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A B S T R A C T 

In the area of biology, text mining is commonly used since it obtains the unknown 
relationship among medicines, phenotypes and syndromes from much information. Enhanced 
Topic modeling with Improved Predict drug Indications and Side effects using Topic 
modelling and Natural language processing (ETP-IPISTON) has been employed to predict the 
drug-phenotype and drug-side effect association. Initially, corpus documents are collected 
from the literature data and the topics in the data are modeled using logistic Linear 
Discriminative Analysis (LDA) and Bi-directional Long-Short Term Memory-Conditional 
Random Field (BILSTM-CRF). From the sentences in the literature data, a dependency graph 
was constructed which discovered the relations between gene and drug. The product of the 
drug on phenotype rule was identified by the Gene Regulation Score (GRS) which creates the 
drug-topic probability matrix. The probability matrix and a syntactic distance measure was 
processed in Classification and Regression Tree (CART), Naïve Bayes (NB), logistic regression 
and Convolutional Neural Network (CNN) classifiers for estimating the drug-gene and drug-
side effects. Besides the literature data, social media offers various promising resources with 
massive volume of data that can be useful in the drug-phenotype and drug-side effect 
association prediction. So in this paper, drug information with gene, disease and side effects 
are extracted from different social media such as Twitter, Facebook and LinkedIn and it can 
be used with the literature data to provide more relevant disease and drug relations. In 
addition to this, topic modeling with transfer learning is introduced to consider the element 
categories, probability of overlapping elements and deep contextual significance of a text 
for better modeling of topics. The topic modeling with transfer learning shares as much 
knowledge as possible between the literature data and social media information for topic 
modeling. The topics from social media and literature data are used for creating the drug-
topic matrix. The probability matrix and syntactic distance measure are given as input to 
CART, NB, logistic regression and CNN for estimating the drug-gene and drug-side effect 
association. This proposed work is named as Enhanced Topic Modeling with Transfer Leaning- 
IPISTON (ETPTL-IPISTON). The simulation findings exhibit that the efficiency of ETPTL-
IPISTON than the traditional methods. 
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Introduction 

Drugs should be supposed to be substances associating 

with an effective target protein to interrupt various 

biochemical associations, such as protein interaction 

network, signal bio-recognition network and metabolic 

pathway.  
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Medicinal drugs are used to safeguard and enhance 

protection from infectious. Drug discovery is a tedious 

process to detect and develop new drug targets. Many drug 

inventions have suffered due to delay in drug development 

and expense of drug production. Any medicine has an impact 

called side effects which are dangerous and have dramatic 

consequences. The detection of side effects of drugs is even 
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more important in order to minimize the serious 

consequences [1].  

The serious consequences can be minimized by medicine 

repositioning process [2, 3]. The need for drug repositioning 

has increased enormously, as prices have risen significantly 

when manufacturing new drug formulations. Furthermore, it 

restricts the cost and tine to manufacture new medicines. 

Different approaches focused on text mining have been 

suggested for drug repositioning due to the inevitable rise in 

phenotypic or genomic information. The PISTON [4] is one of 

the text mining models that predicted the association 

between drug-side effects and drug-phenotype pairs. The 

phrases were gathered directly from studies and formulated 

through the Latent Dirichlet Allocation (LDA).  

The outcome of the drug on phenotype rule was 

identified using GRS. Then, the regulatory relationship 

between drug and genes were grouped according to the 

topics and then a drug-topic matrix was constructed. At last, 

a classifier was learned using the GRS and drug-topic matrix 

for predicting the unknown relationship between phenotype-

drug side effects. However, the PISTON has not gained much 

consideration from the creative ability of named entities to 

enhance the efficiency of the topics discovered. In order to 

efficiency of discovered topics, an IPISTON [5] was proposed 

where the named entities were used as domain-specific for 

biomedical content to improve the topic modeling through 

named entity recognition using CRF and BILSTM-CRF. The 

identification of named entities supports the topic modeling 

to provide accurate topics for side effects, disease, drug and 

gene.  

