c)  Φ2 is compact and continuous.

Then there exists � ∈ �  ∋ � = Φ1� + Φ2�.

Existence of Mild Solution

This section examines the existence of mild solution for 1.1 using Theorem 2.3.

Definition 3.1 An ℑt−adapted stochastic processes {�(t) ∶ t ∈ (−∞, �]} is a mild solution 
of 1.1, if 

 (i)  �(t) = �(t) on (−∞, 0] with �‖𝜑‖2
B
< ∞,

 (ii)  �(t) is continuous on [0, �] a.s, and for each s ∈ [0, �) the function �B(t − s)�Ξ(s, �s) 
is integrable with the following stochastic integral equation 

‖��(t)�‖ ≤ Mt�−1

Γ(�)
‖�‖, ‖��,�(t)�‖ ≤ Mt�−1

Γ(�)
‖�‖.

̃�(t) ≤ ã(t) + �
t

0

∞
∑

n=1

(�(t)Γ(𝛽))n

Γ(n𝛽)
(t − s)𝛽−1ã(s)ds, 0 ≤ t ≤ �.
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Remark 3.1 The HFD the Riemann-Liouville and Caputo derivative. For 𝛼 = 0, 0 < 𝛽 < 1 , 
the HFD coincides with the classical Riemann-Liouville fractional derivative as:

When � = 1 , 0 < 𝛽 < 1 , the HFD coincides with classical Caputo fractional derivative as:

As � = 1 , the fractional stochastic differential system simplifies into the classical Caputo 
fractional stochastic model see [38].

Assumptions

The following assumptions are considered to prove our main results: 

 (A1)  The semigroup T(t) is compact for t > 0 , and ‖T(t)‖ ≤ �, � > 0.
 (A2)  The nonlinear map � ∶ J × B ×X → X  is Lipschitz continuous. For �1, �2 ∈ B , 

y1, y2 ∈ � and C� > 0 . 

 Also, 

 (A3)  Let � ∶ X × J
�
→ R

+ be Lipschitz then for �1, �2 ∈ X  and C𝜎 > 0 , 

 and 

 (A4)  The non-linear function Ξ ∶ J × B → X  is continuous and ∃ 0 < 𝜇 < 1 and CΞ > 0 
being constant, for every �1, �2 ∈ B , ��Ξ(t, .) satisfies 

(3.1)

�(t) =�𝛼,𝛽 (t)[𝜑(0) + Ξ(0,𝜑(0))] − Ξ(t, �
t
) − ∫

t

0

�𝛽 (t − s)�Ξ(s, �
s
)ds

+ ∫
t

0

�𝛽 (t − s)
[

𝔹(s) + �(s, �
s
, �(𝜎(�(s), s)))

]

ds

+ ∫
t

0

�𝛽 (t − s)𝛾(s, �
s
)dZH(s)ds

+ ∫
t

0

∫
Z

�𝛽 (t − s)�(s, �
s
, 𝜗)ℕ̃(ds, d𝜗).

�
0,�

a+
�(t) =

d

dt
I
(1−�)

a+
�(t) =L �

�

a+
�(t).

�
1,�

a+
�(t) = I

(1−�)

a+
d

dt
�(t) =C �

�

a+
�(t).

�‖
‖

�(t, �1, y1) − �(t, �2, y2)
‖

‖

2 ≤ C�

[

�‖
‖

�1 − �2
‖

‖

2

B
+ ‖

‖

y1 − y2
‖

‖

2
]

.

�‖�(., 0, �(0))‖2 ≤ �̃0.

�|�(�1, t) − �(�2, t)|
2

R
+ ≤ C��

‖

‖

�1 − �2
‖

‖

2

�(., 0) = 0.

��
�

��Ξ(t, �1) −��Ξ(t, �2)
�

�

2 ≤CΞ�
�

�

�1 − �2
�

�

2

B

�‖��Ξ(t, �)‖2 ≤ �1�‖�‖
2
B
+ �2.
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 (A5)  For each t ∈ J  the function �(t, .) ∶ B → L
0
2
 is continuous and for each � ∈ B , the 

map �(., �) ∶ J → L
0
2
 is strongly measurable 

 (A6)  The map � ∶ J × B ×Z → X  satisfies ∀ t ∈ [0, �] , �1, �2 ∈ B, C� > 0 being constant 

 Also, 

Theorem 3.1 If the hypotheses (A1)-(A6) holds, then for any � ∈ B then 1.1 has a mild 
solution and

Proof Let B
�
 be the set defined by

An operator Π is defined from B
�
 to itself with the condition that (Π�)(t) = 0 , for 

t ∈ (−∞, 0] and

From Bochner’s theorem, it follows that the functions �, � and � being continuous are inte-
grable on J′ . Also,

��
�

�(t, �t)
�

�

2

L0
2

≤ C�‖�‖
2.

�
Z

‖

‖

�(s, �1, �) − �(s, �2, �)
‖

‖

2
�(d�)ds ∨

(

�
Z

‖

‖

�(s, �1, �) − �(s, �2, �)
‖

‖

4
�(d�)ds

)1∕2

≤ C��
‖

‖

�1 − �2
‖

‖

2

(

�
Z

‖

‖

�(s, �1, �) − �(s, �2, �)
‖

‖

4
�(d�)ds

)1∕2

≤ C��
‖

‖

�1 − �2
‖

‖

2
.

