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Abstract: The drug discovery process needs long time and cost to discover proper drug for 

treating the patients effectively. The unintended effects of drugs and the beneficial impact 

of drugs must be recognized because they may inflict severe patient’s injuries due to 

unforeseen acts of the produced candidate drugs. One of the effective techniques is text 

mining it can find the hidden relation between genes, diseases and drugs from the huge 

volume of data. Predict drug Indications and Side effects using TOpic modeling and 

Natural language processing (PISTON) was a text mining method which used to find the 

association between drug-disease and drug-side effects. Natural Language Processing 

(NLP) is used to identify words which relate association among drugs and genes from the 

sentences which are collected from literatures where words represent drugs and genes co-

occurred. The relation between drugs and genes is represented through building drug-topic 

probability matrix by topic modeling.  From the drug-topic probability matrix, the drugs for 

phenotypes can be identified by training a classifier for high-rank topics of drugs. It also 

predicted the association between drug and side effects. However, expressive power of 

named entities and their potential for enhancing the quality of discovered topics has not 

received much attention in PISTON. So in this paper, an Improved PISTON (IPISTON) is 

proposed which enhance the quality of discovered topics through named entity recognition 

system and inducing the syntactic structure from unannotated sentences. Initially, the 

sentences from the collected literature data are extracted and a dependency graph is 

constructed using NLP. After that, a Gene Regulation Score (GRS) of each sentence is 

calculated to define the relationship between gene and diseases. The topic modeling is 

enhanced by finding the biomedical entities in the biomedical repository using Conditional 

Random Field (CRF) and Bi-directional Long-Short Term Memory-CRF (BLSTM-CRF). 

CRF is a sequence modeling framework which finds the biomedical entities through the 

conditional probability distributions of biomedical entities on collected documents. 

BLSTM-CRF is a deep learning technique which is used to enhance the performance of 

CRF based named entity recognition. Moreover, the syntactic structure of sentences is 

calculated through syntactic distance measure. The syntactic structure, biomedical entities 

and the drug-topic probability matrix is given as input to CRF, BLSTM-CRF, Naïve Bayes, 

CART and Logistic for prediction of drug-phenotype and drug-side effects associations. 
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1. INTRODUCTION 

The interdisciplinary scientific area of medicinal science combines numerous areas of science 

and engineering, aiming at finding a new drug. Drug [1] may be regarded as molecules 

communicating with an appropriate target protein in order to disturb various biological 

interaction networks, for particular the signal transduction network, the metabolic pathway 

and the network for protein interaction. Drugs are utilized for infectious prevention and 

management to protect and improve safety. Drug discovery [2] is a more complicated process 

to define and possible goals for drugs. Most of the drug discovery is failed, due to the project 

failure and drug development cost. Nearly, all drugs have an affect so unexpected signs (i.e., 

side effects) may hurt and have serious consequences. So, it is more necessary to find the side 

effects for reducing the sever effects.  

The extreme consequences are minimized by drug repositioning [3]. The significance of drug 

repositioning has risen significantly as the expense of new drug development has increased 

drastically. This also decreases time and expense for drug development. Various methods has 

been developed for drug repositioning according to the computational methods was proposed 

because of the exponential increase in available phenotypic or genomic data and the 

appearance of various methods for data analysis including machine learning and text mining. 

Text mining [4] is used to extract useful knowledge from high dimensional unstructured text 

data. Text mining works easier when using secondary data resources in order to help predict 

harmful outcomes as correct drug guidance leads to increased protection of drugs works 

reliable. 

