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Abstract: In this article, we are concernedwith the neutral impulsive stochastic integro-di�erential equations
driven by Poisson jumps and Rosenblatt process. By using resolvent operator and some analysis techniques,
we ensure existence and uniqueness of solutions. Further, we investigate exponential stability of mild solu-
tions. We have also given an example to illustrate our theoretical results.
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1 Introduction
In the past decades, the theory of nonlinear functional di�erential or integro-di�erential equations with re-
solvent operators has become an active research �eld due to their applications inmany physical phenomena.
The resolvent operator is comparable to the semigroup operator for abstract di�erential equations in Banach
spaces. However, the resolvent operator does not satisfy semigroup properties. The study of deterministic
neutral functional di�erential equations was initiated by Hale and Mayer [17]. For more details on the theory
and their applications, we also refer the readers to Hale and Lunel [18], Kolmanovkii and Nosov [20] and so
on. Deterministic and stochastic di�erential equations have gained great popularity in the last few years due
to their use in many areas, such as physics, electronics, control theory, engineering and economics. Several
authors have considered the existence, uniqueness and asymptotic behavior of mild solutions, andmany im-
portant theory and applications �ndings have been obtained. For more details we refer to the papers by Ali et
al. [4], El-Borai et al. [11], Gorec and Sathanantham [12], Gupta andDabas [15], Gupta and al. [16], Laksmikan-
tha [22], Ahmed [2], Ahmed et al. [3], Arthi and Balachandran [5],Gupta et al. [14], Levin et al. [24].

On the other side, fractional Brownian motion was intensively explored due to their applications in vari-
ous domain. We point out that, a fractional Brownian motion (fBm) of Hurst index H ∈ (0, 1) (see [21, 26] for
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more details) is a Gaussian process BH = {BH(t), t ≥ 0}, centered, with the covariance function

RH(t, s) = E
(
BH(t)BH(s)

)
= 1

2

(
t2H + s2H − |t − s|2H

)
.

We also mention that fBm is not a semimartingale and when H = 1/2 , the fBm becomes standard Brownian
motion . Further, if H > 1/2, the fBm BH have a long-memory and this property makes it an ideal process to
modeling in biology, mathematics �nance [7, 8] etc.

Moreover, the fBm belongs to Hermite family processes, it’s selfsimilar which being de�ned as limits that
appear in the so-called Non-Central Theorem. For d ≥ 1, they have the following representation

YH,dt = c(H0)
∫
R

...
∫
R

 t∫
0

d∏
j=1

(
s − xj

)H0−1
+ ds

 dBx1...dBxd , ∀t > 0,

where {Bxi : xi ∈ R, i = 1, ..., d} are some two-sided Brownianmotions, c(H0) is a normalizing constant such
that

E|YH,d1 |2 = 1, H0 = 1
2 + H − 1

d , H ∈ ( 1
2 , 1).

When d = 1 the process become a fractional Brownian motion, thus Taqqu [32] have named the Rosenblatt
process when d = 2, which is not Gaussian process but they have stationary increments and long range-
dependency. Recently, the Rosenblatt process have attracted attention of many authors due to their proper-
ties. For example, Meajima and Tudor [29], Veillette and Taqqu [36] have given many important properties
of distributions, Bernet and Tudor [6], Viens and Tudor [35] established the construction of estimator for the
self-similarity parameter H.

Based on the above works, we investigate the following neutral stochastic functional integro-di�erential
equations with delay and impulses e�ects

d
[
u(t) − q(t, ut)

]
=

[
A
(
u(t) − q(t, ut)

)
+

t∫
0

Υ(t − s)
[
u(s) − q(s, us)

]
ds + f (t, ut)

+
t∫

0

g(t, s, us)ds
]
dt +

∫
θ

h(t, ut , v)Ñ(dt, dv) + σ(t)dZHQ (t), t ∈ [0, T], t ≠ tk ,

∆u(t) = Ik(u(t−k)), t = tk , k = 1, 2, · · · ,

u0(t) = ϕ(t) ∈ PC
(

[−τ, 0],H
)
, −τ ≤ t ≤ 0,

(1)

where A : D(A) ⊂ H → H is the in�nitesimal generator of a C0-semigroup (T(t))t≥0 of bounded linear oper-
ators in a Hilbert space H; for t > 0, Υ(t) a closed linear operator on H, with D(A) ⊂ D(Υ). The impulsive
moments tk satisfy the condition 0 < t1 < t2 < · · · < tk < · · · , limk→∞ tk = ∞, Ik : H → H, ∆u(tk) =
u(t+k) − u(t−k), u(t+k) and u(t−k) are the right and left limits of u(t) at tk, respectively which is the jump size of the
state u at tk. For ϕ ∈ PC, ||ϕ|| = sups∈[−r,0] ||ϕ(s)|| < ∞, where PC =

{
ϕ : [−r, 0] → H, ϕ(t) is continuous

everywhere except a �nite number of points t̃ at which ϕ(̃t−k), ϕ(̃t+k) exist and ϕ(̃t−k) = ϕ(̃t)
}
.