(3.2)

C = 3�2−2𝛿
�

�2
1
‖�−𝜇

‖

2
CΞ +�2

1
CΞ

�

𝛽C1−𝜇Γ(1 + 𝜇)

Γ(1 + 𝜇𝛽)

�2
�
2𝛽𝜇

2𝛽𝜇 − 1
+ 2C�

�

M

Γ(𝛽)

�2

× (2k𝜎 +�2
1
)

�
2𝛽

2𝛽 − 1

�

< 1.

B
�
= {� ∶ (−∞, �] → X ∋ � ∣ (−∞, 0] ∈ B, � ∣ J� ∈ C1−�}.

(Π�)(t) =�𝛼,𝛽(t)[𝜑(0) + Ξ(0,𝜑(0))] − Ξ(t, �t) − ∫
t

0

�𝛽(t − s)�Ξ(s, �s)ds

+ ∫
t

0

�𝛽(t − s)
[

𝔹(s) + �(s, �s, �(𝜎(�(s), s)))
]

d

+ ∫
t

0

�𝛽𝛾(s, �s)dZH(s)ds

+ ∫
t

0 ∫
Z

�𝛽(t − s)�(s, �s, 𝜗)ℕ̃(ds, d𝜗), t ∈ J
�
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yields ���(t − s)Ξ(s, �s) is integrable on J′ . Thus the set Π is well-defined on B
�
 . For 

� ∈ B,

Then � ∈ B
�
 . Let �(t) = �(t) + y(t) , −∞ < t ≤ � . Clearly, �(t) satisfies 3.1 if and only if y(t) 

satisfies y(0) = 0 and

Let �
�
= {y ∈ B

�
, y(0) = 0 ∈ B} . For every y ∈ �

�
,

Thus, (�
�
, ‖.‖) is a Banach space. Let us define the set � = {y ∈ �

�
,�‖y‖2 ≤ k} for some 

k ≥ 0.
It is obvious that � ⊂ �

�
 is a bounded closed convex set. Moreover, for y ∈ � , we have

We may define an operator Λ ∶ �
�
→ �

�
 by

Observing that Λ is well defined on � , for k > 0 . Π has a fixed point if and only if Λ has a 
fixed point. Decomposing Λ = Λ1 + Λ2 , given by

�

�

�

�

�

�

�
t

0

���(t − s)Ξ(s, �s)ds
�

�

�

�

�

2

≤ �

�

�
t

0

�

�

�

(t − s)�−1�1−�
T�(t − s)��Ξ(s, �s)

�

�

�

ds

�2

≤
�

C1−�Γ(1 + �)

Γ(1 + ��)

�2
����

� �
t

0

(t − s)��−1[�1�‖�s‖
2
B
+ �2]ds

(3.3)�(t) =

{

�(t), t ∈ (−∞, 0],

��,�(t)�(0), t ∈ J
�
.

y(t) =�𝛼,𝛽(t)Ξ(0,𝜑(0)) − Ξ(t, 𝜂t + yt)

− ∫
t

0

�𝛽(t − s)�Ξ(s, 𝜂s + ys)ds + ∫
t

0

�𝛽(t − s)

×
[

𝔹(s) + �(s, 𝜂s + ys, (𝜂 + y)𝜎(𝜂s + y(s), s))
]

ds

+ ∫
t

0

�𝛽(t − s)𝛾(s, 𝜂s + ys)dZH(s)ds

+ ∫
t

0 ∫
Z

�𝛽(t − s)�(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗).

‖y‖ = ‖y(0)‖B + sup
0≤t≤�

�‖y(t)‖ = sup
0≤t≤�

�‖y(t)‖.

‖yt + �t‖
2
B
≤ 2

�

‖yt‖
2
B
+ ‖�t‖

2
B

�

,

≤ 2�2
1

�

k +

�

M�
�−1

Γ(�)

�2

‖�‖2
B

�

+ 2�2
2
‖�‖2

B
∶= �.

(Λy)(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, t ∈ (−∞, 0],

�𝛼,𝛽(t)Ξ(0,𝜑(0)) − Ξ(t, 𝜂t + yt) − ∫ t

0
�𝛽(t − s)�Ξ(s, 𝜂s + ys)ds + ∫ t

0
�𝛽(t − s)

.
�

𝔹(s) + �(s, 𝜂s + ys, (𝜂 + y)𝜎(𝜂s + y(s), s))
�

ds + ∫ t

0
�𝛽(t − s)𝛾(s, 𝜂s + ys)dZH(s)ds

+ ∫ t

0
∫
Z
�𝛽(t − s)�(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗), t ∈ J

�.
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Now we need to prove that Λ1 and Λ2 satisfy all the conditions of the Kransnoselskii’s fixed 
point theorem.

Step 1:  Claim that Λ1 is a contraction mapping. Let t ∈ J
� and y1, y2 ∈ � , consider

where

Thus, we have obtained 𝜒 < 1 . So the operator Λ1 is a contraction mapping.
Step 2:  To prove ∀ y, y∗ ∈ � , (Λ1y)(t) + (Λ2y

∗)(t) ∈ �.