Moreover, syntactic distance between topic and words 

were calculated to induce the syntactic structure from 

unannotated sentences which is given as additional input to 

the different classifiers to predict the association between 

drug-side effects and drug-phenotypes. An ETP-IPISTON [6] 

was proposed where Logistic LDA was combined with 

BILSTM-CRF for topic modeling that reduced the 

computational cost required for topic extraction from a huge 

corpus. In this paper, drug information with gene, disease 

and side effects are extracted from different social media 

such as Twitter, Facebook and LinkedIn are considered along 

with the corpus document for estimation of association drug-

side effects and drug-genes set. ETP-IPISTON, combining 

information from numerous social media platforms and 

dataset validation, may assist in improving a stronger 

method for analyzing drug-side effects associations and 

drug-genes set. 

Additionally, the BILSTM-CRF employs transfer learning 

for taking the element categories, chances of overlapping 

elements and the deep contextual significance of a content 

for named entity recognition which enhance the topic 

modeling. In transfer learning process, the knowledge about 

the named entities of corpus documents are used in named 

entities of social media documents for better modeling of 

topics. The modeled topics are used to build a drug-topic 

matrix. It is given as input along with the syntactic distance 

measure to the CART, NB, logistic regression and CNN for 

predicting drug-gene and drug-side effect association. This 

proposed work is named as Enhanced Topic Modeling with 

Transfer Leaning- IPISTON (ETPTL-IPISTON).  

The following sections in this paper are prepared as 

follows: Section 2 provides the previous researches related 

for predicting drug side effect association. Section 3 

explains the ETPTL-IPISTON for prediction drug-phenotype 

and drug-side effect relations. Section 4 demonstrates its 

performance efficiency. Section 5 summarizes the paper 

with future scope. 

 

Literature Survey 

Xu et al. [7] introduced an automatic learning approach 

to predict the correlation between medicine and side 

effects. From the information of Food and Drug 

Administration (FDA) drug labels, relevant sentences and 

parse trees were determined. The resultant collection of 

parse trees were then derived from the syntactic patterns 

connected to pair drug and side-effect. The individual 

patterns were organized on the basis of ranking of the 

patterns and patterns which has high precision and recall 

were selected were selected for extracting the drug-side 

effect sets from the text corpus. However, this approach 

required manual interpretation for estimating the 

correlation between medicine and side effects.  

Bravo et al. [8] developed a system called BeFree to 

determine the association between genes, drugs and 

diseases. It consisted of dependency kernel and shallow 

linguistic kernel. For extracting dangerous drug reactions 

from medicinal experiences and clinical studies, shallow 

syntactic information was utilized in the shallow linguistic 

kernel. This kernel used the syntactic knowledge of the 

sentence by means of the following kernel that was walk-

weighted subsequence kernels. The interaction between 

genes, drugs and diseases was predicted according to the 

knowledge acquired from a shallow linguistic kernel and 

dependency kernel. The extensive study of BeFree based 

gene-disease prediction system contributes to some 

difficulties mostly with data prioritization and curation.  

Zhang et al. [9] introduced an ensemble learning model 

for side effect prediction. Primarily, mutual information 

between the side effects and feature dimension was utilized 

to select the dimensionality of feature. Genetic Algorithm 

(GA) was used for choosing the features for drug-side 

prediction. Moreover, a Multi-Label K-Nearest Neighbour 

(MLKNN) was used for estimating association between 

medicine and side effects. The ensemble training may not 

associate the efficiency of the side effects forecasting with 

the specific feature-based MLKNN framework. 