A text mining model called PISTON  [5] for predicting the relation between drug-phenotype 

and drug-side effects pairs. Initially, sentences from literature where drugs and genes co-

occurred were collected. After that, a dependency graph was constructed using Natural 

Language Processing (NLP). A Gene Regulation Score (GRS) was calculated to recognize 

the outcome of the drug on gene regulation. According to the topic modeling, grouped the 

regulatory relationships between genes and drugs which are often co-occur were grouped into 

one topic and drug-topic matrix was constructed through probability calculation of each drug 

occurred under various topics. Finally, a classifier was developed and learned from the of 

identified phenotype-drug-side effects matrix to predict unknown associations among 

phenotype-drug-side effects. However, expressive power of named entities and their potential 

for enhancing the quality of discovered topics has not received much attention in PISTON.  

In this paper, the named entities is used as domain-specific terms for biomedical text content 

and classifiers such as Conditional Random Field (CRF) and Bi-directional Long-Short Term 

Memory (BLSTM-CRF) are used for named entity recognition. The recognition of named 

entities supports the topic modeling to provide high precision topics for disease, drug, gene 

and side effects. Furthermore, syntactic structure is induced from unannotated sentences in 

the biomedical context and leverages the inferred structure to learn a better language model. 

A syntactic distance is calculated between the topic and words to find the syntactic structure. 

It is given as additional input to the classifiers such as CRF, BLSTM-CRF, Naïve Bayes, 

Classification and Regression Tree (CART) and Logistic to predict the drug-phenotye and 

drug-side effect association effectively. This whole work is named as Improved PISTON 

(IPISTON).  
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2. LITERATURE SURVEY  

A semi-supervised graph cut algorithm and three layer data integration [6] were proposed to 

predict the drug-disease interactions. The heterogeneous data were integrated into three layers 

based on the hierarchical fashion. Here, a novel weighted drug-disease pair network was built 

where a node was act as drug-disease pair which was weighted with the similarity score 

between two pairs. Then, the similar drug-disease pairs were was obtained to find an optimal 

graph cut of the network. The drug-disease pair with unknown relation was considered to 

have similar diagnosis relation within the same cut. However, multiple sources of data were 

not fused properly and reasonably. 

A hybrid machine learning method [7] was proposed to predict the drug side effects 

according to the appropriate dataset features. In this method, data analytic techniques were 

employed to analysis the impact of drug distribution in the feature space and categorizing 

side effects based on the distribution of classes. Finally, domain-dependent strategies for each 

type were adopted to build the data models. However, this method finds difficult to predict 

the complex side effects.  

A machine learning algorithm [8] was proposed for prediction of drugs side effects. The drug 

side effect prediction process was started with clustering the drugs with respect to the feature 

profiles using K-mean, Partitioning Around Medoids (PAM) and K-seeds techniques. 

Bayesian method has been used for each cluster to measure the matrix of probability score in 

which each dimension contains the score for indicating the probability of particular side 

effects for a drug belonging to the same cluster. However, the convergence speed of the 

clustering algorithm depends on the initial clusters.  

A large-scale similarity-based framework [9] was presented to predict the interaction between 

drugs. A drug-related data and its knowledge were semantically combined that returned a 

knowledge graph. It described the drug attributes and its relationship with other associated 

objects including chemical structures, pathways and enzymes. The different similarity 

measures between all the drugs were computed in a scalable and distributed framework with 

the aid of knowledge graph. The resulting similarity metrics were used to develop features for 

a large-scale logistic regression model to predict the interactions between drugs. However, 

the logistic regression model was difficult to capture complex relationships.   

An optimized drug similarity framework [10] was proposed to enhance the performance of 

side effect prediction. The process of this framework was started with combining four various 

drug similarities as the comprehensive similarity and fine tuned by clustering. After that, the 

optimized similarity was improved by the indirect drug similarity to predict the side effects of 

drugs. However, it has low F1-score.   

A computational method [11] was proposed to predict the side effects in drugs based on the 

features of determined available drug and association between side effects and drugs. 

Computational method developed in low-dimensional space, which extracted features of side 

effects and drugs. This method was differs from the traditional conventional matrix 

factorization approach, and can found the biomedical context into account. The matrix 

factorization was an efficient technique, and determined the undetermined relationship 

according to the known association-based matrix. However, it does not predict the association 

between drug and side effects in the SIDER database.  