(Λ1y)(t) =�𝛼,𝛽(t)Ξ(0,𝜑(0)) − Ξ(t, 𝜂t + yt)

− ∫
t

0

�𝛽(t − s)�Ξ(s, 𝜂s + ys)ds + ∫
t

0

�𝛽(t − s)

× �(s, 𝜂s + ys, (𝜂 + y)𝜎(𝜂s + y(s), s))ds,

(Λ2y)(t) = ∫
t

0

�𝛽(t − s)𝔹(s)ds + ∫
t

0

�𝛽(t − s)𝛾(s, 𝜂s + ys)dZH(s)ds

+ ∫
t

0 ∫
Z

�𝛽(t − s)�(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗).

��
�

(Λ1y1) − (Λ1y2)
�

�

2

C1−�

= sup
t∈J

t2−2���
�

(Λ1y1)(t) − (Λ1y2(t)
�

�

2

≤ 3 sup
t∈J

t2−2�
�

��
�

Ξ(t, �t , y1t) − Ξ(t, �t , y2t)
�

�

2

+ �
�

�

�

�

�
t

0

�� (t − s)�1−���

�

Ξ(s, �s + y1s)

− Ξ(s, �s + y2s)

�

ds
�

�

�

�

2

+ �
�

�

�

�

�
t

0

�� (t − s)

�

�(s, �s + y1s, (� + y1)(�(�(s) + y1(s), s)))

− �(s, �s + y1s, (� + y1)(�(�(s) + y2(s), s)))

− �(s, �s + y2s, (� + y2)(�(�(s) + y2(s), s)))

+ �(s, �s + y2s, (� + y2)(�(�(s) + y2(s), s)))

�

ds
�

�

�

�

2
�

≤ 3�2−2�
�

‖�−�
‖

2Ξ�2
1
sup
t∈J

��
�

y1(t) − y2(t)
�

�

2
+ CΞ

�

�C1−�Γ(1 + �)

Γ(1 + ��)

�2
�
2��

2�� − 1
�2

1

× sup
s∈J

��
�

y1(s) − y2(s)
�

�

2
+ 2C�

�

M

Γ(�)

�2

(2kC� +�2
1
)

�
2�

2� − 1
sup
s∈J

��
�

y1(s) − y2(s)
�

�

2

�

≤ � sup
t∈J

��
�

y1(t) − y2(t)
�

�

2
,

� = 3�2−2�
�

‖�−�
‖

2Ξ�2
1
+ CΞ

�

�C1−�Γ(1 + �)

Γ(1 + ��)

�2
�
2��

2�� − 1
�2

1

+ 2C�

�

M

Γ(�)

�2

(2kC� +�2
1
)

�
2�

2� − 1

�

.



 Differential Equations and Dynamical Systems

1 3

Therefore,

This proves that ∀ y, y∗ ∈ � , (Λ1y)(t) + (Λ2y
∗)(t) ∈ �.

Step 3:  To prove {(Λ2y)(t) ∶ t ∈ J
�, y ∈ �} is bounded. For k > 0 and y ∈ �,

This implies that (Λ2y)(t) is bounded ∀ t ∈ J
� and y ∈ �.

𝔼�
�

(Λ1(y)(t) + (Λ2y
∗)(t)�

�

2

≤ 7

�

𝔼
�

�

�

𝔖𝛼,𝛽(t)Ξ(0,𝜑(0))
�

�

�

2

+ 𝔼�
�

Ξ(t, 𝜂t

+ yt)
�

�

2
+ ��

t

0

𝔼
�

�

�

𝔓𝛽(t − s)𝔄Ξ(s, 𝜂s + ys)
�

�

�

2

ds

+ ��
t

0

𝔼
�

�

�

𝔓𝛽(t − s)
�

�

�

2

𝔼
�

�

�

�

𝔣(s, 𝜂s + ys, (𝜂 + y)(𝜎(𝜂s + y(s), s)))

− 𝔣(s, 0, (𝜂 + y)(𝜎(𝜂(0), 0)))

+ 𝔣(s, 0, (𝜂 + y)(𝜎(𝜂(0), 0)))
�

�

�

�

2

ds + 𝔼

�

�

�

�

�

�
t

0

𝔓𝛽(t − s)𝛾(s, 𝜂s + y∗
s
)dZH(s)

�

�

�

�

�

2

+ ��
t

0

𝔼
�

�

�

𝔓𝛽(t − s)𝔹(s)
�

�

�

2

ds + 𝔼

�

�

�

�

�

�
t

0 �
Z

𝔓𝛽(t − s)𝔥(s, 𝜂s + y∗
s
, 𝜗)ℕ̃(ds, d𝜗)

�

�

�

�

�

2�

≤ 7

��

�
𝛿−1M

Γ(𝛿)

�2

‖𝔄−𝜇
‖

2(𝔩1𝔼‖𝜑‖
2 + 𝔩2) + (𝔩1𝔰 + 𝔩2)

�

‖𝔄−𝜇
‖

2

+

�

𝛽C1−𝜇Γ(1 + 𝜇)

Γ(1 + 𝜇𝛽)

�2
�
2𝛽𝜇

2𝛽𝜇 − 1

�

+

�

M

Γ(𝛽)

�2
�
2𝛽

2𝛽 − 1

�

‖𝔹‖
2

L2
ℑ

+ 2(C𝔣(𝔰 + k2C𝜎) + �̃�0) + ℭH�
2H−1

C𝛾𝔰 + C𝔥𝔰�
−1

��

.