Abdelaziz et al. [10] proposed a large-scale 

resemblance-based model for prediction of drug-drug 

interaction through link prediction. This framework 

processed different datasets of drug-associated information 

to predict the drug-drug interactions. Initially, an 

information graph was constructed through the semantic 

integration of input data. From the information graph, 

similarity metrics were obtained which are used in the 

logistic regression model for prediction of drug-drug 

interaction. However, this framework provided only the 

drug-drug interaction, it does not provide further 

information about the type of interaction.  
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Zhao et al. [11] proposed a model where data from 

different sources are used to estimate the medicine side 

effects. In this model, the original issue has been 

transformed into the binary classifier dilemma. All pair of 

side effects and drug was then represented through five 

features on the basis of similarity between them. From the 

type of drug property, every feature was determined and 

the features were given as input to random forest for 

estimating the medicine side effects. But at the early phase 

this model cannot detect the medicine side effects.  

Ding et al. [12] developed the technique for estimating 

the correlation between medicine and side effects. From the 

undesirable space and drug space, multiple kernel models 

were designed. These models were combined with semi-

supervised model and it measured to predict the possible 

groups of drugs and their undesirable effects. This method 

will be extended by using the knowledge of association 

between drug and target, associated pathways and 

correlation of drugs and diseases.  

Jiang et al. [13] examined the relationship between 

drug undesirable effects and their chemical compositions. In 

order to further enhance the understanding of undesirable 

effects in the drug development, a Regularized Regression 

(RR) and Weighted Generalized T-student kernel Support 

vector machine (WGTS) were used. Nevertheless, it needs 

improvement in terms of hamming loss.  

Uner et al. [14] designed architecture for drug side 

effect detection. The prediction involved gene expression 

and a chemical composition to estimate drug dosage, length 

and conditions. Also, a medicine structure has been 

designed by the convolution system for obtaining the 

medicine heterogeneity and analyzing the system 

inconsistency. However, the computational complexity 

depends on the number of nodes used in convolution 

network.  

Galeano et al. [15] proposed a method for prediction of 

drug undesirable effect frequency. Primarily, the patterns 

and frequency of drug datasets were examined to this 

method through a matrix decomposition model. Here, the 

drug undesirable effect with chemical, anatomical and 

therapeutic data was considered as a trial process in this 

method. But, the biased frequency values occur in clinical 

trials.  

Liang et al., [16] introduced a negative sample 

collection method for drug undesirable effect prediction. 

The computing algorithm collected the high quality negative 

samples at small thresholds in the sample group and 

systematized them by chemical and chemical interactions. A 

reliable negative sample algorithm in proportional values 

was selected to break down the negative samples. But, its 

efficiency depends on the threshold range. Eslami et al. [17] 

discovered the association between drug and side effects 

using Non-negative Matrix Factorization (NMF) and FastText 

methods. NMF was used to model the topics and these topics 

were given as input to deep classification for prediction of 

relationship between drug and side effects. NMF with deep 

classifier recommend larger interpretational cost compared 

to the shallow methods; however, it was not obvious for 

uncomplicated text classifier dilemma. 

 

Proposed Methodology 

Here, the ETPTL-IPISTON for forecasting drug-side 

effect and drug-gene association. Initially, the sentences 

from scientific studies are collected and the drug 

information with phenotype, disease and side effects are 

extracted from Twitter, Facebook and LinkedIn. The 

screening processes such as topic modeling and named 

entity recognition are done in the collected corpus 

documents and social media document. The knowledge 

about the named entities of social media documents are 

transferred to the named entities of datasets for better 

topic modeling. It is performed by the transfer learning with 

the BILSTM-CRF. The modeled topics are considered for 

creating the drug-topic probability matrix. This is fed as 

input to the classifiers together with the syntactic gap for 

forecasting drug-side effect and drug-gene relationship. The 

overall flow of ETPTL-IPISTON is shown in Fig. 1. 