A binary classification model [12] was proposed to predict the drug side effects through 

heterogeneous information of drugs. In order to encode the each drug-side effects, similarity 
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based method was applied. Also, random forest was adapted to predict the drug side effects. 

It was considered that the drug has side effects when the prediction outcome was positive and 

wise versa. However, this model not possible to detect the side effect in early stage.  

A Network Topological Similarity-based Classification (NTSIM-C) [13] method was 

proposed to predict the relationship between drug and disease. In NTSIM-C, relationship 

between drug and disease was defined as a feature vector. It consisted of similarity scores 

between drugs and the other drugs and the vector related to the row vector in drug-drug 

similarity matrix. A linear neighborhood similarity matrix was constructed for drugs and the 

linear neighborhood similarity matrix was calculated for a disease. A vector was created for 

the relationship between the disease and the drug. The vector combined the similarity vector 

of both drug and disease. The relationship between disease and drug was predicted based on 

the vector. However, this method is not applicable for large datasets.  

3. PROPOSED METHODOLOGY  

In this section, the proposed Improved PISTON (IPISTON) is described in detail for 

prediction of drug-phenotype association and drug-side effect association.  

Initially, the sentences are collected where drugs and genes are co-occurred. Then, a word 

dependency graph was built using Natural Language Processing (NLP) for every sentence.  

The identified words that represent connections between drug and genes are used to find side 

effects of drugs based on gene regulation. A Gene Regulation Score (GRS) of sentences are 

computed from the words occurred in the sentences that indicates up and down regulation of 

genes. The up and down regulation represented by words are identified by comparing these 

words with the gene keyword dictionary. GRS of a drug-gene pair in a sentence is calculated 

as,  

                                    (        )  (  )  (  )                  (3.1) 

In Eq. (3.1),     denotes the disease,      denotes the gene,    denotes the quantity of 

recognized up-regulation in a dependency graph and      denotes the quantity of 

recognized down-regulation in a dependency graph.     (        ) of the sentence is not 

computed  for the sentences those are not containing  words  represents  up or down 

regulation. The    (        ) represents score of sentences as +1 for having more number 

of up-regulation words,-1 for  having more number of up-regulation words.  

The optimal number of topics is required to build a drug-topic matrix that is determined using 

log-likelihood. The named entities and GRS are used as features in the drug-probability 

matrix and construct a matrix using genes that affects drugs and their regulatory relationship 

based on topic modeling. The drug-topic probability matrix is constructed by grouping genes 

and their regulatory association that co-occur frequently from all drugs into optimal number 

of topics. Then, the genes of each drug with their regulatory association are compared with 

the genes in optimal number of topics and computed the probability that the drug contained 

the topic.  

3.1 Topic Modeling and named entity recognition 

The  document collected from the literature comprises of words related with drugs and 

several topics about drugs.  The individual topics comprises of words for representing gene, 

phenotypes, drugs and side effects.  In this paper, each document refers a drug; the topic 

refers set of similar genes and their regulatory relationships and the word refers a gene.    
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The recognition of named entities in the biomedical repository supports the topic modeling to 

provide more accurate topics for drug-phenotype and drug-side effect association. CRF and 

BLSTM-CRF are used for named entity recognition. 

a) CRF based named entity recognition  

For building probabilistic models, CRF is a sequence modeling framework, conditional 

probability distributions on an undirected graph model. A linear-chain CRF is applied for 

named entity recognition. The conditional probability of linear chain CRF determined on 

observation   (i.e., document) and a random variable   (i.e., biomedical entities) as follows:  

            ( | )  
 

 ( )
   (∑∑        (           )

 

    

 ∑∑        (      )

 

    

)                                (   ) 

In Eq. (3.2),  ( ) is a denominator scaling factor that makes sure sum of the posterior 

probabilities is exactly equal to one,       (           ) represents the transition function of 

    and  -th label sequences for all observation sequences,       (      ) denotes a state 

of  -th observation sequence feature.    and    parameters are approximated by cross-entropy 

computed  from training data. 

b) Bi-directional LSTM-CRF based named entity recognition  

A deep learning technique is applied to enhance the performance of named entity recognition. 