��
�

(Λ1(y)(t) + (Λ2y
∗)(t)�

�

2

C1−𝛿

≤ 7

��

M

Γ(𝛿)

�2

‖𝔄−𝜇
‖

2(𝔩1�‖𝜑‖
2 + 𝔩2) + �

2−2𝛿(𝔩1𝔰 + 𝔩2)
�

‖𝔄−𝜇
‖

2

+

�

𝛽C1−𝜇Γ(1 + 𝜇)

Γ(1 + 𝜇𝛽)

�2
�
2𝛽𝜇

2𝛽𝜇 − 1

�

+

�

M

Γ(𝛽)

�2
�
2𝛽+2−2𝛿

2𝛽 − 1

�

‖�‖
2

L2
ℑ

+ 2(C𝔣(𝔰 + k2C𝜎) + �̃�0) + ℭH�
2H−1

C𝛾𝔰 + C𝔥𝔰�
−1

��

≤ 𝔩0 (a constant).

��
�

(Λ2y)(t)
�

�

2

C1−𝛿
≤ 3

�

M

Γ(𝛽)

�2
�
2𝛽+2−2𝛿

2𝛽 − 1
�

‖�‖
2

L2
ℑ

+ 2(C𝔣(𝔰 + k2C𝜎) + �̃�0) + ℭH�
2H−1

C𝛾𝔰 + C𝔥𝔰�
−1

�

≤ �̃�0 (a constant).
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Step 4:   To prove {(Λ2y) ∶ y ∈ �} is equicontinuous. Choose 𝜖 > 0 to be small, y ∈ � 
and 0 < t1 < t2 , then

𝔼�
�

(Λ2y)(t2) − (Λ2y)(t1)
�

�

2

C1−𝛿

= sup
t∈J

t2−2𝛿𝔼�
�

(Λ2y)(t2) − (Λ2y)(t1)
�

�

2

≤ sup
t∈J

t2−2𝛿𝔼
�

�

�

�

�
t2

0

𝔓𝛽 (t − s)𝔹(s)ds + �
t2

0

𝔓𝛽 (t − s)𝛾(s, 𝜂s + ys)dZH(s)

+ �
t2

0

𝔓𝛽 (t − s)

× �
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗) − �
t1

0

𝔓𝛽 (t − s)𝔹(s)ds

− �
t1

0

𝔓𝛽 (t − s)𝛾(s, 𝜂s + ys)dZH(s)

− �
t1

0

𝔓𝛽 (t − s)�
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)
�

�

�

�

2

≤ �
2−2𝛿

�

𝔼
�

�

�

�

�
t1−𝜖

0

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]𝔹(s)ds

+ �
t1−𝜖

0

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]

× 𝛾(s, 𝜂s+ys )dZH(s) + �
t1−𝜖

0

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]�
Z

𝔥(s, 𝜂s + ys,𝜗)ℕ̃(ds, d𝜗)

+ �
t1

t1−𝜖

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]𝔹(s)ds

+ �
t1

t1−𝜖

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]𝛾(s, 𝜂s+ys )dZH(s)

+ �
t1

t1−𝜖

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]�
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)

+ �
t2

t1

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]

× 𝔹(s)ds + �
t2

t1

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]𝛾(s, 𝜂s+ys )dZH(s)

+ �
t2

t1

[𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)]

× �
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)
�

�

�

�

2
�

≤ 9�2−2𝛿
�

(t1 − 𝜖)�
t1−𝜖

0

𝔼
�

�

�

𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)
�

�

�

2

𝔼‖𝔹(s)‖2ds + [𝔰C𝔥

+ ℭH(t1 − 𝜖)2HC𝛾𝔰]

× �
t1−𝜖

0

𝔼
�

�

�

𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)
�

�

�

2

ds + 𝜖 �
t1

t1−𝜖

𝔼
�

�

�

𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)
�

�

�

2

ds

+ [𝔰C𝔥 + ℭH𝜖
2H

C𝛾𝔰]�
t1

t1−𝜖

𝔼
�

�

�

𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)
�

�

�

2

ds

+ (t2 − t1)�
t2

t1

𝔼
�

�

�

�

𝔓𝛽 (t2 − s)

−𝔓𝛽 (t1 − s)
�

�

�

�

2

𝔼‖𝔹(s)‖2ds + [𝔰ℭH(t2 − t1)
2H

C𝛾𝔰]

�
t2

t1

𝔼
�

�

�

𝔓𝛽 (t2 − s) −𝔓𝛽 (t1 − s)
�

�

�

2

ds

�

.



 Differential Equations and Dynamical Systems

1 3

By the continuity of the operator �𝛽(t), t > 0 , in the uniform operator topology, the RHS 
tends to zero independent of y ∈ � as t2 → t1 and with sufficiently small � . This implies 
{(Λ2y) ∶ y ∈ �} is equicontinuous.