 

A. Data Collection and Topic Modeling 

Apart from systematic study, social media also offers 

extensive possible resource which is helpful in the prediction 

of drug-phenotype and drug-side effect relationship. Social 

media provides the opportunity of examining massive 

volume of data from range of people who post comments 

about drug outcomes. From Twitter, Facebook and LinkedIn, 

drug information with gene, disease and side effect is 

collected. A social media corpus is created from the 

collected data of social media. The corpus document (i.e., 

collected from the scientific literature) and the social media 

corpus is processed separately for topic modeling. The 

sentences in literature and social media corpus are given as 

input to logistic LDA generates gene vector 𝑤 from the 

corpus and latent vector 𝑧𝑛 of every gene 𝑛. The latent 

vector and words are processed in BILSTM-CRF with transfer 

learning for topic modeling.  

 

BILSTM-CRF with Transfer Learning for Topic 
Modeling  

BILSTM-CRF with transfer learning detects the trigger 

words in the documents and annotate their types. For a 

given input {(𝑧1, 𝑤(1), 𝑧2, 𝑤(2), … 𝑧𝑛 , 𝑤(𝑛) )}, the intention of 

trigger recognition is to return topics as tag string 

{𝑡𝑜𝑝𝑖𝑐1, 𝑡𝑜𝑝𝑖𝑐2, … 𝑡𝑜𝑝𝑖𝑐𝑛}, where 𝑤(𝑖) is a gene vector and 

𝑡𝑜𝑝𝑖𝑐𝑖 belongs to the label set. In BILSTM-CRF, the 

embedding layer is substituted by the Logistic layer that 

obtains the datasets as input with variable 𝑃𝐿𝐿𝐷𝐴, mines 

high-range attributes in string BILSTM with variable 𝑃𝐿𝑆𝑇𝑀, 

Fully Connected (FC) layers with variable 𝑃𝐹𝑢𝑙𝑙𝑦 and learns a 

CRF layer to label the resultant string. In the logistic LDA, 

learnable variable group is denoted as 𝑃𝐿𝐿𝐷𝐴 = {𝑧, 𝑤}. 

The BILSTM layers get the integration of gene vector 

and latent vector as input from logistic LDA 𝑥𝑖 = [𝑧𝑖; 𝑤(𝑖)]. 

Because of facility of learning larger gap dependencies in a 

string through developed memory cells, BILSTM can effective 

for string labeling processes. For an input {𝑥1, 𝑥2, … 𝑥𝑛}, 

BILSTM generates a result string of {ℎ1, ℎ2, … ℎ𝑛} based on the 

below learning policy: 

𝑖𝑡 = 𝜎(𝑄𝑥𝑖
𝑥𝑡 + 𝑄ℎ𝑖

ℎ𝑡−1 + 𝑄𝑐𝑖
𝑐𝑡−1 + 𝑏𝑖)      (3.1) 
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𝑓𝑡 = 𝜎 (𝑄𝑥𝑓
𝑥𝑡 + 𝑄ℎ𝑓

ℎ𝑡−1 + 𝑄𝑐𝑓
𝑐𝑡−1 + 𝑏𝑓)  (3.2) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑄𝑥𝑐
𝑥𝑡 + 𝑄ℎ𝑐

ℎ𝑙−1) + 𝑏𝑐 (3.3) 

𝑜𝑡 = 𝜎(𝑄𝑥0
𝑥𝑡 + 𝑄ℎ0

ℎ𝑡−1 + 𝑄𝑐0
𝑐𝑡 + 𝑏𝑜)  (3.4) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)    (3.5) 
In Eqns. (3.1)-(3.5), 𝜎 is the logistic sigmoid operator, 𝑖 

is the incoming gate, 𝑓 is the forget gate, 𝑜 is the outcome 

gate and 𝑐 is the cell vectors, ℎ is the hidden vector, 𝑡 is the 

interval, 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation 

operation, and each weight (𝑄) and bias (𝑏) create the 

variable 𝑃𝐿𝑆𝑇𝑀 of the BILSTM layer. In the BILSTM, for gene 

vector and latent vector, the frontward LSTM mines the 

attributes from the left end and the rearward LSTM mines 

the attributes from the right end. The outcome of BILSTM 

layer at 𝑡 obtained by integrating the outcome of the 

forward and backward LSTM ℎ𝑡 = [ℎ𝑡
𝐹; ℎ𝑡

𝐵], is synchronized to 

a linear and fully-connected layer by ReLU activation 

function which is given as follows:  