The bidirectional BLSTM-CRF consists of input layer for getting inputs, hidden layer for 

feature weight updating, CRF layer and output layer for classifcation. The input feature is a 

word vector that was extracted from sentences of each document. The extracted words are 

converted in to a vector representation by a word embedding method BioASQ [14].      

The output layer provides the label for entity which relates to drug, phenotype or side effects 

with probability values. Named entity recognition start with little quantity of physically 

interpreted corpus and after that construct a classifier learned with the annotated corpus. The 

constructed classifier then analyzes and provides the label for unlabeled data. The prediction 

results are included to the training data for the retraining of classifier for further predictions. 

Thus the performance of the classifier progressively increased by re-training with the 

machine-labeled corpus and manfully labeled data. The named entity recognition is trained 

by using back propagation method and the dropout rate for learning from training data is 

fixed as 0.5. The basic structure of BLSTM-CRF is depicted in Figure 3.2.  
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Figure.3.2 Basic structure of BLSTM-CRF for named entity recognition 

3.2 Inducing syntactic structure from unannotated document 

Long-Short Term Memory (LSTM) is used to induce the syntactic structure from unannotated 

document and leverage the inferred structure to learn a better language model. The syntactic 

structure is modeled by using stick-breaking process. It calculates the probability distribution 

between topics and genes. LSTM is a kind of recurrent neural network which effectively 

handle the sequential data. In LSTM, the current hidden state depends on the last hidden 

state. The hidden state holds the syntactic structure of the unannotated document for the last 

time step. However, it suffers from ignoring the real dependency relation that dominates the 

structure of genes. A skip-connection is used to integrate structure dependency relation with 

LSTM. By integrating the structure dependency relation with LSTM, the current hidden state 

depends on the last hidden state, earlier hidden states which have a syntactic relation to the 

current one. The skip connections are controlled by gates. It is defined by introducing a latent 

variable    to denote local structural context of document   : 

 The location of the left most child belonging to the left most sibling    is    
while the left most child of a subtree    is   .  
 The location of   ’s left most sibling is    while the left most child of any 

subtree is not   . The gates are represented by,  

                                              
  {

        
        

                              (3.3) 

By using this structure, the sibling dependency relation is replicated by at least one skip-

connect. Through the skip-connect relation between the nodes, the parent-to-child relation 

will be implicitly modeled. The following Eq. (3.4) shows the model newly updates the 

hidden states.   

                                     (               
        

 )                     (3.4) 

The probability distribution for next word is approximated by:  
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               (    |         )   (      (            
        

 ))   (3.5) 

In Eq. (3.5),   
  are gates that control skip-connections. Both   and   have a structured 

mechanism which obtain   
  as input and compels the model to focus on the most correlated 

information. In order to model the local structure of document, a probabilistic view is used. 

At time step  ,  (  |         ) denotes the probability of selecting one out of   possible 

local structures. The Stick-Breaking process is used to model the distribution and it given as 

follows,  

                 (  |         )  (    
 ) ∏   

 

   

     

                    (   ) 

After the time step           have their probabilities assigned, ∏   
    

      is remaining 

probability,     
  is the portion of rest of the probability that assigned to time step  . The 

expectation of gate value   
  is the cumulative distribution function of  (  |         ). 

Hence, the discrete gate value is replaced by its expectation:  

                              
   (    )  ∏   

 

   

     

                               (   ) 

A soft gating vector is used to approximate Eq. (3.4) and (3.5) with the above relaxations for 

updating the hidden state (syntactic structure). A hypothesis is considered to parameterize   
 . 