Step 5:  To depict Φ(t) = {(Λ2y) ∶ y ∈ �} is relatively compact.
For t = 0 , Φ(0) is relatively compact in � . Let 0 < t ≤ � be fixed and 0 < 𝜉 < t . For arbi-

trary Υ > 0 , we may define

Since, �(��Υ) being a compact operator for 𝜉𝛽Υ > 0 , the set Φ�,Υ(t) = {(Λ�,Υy)(t) ∶ y ∈ �} 
is relatively compact on X  , for every � , 0 < 𝜉 < t and ∀ Υ > 0.

Furthermore,

(Λ𝜉,Υy)(t)

= 𝛽 �
t−𝜖

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽(𝜃)�((t − s)𝛽𝜃)𝔹(s)d𝜃ds

+ 𝛽 �
t−𝜖

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽(𝜃)�((t − s)𝛽𝜃)

× 𝛾(s, 𝜂s + ys)dZH(s)d𝜃 + 𝛽 �
t−𝜖

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽(𝜃)�((t − s)𝛽𝜃)

�
Z

�(s, 𝜂s + ys, 𝜗)d𝜃dℕ̃(ds, d𝜗)

≤ 𝛽�(𝜉𝛽Υ)�
t−𝜖

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽(𝜃)�((t − s)𝛽𝜃 − 𝜉𝛽Υ)𝔹(s)d𝜃ds

+ 𝛽�(𝜉𝛽Υ)�
t−𝜖

0 �
∞

Υ

𝜃(t − s)𝛽−1

×𝜛𝛽(𝜃)�((t − s)𝛽𝜃 − 𝜉𝛽Υ)𝛾(s, 𝜂s + ys)dZH(s)d𝜃 + 𝛽�(𝜉𝛽Υ)

�
t−𝜖

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽(𝜃)

× �((t − s)𝛽𝜃 − 𝜉𝛽Υ)�
Z

�(s, 𝜂s + ys, 𝜗)d𝜃dℕ̃(ds, d𝜗)
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𝔼
�

�

�

(Λ2y)(t) − (Λ
𝜉,Υ

2
y)(t)

�

�

�

2

C1−𝛿

≤ 6 sup
t∈J

t2−2𝛿
�

𝛽2𝔼
�

�

�

�

�

�
t

0 �
Υ

0

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)𝔹(s)d𝜃ds
�

�

�

�

�

2

+ 𝛽2𝔼
�

�

�

�

�
t

0 �
Υ

0

𝜃(t − s)𝛽−1 ×𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)𝛾(s, 𝜂s + ys)d𝜃dZH(s)
�

�

�

�

2

+ 𝛽2𝔼
�

�

�

�

�
t

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)𝔹(s)d𝜃ds

− �
t−𝜉

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)𝔹(s)d𝜃ds
�

�

�

�

2

+ 𝛽2𝔼
�

�

�

�

�
t

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃) × 𝛾(s, 𝜂s + ys)d𝜃dZH(s) − �
t−𝜉

0

�
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)𝛾(s, 𝜂s + ys)d𝜃dZH(s)
�

�

�

�

2

+ 𝛽2𝔼
�

�

�

�

�

�
t

0 �
Υ

0

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)�
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)d𝜃
�

�

�

�

�

2

+ 𝛽2𝔼
�

�

�

�

�
t

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)�
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)d𝜃

− �
t−𝜉

0 �
∞

Υ

𝜃(t − s)𝛽−1𝜛𝛽 (𝜃)�((t − s)𝛽𝜃)�
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)d𝜃
�

�

�

�

2
�

≤ 6�2−2𝛿
�

𝛽2M2 �
t

0

(t − s)𝛽−1ds

�

�
Υ

0

𝜃𝜛𝛽 (𝜃)d𝜃

�2

�
t

0

(t − s)𝛽−1‖𝔹(s)‖2ds

+ 𝛽2M2 �
t

t−𝜉

(t − s)𝛽−1ds ×

�

�
∞

Υ

𝜃𝜛𝛽 (𝜃)d𝜃

�2

�
t

t−𝜉

(t − s)𝛽−1‖𝔹(s)‖2ds + 𝛽2M2
ℭH�

2H−1 �
t

0

(t − s)𝛽−1ds

�

�
Υ

0

𝜃𝜛𝛽 (𝜃)d𝜃

�2

× �
t

0

(t − s)𝛽−1𝔼�
�

𝛾(s, 𝜂s + ys)
�

�

2
ds + 𝛽2M2

ℭH�
2H−1

�
t

t−𝜉

(t − s)𝛽−1ds

�

�
Υ

0

𝜃𝜛𝛽 (𝜃)d𝜃

�2

× �
t

0

(t − s)𝛽−1𝔼�
�

𝛾(s, 𝜂s + ys)
�

�

2
ds + 𝛽2M2

�
t

0

(t − s)𝛽−1ds

�

�
Υ

0

𝜃𝜛𝛽 (𝜃)d𝜃

�2

�
t

0

(t − s)𝛽−1

× 𝔼
�

�

�

�

�
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)
�

�

�

�

2

+ 𝛽2M2 �
t

t−𝜉

(t − s)𝛽−1ds

�

�
∞

Υ

𝜃𝜛𝛽 (𝜃)d𝜃

�2

�
t

t−𝜉

(t − s)𝛽−1 × 𝔼
�

�

�

�

�
Z

𝔥(s, 𝜂s + ys, 𝜗)ℕ̃(ds, d𝜗)
�

�

�

�

2�

≤ 6�2−2𝛿
�

𝛽M2
‖𝔹‖

2

L2
ℑ

�

�
𝛽 �

t

0

(t − s)𝛽−1
�

�
Υ

0

𝜃𝜛𝛽 (𝜃)d𝜃

�2

ds

+ 𝜉𝛽 �
t

t−𝜉

(t − s)𝛽−1
�

�
∞

Υ

𝜃𝜛𝛽 (𝜃)d𝜃

�2

ds

�

+ 𝛽M2
ℭH�

2H−1
C𝛾𝔰

�

�
𝛽 �

t

0

(t − s)𝛽−1
�

�
Υ

0

𝜃𝜛𝛽 (𝜃)d𝜃

�2

ds

+ 𝜉𝛽 �
t

t−𝜉

(t − s)𝛽−1
�

�
∞

Υ

𝜃𝜛𝛽 (𝜃)d𝜃

�2

ds

�

+ 𝛽M2
ℭ𝔥𝔰

�

�
𝛽 �

t

0

(t − s)𝛽−1
�

�
Υ

0

𝜃𝜛𝛽 (𝜃)d𝜃

�2

ds

+ 𝜉𝛽 �
t

t−𝜉

(t − s)𝛽−1
�

�
∞

Υ

𝜃𝜛𝛽 (𝜃)d𝜃

�2

ds

��

→ 0 as 𝜉 → 0+ as Υ → 0+.
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Thus, there are relatively compact sets that are arbitrarily close to the set 
Φ(t) = {(Λ2y) ∶ y ∈ �} . Hence Φ(t) is relatively compact in � . Conceptually by Arzela-
Ascoli theorem Λ2 is completely continuous. Therefore there exist a fixed point.   ◻

Trajectory Controllability

By applying Gronwall’s inequality, the T-controllability of the system 1.1 are 
investigated.

Theorem 4.1 If the assumptions (A1)-(A6) hold, the Hilfer fractional system 1.1 is trajec-
tory controllable on J′ , provided (2𝛽𝜇 − 1) > 0 and

Proof Let ℵ(t) be the given trajectory on � . For � ∈ (0, 1) , choose the feedback control �(t) 
as,

Therefore 1.1 becomes

Put 𝜓(t) = �(t) − ℵ(t) , we obtain that

Thus the mild solution is

ℨ1 = 5CΞ

�

5‖𝔄−𝜇
‖

2
CΞ + 5CΞ

�

𝛽ℭ1−𝜇Γ(1 + 𝜇)

Γ(1 + 𝜇𝛽)

�2
�
2𝛽𝜇

2𝛽𝜇 − 1

�

< 1.

𝔹(t) =�
𝛼,𝛽

0+
[ℵ(t) + Ξ(t,ℵt)] −�ℵ(t) − �(t,ℵt,ℵ(𝜎(ℵ(t), t))) − 𝛾(t,ℵt)

dZH(t)

dt

− ∫
Z

�(t,ℵt, 𝜗)ℕ̃(dt, d𝜗).

�
𝛼,𝛽

0+
[�(t) + Ξ(t, �t)]

= ��(t) +

[

�
𝛼,𝛽

0+
[ℵ(t) + Ξ(t,ℵt)] −�ℵ(t) − �(t,ℵt,ℵ(𝜎(ℵ(t), t))) − 𝛾(t,ℵt)

dZH(t)

dt

− ∫
Z

�(t,ℵt, 𝜗)ℕ̃(dt, d𝜗)

]

+ �(t, �t, �(𝜎(�(t), t))) + 𝛾(t, �t)
dZHt)

dt

+ ∫
Z

�(t, �t, 𝜗)ℕ̃(dt, d𝜗).

�
𝛼,𝛽

0+
[𝜓(t) + Ξ(t, �t) − Ξ(t,ℵt)] =�𝜓(t) + �(t, �t, �(𝜎(�(t), t))) − �(t,ℵt,ℵ(𝜎(ℵ(t), t)))

+ [𝛾(t, �t) − 𝛾(t,ℵt)]
dZH(t)

dt

∫
Z

[�(t, �t, 𝜗) − �(t,ℵt, 𝜗)]ℕ̃(dt, d𝜗)

I
(1−𝛿)

0+
𝜓(t) = I

(1−𝛿)

0+
𝜑 − I

(1−𝛿)

0+
𝜑 = 0, t ∈ (−∞, 0].
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Hence for t ∈ (−∞, 0] , the initial data to be zero, we obtain �(t) = 0 , t ∈ (−∞, 0] and t ∈ J
� 

(i.e) �(t) = 0 for t ∈ (−∞, �] . Therefore �t = �t + �t = �t and ℵt = 𝜂t + ℵt = ℵt on J′ . Now,

where,

𝜓(t) =Ξ(t,ℵt) − Ξ(t, �t) − ∫
t

0

�𝛽(t − s)�[Ξ(s, �s) − Ξ(s,ℵs)]ds

+ ∫
t

0

�𝛽(t − s)

[

�(s, �s, �(𝜎(�(s), s)))

− �(s,ℵs,ℵ(𝜎(ℵ(s), s)))

]

ds + ∫
t

0

�𝛽(t − s)

[

𝛾(s, �s) − 𝛾(s,ℵs)

]

dZH(s)

+ ∫
t

0

�𝛽(t − s)

× ∫
Z

[�(s, �s, 𝜗) − �(s,ℵs, 𝜗)]ℕ̃(dt, d𝜗), t ∈ J
�.