 

𝑦𝑡 = max(0, 𝑄𝑡ℎ𝑡 + 𝑏𝑡) (3.6) 
In the FC layer, all weight 𝑄 and biases 𝑏 forms the 

parameter set 𝑃𝐹of the FC layer. At the top of the FC layer, 

a last CRF layer generates named entities from the words of 

the corpus document and social media document that 

enhance the topic modeling. A transfer learning is used in 

BILSTM-CRF to share the knowledge between the corpus 

document and social media document. In this proposed 

work, the corpus document is used as the source domain 

dataset and the social media document as the target 

domain. The incoming statement strings of literature and 

social media datasets are incompatible due to their domain-

dependent attributes. In topic modeling using transfer 

learning, all the learned parameters learned from the corpus 

document are partitioned into source-specific and source-

target-distributed sections. 

 

 
Fig. 1. Overall flow of ETPTL-IPISTON 

 

Similarly, the target domain’s variables are also 

partitioned into target-specific and source-target sections. 

This type of partition is perpendicular in the network layer, 

and the variables of source-target-distributed sections may 

share the data obtained through overlapping attributes and 

class groups in the BILSTM-CRF and fully-connected layers.  

The partition is carried out as: 

𝑃𝑠
𝑁 = 𝑃𝑠,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑁 + 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁 , 𝑃𝑡𝑎

𝑁 = 𝑃𝑡𝑎,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 + 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁  

(3.7) 

In Eq. (3.7), 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁  and 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁  are the variables 

distributed and synchronized via the transfer learning in 

every layer 𝑁 and the domain-specific variables 𝑃𝑠,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁  

and 𝑃𝑡𝑎,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁  are learned for all domains completely. The 

rate of variables to be shared from the source to the target 

model is decided based on the overlapping degree of the 

incoming features and outcome class groups. Consider, 

{𝑃1
𝑁, 𝑃2

𝑁, … 𝑃𝑗
𝑁, … } are the incomings of 𝑁, {𝑦1

𝑁 , 𝑦2
𝑁 , … 𝑦𝑗

𝑁 , … } 

are the outcomes and variables 𝑃 are 𝑄𝑁 and 𝑏𝑁.  

As variables are partitioned into domain-distributed and 

domain-specific sections, their linked incomings and 

outcomes are split consequently.  

Dataset 

Extracting sentences 

Constructing a 

dependency graph 

Calculate syntactic 

distance measure 
Building a drug-topic 

probability matrix  

Constructing a classifier  

Predict drug-phenotype 

association 

Predict drug-side effect 

association 

Calculating GRS 

CTD SIDER 

Logistic LDA  

BILSTM-CRF with 
Transfer learning  

Topics  
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BILSTM layers comprise domain-specific and distributed 

incomings as [𝑥𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 , 𝑥𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 ]. Thus the equivalent domain-

specific and distributed link weights for every outcome 𝑦𝑗
𝑁 

are [𝑄𝑗,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 , 𝑄𝑗,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 ], every output consists of its 

individual 𝑏𝑗
𝑁. The distributed variables in Eq. (3.7), 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁  

and 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁 , are {𝑄𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 , 𝑏𝑁}. The output of the BILSTM 

layer is obtained as:  

𝑦𝑗
𝑁 =

𝑎𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ([(𝑄𝑗,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 )

𝑇
, (𝑄𝑗,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 )
𝑇

] [
𝑥𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑁

𝑥𝑠ℎ𝑎𝑟𝑒𝑑
𝑁

] + 𝑏𝑗
𝑁) 

(3.8) 

The domain-specific and distributed label outcomes of 

FC layer is denoted as [𝑦𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 , 𝑦𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 ]. The equivalent 

outcomes of domain-specific and distributed variables are 

denoted as {𝑄𝑗,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 , 𝑏𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑁 } and {𝑄𝑗,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁 , 𝑏𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 } 

correspondingly. The distributed variables in Eq. (3.7), 

𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑 
𝑁 and 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑 

𝑁  are {𝑄𝑗,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁 , 𝑏𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 }. 