In the hypothesis, it is considered that genes which are co-occur frequently in all drugs should 

have a closer syntactic relation within themselves, and that this syntactical proximity can be 

denoted by scalar value. A syntactic distance is introduced to model the syntactical 

proximity. A set of   real valued scalar variables          with    denoting a measure of 

the syntactic relation between the genes which are frequently co-occur in all drugs and the 

genes. For time  , the closest document    is determined which have largest syntactic distance 

than   . Eq. (3.8) defines the   
  

                    
  

         ((     )  )   

 
                     (   ) 

In Eq. (3.8),          ( )     (      (   )) and   is the temperature parameter that 

controls the sensitivity of   
  to the differences between distances. The values of syntactic 

distance have more conceptual definition. If two adjacent genes are peers of each other, the 

syntactic difference should be around zero; whereas if they belong to different sub-trees, they 

should have a greater syntactic distance. In the worst scenario, the syntactic distance is closer 

to 1 if the two genes do not have a subtree in general. The drug-topic matrix is concatenated 

with syntactic distance and it is given as input to the classifiers such as CRF, BLSTM-CRF, 

Naïve Bayes, CART and Logistic for prediction of drug-phenotype and drug-side effects 

associations. The classifiers are trained using known drug-phenotype and drug-side effect 

associations which are collected from CTD and SIDER respectively.  
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3.3 IPISTON 

The overall flow of the IPISTON is shown in Figure 3.1.  

 

Figure 3.1 Overall flow of IPISTON 

IPISTON Algorithm  

Step 1: Collect the literature data from biomedical repository.  

Step 2: Extract the sentences in which drugs and genes co-occur from the abstract of 

literature data.  

Step 3: Find the biomedical entities in the sentences as tag using CRF and BLSTM-CRF.  

Step 4:  Construct a dependency graph and identified words defining the association between 

drug and gene.  

Step 5: Calculate GRS of each sentence to recognize the effect of the drug on gene 

regulation.  
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Step 6: Model the topic (gene) from the document (drug) by considering the regulatory 

association that frequently co-occur in different drugs.  

Step 7: Calculate the syntactic distance of topic and word using Eq. (3.8).  

Step 8: Construct a drug-topic probability matrix using GRS and biomedical entities.  

Step 9: Train the CRF, BLSTM-CRF, Naïve Bayes, CART and Logistic classifiers with 

known association of drug-phenotype and drug-side effect along with the probability matrix 

and syntactic distance to predict the unknown association of drug-phenotype and drug-side 

effect.   

4. EXPERIMENTAL RESULTS  

In this section, the efficiency of PISTON and IPISTON are tested in terms of accuracy, 

sensitivity, specificity and z-score. For the experimental purpose, PubMed, DrugBank, 

KEGG DRUG and PharmGKB datasets are used. PubMed is a database which provides 

biology literature and it collects 1,454,763 abstracts from 6975 journals. The official names 

of the drugs are collected from DrugBank to find the names of drugs in sentences. DrugBank 

provides comprehensive drug data in cheminformatics and bioinformatics. KEGG provides 

for approved drugs in U.S., Japan and Europe. From the DrugBank, the official names of 

2196 approved drugs are obtained and their synonyms are collected from KEGG DRUG. 

PharmGKB is a database that provides information on genetic variation in drug responses. 

26,886 gene symbols are obtained from PharmGKB database. The drug-side effect 

associations are collected from SIDER and 411 out of 684 drugs are used those have a unique 

MeSH id in SIDER. Table.4.1 shows the phenotypes and side effects which are considered in 

the experiment.  