𝔼‖𝜓(t)‖2 ≤ 5

�

𝔼�
�

Ξ(t,ℵt) − Ξ(t, 𝔵t)
�

�

2
+ 𝔼

�

�

�

�

�

�
t

0

𝔓𝛽(t − s)𝔄[Ξ(s, 𝔵s) − Ξ(s,ℵs)]ds
�

�

�

�

�

2

+ 𝔼
�

�

�

�

�
t

0

𝔓𝛽(t − s)

×

�

𝔣(s, 𝔵s, 𝔵(𝜎(𝔵(s), s))) − 𝔣(s,ℵs,ℵ(𝜎(ℵ(s), s)))

�

ds
�

�

�

�

2

+ 𝔼
�

�

�

�

�
t

0

𝔓𝛽(t − s)

�

𝛾(s, 𝔵s) − 𝛾(s,ℵs)

�

dZH(s)
�

�

�

�

2

+ 𝔼

�

�

�

�

�

�
t

0

𝔓𝛽(t − s)�
Z

[𝔥(s, 𝔵s, 𝜗) − 𝔥(s,ℵs, 𝜗)]ℕ̃(dt, d𝜗)
�

�

�

�

�

2�

≤ 5

�

‖𝔄−𝜇
‖

2
CΞ𝔼‖𝜓(t)‖2 + �CΞ

�

𝛽C1−𝜇Γ(1 + 𝜇)

Γ(1 + 𝜇𝛽)

�2

�
t

0

(t − s)2𝛽𝜇−2𝔼‖𝜓(s)‖2ds

+ 2�C𝔣

�

M

Γ(𝛽)

�2

�
t

0

(t − s)2𝛽−2(C𝜎𝔰 + 2)𝔼‖𝜓(s)‖2ds

+ ℭH�
2H−1

C𝛾

�

M

Γ(𝛽)

�2

× �
t

0

(t − s)2𝛽−2𝔼‖𝜓(2)‖2ds + C𝔥�

�

M

Γ(𝛽)

�2

�
t

0

(t − s)2𝛽−2𝔼‖𝜓(s)‖2ds

�

≤ℨ1𝔼‖𝜓(t)‖2 + ℨ2 �
t

0

(t − s)2𝛽−2𝔼‖𝜓(s)‖2ds,
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with ℨ1 < 1 and

Hence,

In view of generalized Gronwall’s inequality, �‖�(t)‖C1−� = 0 (i.e), �(t) = ℵ(t) a.e, t ∈ J
� . 

Thus 1.1 is T-controllable on J′ .   ◻

Illustration

Consider the Hilfer fractional Stochastic differential equations of neutral type driven by 
Rosenblatt process and Poisson jumps of the form:

Assume that [0,�] be a bounded domain in ℝn, (n ≥ 2) provided with the Lipschitz bound-

ary. �
1

3
,
4

5 is the HFD of order 1
3
 and type � =

4

5
 . I

2

15

0+
 is the R-L integral of order 2

15
 . Let 

X = L
2([0,�]) , �(t, �) ∈ C  , the phase space and let � ∶ L

2([0,�]) → L
2([0,�]) be 

defined as �(�) = X
1
0
([0,�]) ∩X

2([0,�]) , �� =▵ � , ▵∈ �(�).
Define�(�) = {y ∈ X ∶ y,

dy

d�
are absolutely continuous and

d2�

d�2
∈ X, y(0) = y(�) = 0} . 

� generates a compact semigroup {T(t)}t≥0 being analytic and self-adjoint. Since � has a 
discrete spectrum, there exist eigen values −n2, n ∈ ℝ with the orthogonal eigenvectors 

�n(y) =

√

2

�
sin(ny) then �y =

∞
�

n=1

−n2⟨y,�n⟩�n . Also, T(t)y =
∞
�

n=1

e−n
2t
⟨y,�n⟩�n , y ∈ X  

ℨ1 = 5CΞ5‖𝔄
−�
‖

2
CΞ + 5CΞ

�

�ℭ1−�Γ(1 + �)

Γ(1 + ��)

�2
�
2��

2�� − 1
,

ℨ2 = 5

(

M

Γ(�)

)2
[

2�C𝔣(C�𝔰 + 2) + ℭH�
2H
C� + �C𝔥

]

.

�‖�(t)‖C1−� = sup
t∈J

�‖�(t)‖2 ≤ �
2−2�ℨ2

1 − ℨ1
�

t

0

(t − s)2�−2�‖�‖

2ds.