 

 

 
Fig. 2. Tasks performed in topic modeling 

 

The obtained each domain-specific output 𝑦𝑗,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁  and 

distributed output 𝑄𝑗,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁  are given as follows: 

𝑦𝑗,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 = 𝑎𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (((𝑄𝑗,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑁 )
𝑇

) 𝑥 + 𝑏𝑗,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁 ) 

(3.9) 𝑦𝑗,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁 = 𝑎𝑐𝑡𝑖𝑣𝑒_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (((𝑄𝑗,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 )
𝑇

) 𝑥 + 𝑏𝑗,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁 ) 

(3.10) 
While training the BILSTM-CRF with transfer learning, 

the BILSTM-CRF is trained on the dataset from the corpus 

document and 𝑃𝑠,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁  and 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁  are learned. After that, 

the distributed variables of every layer are moved to the 

social media document 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝑁 → 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 , to set the 

equivalent sections of the target network variables. At last, 

the topics from the corpus and social media document 

obtained from CRF. The topic modeling with transfer 

learning task is depicted in Fig. 2. 

The topics from both datasets are considered for 

creating the drug-topic probability matrix. This is together 

with syntactic weight and GRS to feed as input to the NB, 

CART, logistic regression, and CNN classification algorithms 

for forecasting drug-gene and drug-side effect relationship. 

 

ETPTL-IPISTON Algorithm  

Step 1: Collect the literature data from biomedicine 

repository and social media data from Twitter, Facebook 

and LinkedIn.  

Social media document topics  Corpus document topics 

FC layer 

BILSTM-CRF 

Logistic LDA 

Corpus document Social media document 

𝑃𝑠
𝐿𝐿𝐷𝐴 = 𝑃𝑠,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝐿𝐿𝐷𝐴 + 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝐿𝐿𝐷𝐴  𝑃𝑡𝑎

𝐿𝐿𝐷𝐴 = 𝑃𝑡𝑎,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝐿𝐿𝐷𝐴 + 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑

𝐿𝐿𝐷𝐴  

𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝐿𝐿𝐷𝐴 + 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑

𝐿𝐿𝐷𝐴  

𝑃𝑠
𝐿𝑆𝑇𝑀 = 𝑃𝑠,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝐿𝑆𝑇𝑀 + 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝐿𝑆𝑇𝑀  𝑃𝑡𝑎

𝐿𝑆𝑇𝑀 = 𝑃𝑡𝑎,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝐿𝑆𝑇𝑀 + 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑

𝐿𝑆𝑇𝑀  

𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝐿𝑆𝑇𝑀 + 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑

𝐿𝑆𝑇𝑀  

𝑃𝑠
𝐹𝑢𝑙𝑙𝑦

= 𝑃𝑠,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝐹𝑢𝑙𝑙𝑦

+ 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝐹𝑢𝑙𝑙𝑦

 𝑃𝑡𝑎
𝐹𝑢𝑙𝑙𝑦

= 𝑃𝑡𝑎,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝐹𝑢𝑙𝑙𝑦

+ 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑
𝐹𝑢𝑙𝑙𝑦

 

𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑
𝐹𝑢𝑙𝑙𝑦

+ 𝑃𝑡𝑎,𝑠ℎ𝑎𝑟𝑒𝑑
𝐹𝑢𝑙𝑙𝑦

 

CRF CRF 
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Step 2: Extract the sentences from literature and social 

media document and process them separately.  