Table.4.1 Phenotypes and side effects 

S.No. Phenotypes Side effects 

1. Myelogenous leukemia Cheilitis 

2. Colitis Redness 

3. Small cell lung cancer Ulcer 

4. Ovarian cancer Hypothermia 

5. Pulmonary edema Hyperlipidaemia 

6. Cystitis Sleep disturbance 

7. Non-small cell lung cancer Heartburn 

8. Melanoma Inflammation 

9. Bladder cancer Laryngitis 

10. Heart disease Eruption 

11. Hyperglycemia Cataract 

12. Cerebrovascular disease Ageusia 

13. Prostate cancer Gout 

14. Breast cancer Delirium 

15. Bradycardia Gastritis 

16. Hypotension Eczema 

17. Tachycardia Amnesia 

18. Proteinuria Diplopia 

19. Depressive disorder Ataxia 

20. Anxiety disorder Fatigue 
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Table 4.2 shows the candidate drugs which are considered in the experiment.  

Table.4.2 Candidate Drugs 

S.No. Candidate Drugs 

1. Adenine 

2. Adenosine 

3. Caffeine 

4. Cocaine 

5. Enoxaparin 

6. Glucose 

7. Cisplatin 

8. Dexamethasone 

9. Gemcitabine 

10. Glutathione 

11. Glycine 

12. Metformin 

13. Mifepristone 

14. Nitric oxide 

15. Oxygen 

16. Oxaliplatin 

17. Phenol 

18. Paclitaxel 

19. Phenobarbital 

20. Progesterone 

21. Progesterone 

22. Simvastatin 

23. Sorafenib 

24. Temozolomide 

25. Testosterone 

26. Tetracycline 

27. Urea 

28. Water 

 

4.1 Accuracy 

Accuracy is defined as the number of all correct prediction of drug-phenotype (side effects) 

association divided by the total number of phenotype (side effects) prediction made. This is 

defined as a ratio of appropriately classified data to overall classified data.  

         
              (  )                (  )

                  (  )                    (  )
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Figure.4.1 Comparison of Accuracy for phenotypes 

Figure 4.1 shows the comparison of accuracy of PISTON and IPISTON for prediction of 

drug-phenotype association with different classifiers. X axis denotes the drug-phenotype 

association prediction methods and Y axis denotes the accuracy. The accuracy of IPISTON is 

6.17% greater than PISTON for logistic classifier. From the Figure 4.1, it is proved that the 

proposed IPISTON has high accuracy than PISTON for drug-phenotype association with 

CRF, BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  

 

Figure.4.2 Comparison of Accuracy for side effects 

Figure 4.2 shows the comparison of accuracy of PISTON and IPISTON for prediction of 

drug-side effects association with different classifiers. X axis denotes the drug- side effects 
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association prediction methods and Y axis denotes the accuracy. The accuracy of IPISTON is 

4.32% greater than PISTON for logistic classifier. From the Figure 4.2, it is proved that the 

proposed IPISTON has high accuracy than PISTON for drug-side effects association with 

CRF, BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  

4.2 Sensitivity 

It is used to measure the fraction of positive patterns that are correctly predicted. It is 

calculated as,  

            
  

(     )
 

 

Figure.4.3 Comparison of Sensitivity for phenotypes 

Figure 4.3 shows the comparison of sensitivity of PISTON and IPISTON for prediction of 

drug-phenotype association with different classifiers. X axis denotes the drug-phenotype 

association prediction methods and Y axis denotes the sensitivity. The sensitivity of 

IPISTON is 6.08% greater than PISTON for logistic classifier. From the Figure 4.3, it is 

proved that the proposed IPISTON has high sensitivity than PISTON for drug-phenotype 

association with CRF, BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  
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Figure.4.4 Comparison of Sensitivity for side effects 

Figure 4.4 shows the comparison of sensitivity of PISTON and IPISTON for prediction of 

drug-side effects association with different classifiers. X axis denotes the drug- side effects 

association prediction methods and Y axis denotes the sensitivity. The sensitivity of 

IPISTON is 4.4% greater than PISTON for logistic classifier. From the Figure 4.4, it is 

proved that the proposed IPISTON has high sensitivity than PISTON for drug-side effects 

association with CRF, BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  

4.3 Specificity  

Specificity of a test is the proportion of correctly predicted drug-phenotype (side effect) 

association with the summation of correctly predicted drug-phenotype (side effect) 

association and wrongly predicted drug-phenotype (side effect) association.  
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Figure.4.5 Comparison of Specificity for phenotypes 