(5.1)

�
1

3
,
4

5

�

𝜛(t, 𝜃) +
t2 + et�𝜛(t − 𝜙, 𝜃)�2

18

�

=
𝜕2

𝜕𝜃2
𝜛(t, 𝜃) + 𝔹(t, 𝜃)

+

�

t sin 𝜃

8𝜋
+

et�𝜑(t − 𝜑, 𝜃)�

2 + �𝜑(t, 𝜃)�

�

dZH(𝜏)

+
et𝜛(t − 𝜙, 𝜃)∕

√

2 +𝜛(t, sin t�𝜛(t, 𝜃)�∕
√

2)

9

+ ∫
Z

et cos �y𝜂���(t − 𝜑, y)�

9(1 + ��(t − 𝜑, y)�)
ℕ̃(dt, d𝜂),

t ∈ (0, 1] and 𝜃 ∈ [0,𝜋]

𝜛(t, 𝜃) = 0, on [0, 1] × [0,𝜋],

I
2

15

0+
𝜛(t, 𝜃) =𝜑(t, 𝜃), 𝜃 ∈ [0,𝜋] and t ∈ (−∞, 0].
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and ∀ t > 0 . Furthermore, ‖T(t)‖ ≤ 1 = � represents that {T(t)}t≥0 is uniformly bounded 
compact semigroup and hence, R(Υ,�) = (Υ −�)−1 is a compact operator for every 
Υ ∈ ℵ(�) . We may present the phase space C  with the norm,

where �(s) = e2s , for s < 0 , � = ∫ 0

−∞
�(s)ds =

1

2
 . The non-linear functions are defined as 

follows:

We may define the ball �r > 0 , Br̂ = {� ∈ � ∶ �‖�‖2 ≤ r̂} . Now for �1,�2 ∈ Br̂,

Moreover, �(., 0) = 0 , � satisfies the assumption (A3) with C� =
1

2
.

Hence, the map � ∶ (0, 1] × C ×X → X  satisfies the assumption (A2) with C� =
1

27
 . Also,

‖�‖C = �
0

−∞

�(s) sup
s≤�≤0

�

�‖�(�)‖2
�

1

2 ds,

�(t,�(t, �),�(�(�(t, �), t))) =
et�(t − �, �)∕

√

2 +�(t, sin t��(t, �)�∕
√

2)

9
,

�(�(t, �), t) = sin t��(t, �)�∕
√

2, �(t,�(t, �))

=
t sin �

8�
+

et��(t − �, �)�

2 + ��(t, �)�

�(t,�(t, �)) =
et cos �y����(t −�, y)�

9(1 + ��(t −�, y)�)

��(�1(t, �), t) − �(�2(t, �), t)�
2 =

�

�

�

�

sin t��1(t, �)�
√

2
−

sin t��2(t, �)�
√

2

�

�

�

�

2

≤ 1

2
��1(t, �) −�2(t, �)�

2.

��
�

�(t,�1(t, �),�1(�(�1(t, �), t))) − �(t,�2(t, �),�1(�(�2(t, �), t)))
�

�

2

≤ 1

81 �
0

−∞

�
�

�

�

�

es�1(s − �, �)
√

2
+�1(s, sin s��1(s, �)�∕

√

2)

−
es�2(s − �, �)

√

2
−�2(s, sin s��2(s, �)�∕

√

2)

+�1(s, sin s��2(s, �)�∕
√

2) −�1(s, sin s��2(s, �)�∕
√

2)
�

�

�

�

2

ds

≤ 1

27 �
0

∞

�

e2s

2
sup

s−�≤�≤0
��
�

�1(�, �) −�2(�, �)
�

�

2
+ C��

�

�

�1(s, �) −�2(s, �)
�

�

2

+ �
�

�

�

�1(s, sin s��2(s, �)�∕
√

2) −�2(s, sin s��2(s, �)�∕
√

2)
�

�

�

2
�

ds

≤ 1

27

�

��
�

�1(t, �) −�2(t, �)
�

�

2

C

+ �
�

�

�

�1(s, sin s��2(s, �)�∕
√

2) −�2(s, sin s��2(s, �)�∕
√

2)
�

�

�

2
�
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Thus � ∶ (0, 1] × C → L
2(�,X) satisfies the assumptions (A5) with C� = 2.

Take � = 0.9 and

with CΞ =
‖�0.9

‖

2

324
 . Also, (2𝛽 − 1) = 0.6 > 0 and (2𝛽𝜇 − 1) = 0.44 > 0 . 

Γ(�) = Γ(0.8) = 1.1642 , Γ(1 + �) = Γ(1.9) = 0.9618 , Γ(1 + ��) = Γ(1.72) = 0.9126 . We 
may consider � = T = 1 , � = 1 −

2

15
= 0.86 . By substituting the assumed values in 3.1, 

we can obtain C < 1 , if (0.00372)‖�0.9
‖

2C
2
0.1

+ .08�r < 0.9 . Hence, this satisfies all the 
assumptions of Theorem 3.1 thereby there occurs a mild solution for the system 5.1. Also,

ℨ1 < 1 thereby fulfilling the hypotheses of Theorem  4.1. Thus 5.1 is T-controllable on 
(0, 1].   ◻

Conclusion

The theoretical approach of T-controllability of Hilfer fractional neutral stochastic differ-
ential equation with deviated arguments, Rosenblatt process and Poisson jumps is studied. 
This result extended the works of Chalishajar et al. [28–30]. R-L and Caputo’s derivatives 
are extended by Hilfer fractional derivatives using fractional calculus. Numerical estima-
tion of the system is the future work to be studied. T-contollability of Hilfer fractional par-
abolic, elliptic and the hyperbolic system will be the challenging work.
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