Step 3: Model the gene sequences using logistic LDA and 

get the gene vector 𝑤 and latent vector of every gene 𝑛 as 

𝑧𝑛.  

Step 4: Partition the parameters of logistic LDA as 

domain-distributed and domain-specific features and share 

these features with logistic LDA which process social media 

corpus.  

Step 5: Learn BILSTM-CRF on the genes latent vector of 

literature dataset and train 𝑃𝑠,𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑁  and 𝑃𝑠,𝑠ℎ𝑎𝑟𝑒𝑑

𝑁 .  

Step 6: Transfer the distributed variables of every layer 

to the social media document to set the equivalent sections 

of the target network variables.  

Step 7: Get the biomedical topics of literature and 

social media document from CRF layer  

Step 8: Construct a dependency graph and obtain the 

correlation between gene and medicine.  

Step 9: Calculate the syntactic distance of topic and 

word.  

Step 10: Create a drug-topic probability matrix using 

GRS and topics.  

Step 11: Learn the NB, CART, logistic regression and 

CNN classifiers with identified relationship of drug-gene and 

drug-side effect along with the probability matrix and 

syntactic distance for forecasting of unidentified 

relationship of drug-gene and drug-side effect. 

 

Results and Discussions 

This part presents the effectiveness of ETPTL-IPISTON 

which is implemented in Java JDK 1.6 and evaluated to the 

NMF [17] and ETP-IPISTON to forecast the drug-side effect 

and drug-gene relationship based on different evaluation 

metrics. In this experiment, different phenotypes, side 

effects and candidate drugs are considered which is 

described in [5]. 

 

A. Accuracy 

Accuracy is the ratio of quantity of all correct 

forecasting of drug-side effects (genes) association and 

overall quantity of side effects (genes) in the collected data. 

It is calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
  

 

 
(a) 

 
(b) 

Fig. 3. Evaluation of Accuracy, (a) For Genes (b) For Side 

Effects 

 
Fig. 3 shows the prediction accuracy of NMF, ETP-

IPISTON and ETPTL-IPISTON with different classifiers to 

forecast the drug-gene and drug-side effect association. The 

accuracy of ETPTL-IPISTON is 18.75%, and 3.26% greater than 

NMF and ETP-IPISTON with CNN classifier respectively for 

forecasting drug-phenotype association. Similarly, the 

accuracy of ETPTL-IPISTON is 27.47%, and 3.29% greater than 

NMF and ETP-IPISTON with CNN classifier respectively for 

predicting the drug-side effect association. From this 

analysis, it is proved that the proposed ETPTL-IPISTON 

method has high accuracy to forecast the drug-gene and 

drug-side effect association. 

 

B. Sensitivity 

It measures the ratio of positive patterns that are 

correctly predicted. It is calculated as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  

 
(a) 
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(b) 

Fig. 4. Evaluation of sensitivity, (a) for genes (b) for side 

effects 

 

Fig. 4 shows the prediction sensitivity of NMF, ETP-

IPISTON and ETPTL-IPISTON with different classifiers to 

forecast the drug-gene and drug-side effect association. The 

sensitivity of ETPTL-IPISTON is 20.2%, and 2.92% greater 

than NMF and ETP-IPISTON with CNN classifier respectively 

for forecasting the drug-phenotype association. Similarly, 

the sensitivity of ETPTL-IPISTON is 21.26%, and 8.2% greater 

than NMF and ETP-IPISTON with CNN classifier respectively 

for forecasting drug-side effect association. From this 

analysis, it is proved that the proposed ETPTL-IPISTON 

method has high sensitivity to forecast the drug-gene and 

drug-side effect association. 