Figure 4.5 shows the comparison of specificity of PISTON and IPISTON for prediction of 

drug-phenotype association with different classifiers. X axis denotes the drug-phenotype 

association prediction methods and Y axis denotes the specificity. The specificity of 

IPISTON is 6.02% greater than PISTON for logistic classifier. From the Figure 4.5, it is 

proved that the proposed IPISTON has high specificity than PISTON for drug-phenotype 

association with CRF, BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  

 

Figure.4.6 Comparison of Specificity for side effects 

Figure 4.6 shows the comparison of specificity of PISTON and IPISTON for prediction of 

drug-side effects association with different classifiers. X axis denotes the drug- side effects 
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association prediction methods and Y axis denotes the specificity. The specificity of 

IPISTON is 5.06% greater than PISTON for logistic classifier. From the Figure 4.6, it is 

proved that the proposed IPISTON has high specificity than PISTON for drug-side effects 

association with CRF, BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  

4.4 Z-score 

Z-score is a numerical measurement that describes closeness between drug and phenotype 

(side effects). It can be calculated as,  

        (   )  
      (   )         (   )

       (   )
 

        (   )  
      (   )         (   )

       (   )
 

Where,       (   ) is the shortest distance between   (drug) and   (phenotype), 

      (   ) is the shortest distance between   (drug) and   (side effect),        (   ) is mean 

of       (   ) values calculated for all drugs,        (   ) is mean of       (   ) values 

calculated for all drugs,        (   ) is the standard deviation of       (   ) values calculated 

for all drugs and        (   ) is the standard deviation of       (   ) values calculated for all 

drugs.  

 

Figure.4.7 Comparison of Z-score for phenotypes 

Figure 4.7 shows the comparison of z-score of PISTON and IPISTON for prediction of drug-

phenotype association with different classifiers. X axis denotes the drug-phenotype 

association prediction methods and Y axis denotes the z-score. The z-score of IPISTON is 

5.93% greater than PISTON for logistic classifier. From the Figure 4.7, it is proved that the 

proposed IPISTON has high z-score than PISTON for drug-phenotype association with CRF, 

BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  
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Figure.4.8 Comparison of Z-score for side effects 

Figure 4.8 shows the comparison of z-score of PISTON and IPISTON for prediction of drug-

side effects association with different classifiers. X axis denotes the drug- side effects 

association prediction methods and Y axis denotes the z-score. The z-score of IPISTON is 

5.13% greater than PISTON for logistic classifier. From the Figure 4.8, it is proved that the 

proposed IPISTON has high z-score than PISTON for drug-side effects association with 

CRF, BLSTM-CRF, CART, Naïve Bayes and logistic classifiers.  

5. CONCLUSION  

In this paper, an IPISTON is proposed for prediction of drug-phenotype and drug-side effect 

association using text mining techniques. Initially, data related to drug, gene and side effects 

are collected from biomedical repository. Then, the sentences in the collected document are 

extracted and a dependency graph is constructed using NLP. A GRS is calculated for each 

sentence to find the effect of the drug on gene regulation. In the collected documents, the 

topics are modeled and then the biomedical entities are determined using CRF and BLSTM-

CRF which enhance the quality of topic modeling. The syntactic distance between the topic 

and words are computed which refines the syntactic structure of the sentences. The syntactic 

distance and drug-topic probability matrix are given as input to the CRF, BLSTM-CRF, 

Naïve Bayes, CART and Logistic to predict the drug-phenotye and drug-side effect 

association effectively. The experimental results prove that the proposed IPISTON has better 

accuracy, sensitivity, specificity and z-score than PISTON for prediction of drug-phenotype 

and drug-side effect associations.  
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