 

C. Specificity 

It is the fraction of precisely predicted drug-side effect 

(gene) association at the TN and FP rates as:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

 

 
(a) 

 
(b) 

Fig. 5. Evaluation of specificity, (a) for genes (b) for side 

effects 

 

Fig. 5 shows the prediction specificity of NMF, ETP-

IPISTON and ETPTL-IPISTON with different classifiers for 

forecasting drug-gene and drug-side effect association. The 

specificity of ETPTL-IPISTON is 20.2%, and 2.92% greater 

than NMF and ETP-IPISTON with CNN classifier respectively 

for forecasting drug-phenotype association. Similarly, the 

specificity of ETPTL-IPISTON is 16.81%, and 2.1% greater 

than NMF and ETP-IPISTON with CNN classifier respectively 

for forecasting drug-side effect association. From this 

analysis, it is proved that the proposed ETPTL-IPISTON 

method has high specificity to forecast the drug-gene and 

drug-side effect association. 

 

D. Z-score 

It defines the closeness between drug and side effect 

(genes). It is calculated as: 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐵) =
𝑑𝑠ℎ𝑜𝑟𝑡(𝐴, 𝐵) − 𝜇𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐵)

𝜎𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐵)
 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐵) =
𝑑𝑠ℎ𝑜𝑟𝑡(𝐴, 𝐶) − 𝜇𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐶)

𝜎𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐶)
 

Here, 𝐴 is the medicine, 𝐵 is the gene, 𝑑𝑠ℎ𝑜𝑟𝑡(𝐴, 𝐵) and 

𝑑𝑠ℎ𝑜𝑟𝑡(𝐴, 𝐶) are the least gap between 𝐴 and 𝐵 as well as 𝐴 

and 𝐶, 𝜇𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐵) is the mean gap of 𝑑𝑠ℎ𝑜𝑟𝑡(𝐴, 𝐵) determined 

for each medicine, 𝜇𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐶) is the mean gap of 𝑑𝑠ℎ𝑜𝑟𝑡(𝐴, 𝐶) 

determined for each medicine, 𝜎𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐵) is the standard 

variance of 𝑑𝑠ℎ𝑜𝑟𝑡(𝑇, 𝑃) determined for each medicine and 

𝜎𝑑𝑠ℎ𝑜𝑟𝑡(𝐴,𝐶) is the standard variance of 𝑑𝑠ℎ𝑜𝑟𝑡(𝐴, 𝐶) determined 

for each medicine. 
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(a) 

 
(b) 

Fig. 6. Evaluation of z-score, (a) for genes (b) for side 

effects 

 

Fig. 6 shows the prediction Z-score of NMF, ETP-IPISTON 

and ETPTL-IPISTON with different classifiers for forecasting 

the drug-gene and drug-side effect association. The Z-score 

of ETPTL-IPISTON is 25.46%, and 2.03% greater than NMF and 

ETP-IPISTON with CNN classifier respectively for forecasting 

drug-phenotype association. Similarly, the Z-score of ETPTL-

IPISTON is 25.1%, and 3.52% greater than NMF and ETP-

IPISTON with CNN classifier respectively for forecasting 

drug-side effect association. From this analysis, it is proved 

that the proposed ETPTL-IPISTON method has high 

specificity for forecasting the drug-gene and drug-side effect 

association. 

 

Conclusion 

In this paper, ETPTL-IPISTON is proposed for developing 

a robust model for predicting drug-gene and drug-side effect 

prediction association. In the robust model, drug 

information is extracted from different social media such as 

Twitter, Facebook and LinkedIn. A transfer learning is used 

to share as much as knowledge possible between the corpus 

document and social media document for better topic 

modeling. The modeled topics and syntactic structure are 

given as input to CART, NB, logistic regression and CNN 

classifier for better forecasting drug-gene and drug-side 

effect association. Hence by using social media information 

in transfer learning, the association between drug-

phenotype and drug-side effect are forecasted effectively. 

At last, the experimental results proved that the ETPTL-

IPISTON achieves better prediction accuracy, sensitivity, 

specificity and Z-score than the classical drug-phenotype 

and drug-side effect association prediction methods. 
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