For any t ∈ [0, T] and any continuous function u, the element of PC is de�ned by ut(θ) = u(t + θ), −τ ≤ θ ≤
0.The functions q, f : [0, +∞) × PC → H, g : [0, +∞) × [0, +∞) × PC → H, h : [0, +∞) × H × θ → H and
σ : [0, +∞)→ L0

Q(Y ,H) are appropriate functions, and ZHQ is assumed to be a Rosenblatt process.
The particular case Υ(t) = 0 and h = 0 of Eq. (1) has been considered by Ma et al [25], where the authors
used an impulsive integral inequality to prove their result. It should be mentioned that there is no work yet
reported on the exponential stability of neutral impulsive stochastic integro-di�erential equations driven by
Poisson jumps and Rosenblatt process. Motivated by this facts, our main objective is to study the exponential
stability for a class of neutral impulsive stochastic integro-di�erential equations(1). In this paper, we derive
existence and exponential results for the system (1) with the help of resolvent operator and �xed point tech-
niques.
In the �rst result, we obtain the su�cient conditions proving existence and uniqueness of the mild solution
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of (1) by utilizing Banach �xed point theorem under Lipschitz conditions on nonlinear terms. While in the
second result, we have proved the exponential stability of mild solution via an integral inequality. Our arti-
cle, expands the usefulness of stochastic integro-di�erential equations, since the literature shows results for
existence and exponential stability for such equations in the case of semigroup only (see [2, 3, 11, 14, 16] and
the references therein ). The results obtained improve, extend and complete many other important ones in
the literature.

The following is the organization of this paper. We recall some preliminary de�nitions and outcomes
in Section 2. Section 3 is devoted to investigate existence and uniqueness of mild solution. The exponential
stability for the mild solution is also discussed. We give an example in the fourth section to illustrate the
results. The last section is dedicated to conclude this paper.

2 Preliminaries
In this section, we provided some basic results about Poisson process, Resolvent operator and Rosenblatt
process.

2.1 poisson jumps process

LetBσ(H) the Borel σ-algebra ofH. Let (p(t)), (t ≥ 0) be anH-valued, σ-�nite stationary =t-adapted Poisson
point process on (Ω,=, P). The counting randommeasure N de�ned by

N((t1, t2] × θ)(w) =
∑
t1<s≤t2

1U(p(s)(w)),

for any U ∈ Bσ(H − {0}). where 0 ∉ θ̄ is called the Poisson random measure associated to Poisson point
process p. The following notation is used

N(t, θ) = N((0, t] × θ).

Then it is known that there exists a σ-�nite measure θ such that

E(N(t, θ)) = ν(θ)t,

P(N(t, θ) = k) = exp(−tν(θ))(tν(θ))k
k! .

This measure ν is said Levy measure. Then the measure Ñ is de�ned by

Ñ((0, t] × θ) = N((0, t] × θ) − tν(θ).

This measure Ñ(dt, du) is called the compensated Poisson random measure, and dtν(θ) is called the com-
pensator (see [30]).

De�nition 2.1. Let θ ∈ Bσ(H−{0}). P2([0, T]×θ;H) is the space of all predictablemappings h : [0, T]×θ×Ω →
H for which

T∫
0

∫
θ

E
∥∥h(t, ν)

∥∥2 dtλ(dν) < ∞.

We may then de�ne the H-valued stochastic integral
T∫

0

∫
θ

L(t, ν)Ñ(dt, dν), which is a centered square-

integral martingale [30].
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2.2 Rosenblatt process

In this subsection, we recall some basic concepts on the Rosenblatt process as well as the Wiener integral
with respect to it. Consider (ξn)n∈Z a stationary Gaussian sequence with mean zero and variance 1 such that
its correlation function satis�es that R(n) := E(ξ0ξn) = n

2H−2
k L(n), with H ∈ ( 1

2 , 1) and L is a slowly varying
function at in�nity. Let g be a function of Hermite rank k, that is, if g admits the following expansion in
Hermite polynomials

g(x) =
∑
j≥0

cjHj(x), cj = 1
j!E(g(ξ0Hj(ξ0))),

then k = min
{
j|cj ≠ 0

}
≥ 1, where Hj(x) is the Hermite polynomial of degree j given by Hj(x) =

(−1)je x2
2 dj
dxj e

− x2
2 . Then, the Non-Central Limit Theorem (see, for example, Dobrushin & Major [10]) says

1
nH
∑[nt]

j=1 g(ξj) converges as n →∞, in the sense of �nite dimensional distributions, to the process

ZkH(t) = c(H, k)
∫
Rk

t∫
0

 k∏
j=1

(s − yj)(
− 1

2 + 1−H
k )

+

 dsdB(y1) · · · dB(yk), (2)

where the above integral is a Wiener-Itô multiple integral of order k with respect to the standard Brownian
motion (B(y))y∈R and c(H, k) is a positive normalization constant depending only on H and k. The process
(ZkH(t))t≥0 is called as the Hermite process and it is H self-similar in the sense that for any c > 0, (ZkH(ct)) d=
(cHZkH(t)) and it has stationary increments.

The fractional Brownianmotion (which is obtained from (2)when k = 1) is themost usedHermite process
to study evolution equations due to its large range of applications. When k = 2 in (2), Taqqu [32] named the
process as the Rosenblatt process. The stationarity of increments, self-similarity and long range dependence
(see Tindel, Tudor and Viens [33]) were made that the Rosenblatt process is very important in practical ap-
plications. However, it is noted that Rosenblatt process is not Gaussian. In fact, due to their properties (long
range dependence, self-similarity), the fractional Brownian motion process has large utilization in practi-
cal models, for instance in telecommunications and hydrology. So, many researchers prefer to use fractional
Brownian motion than other processes because it is Gaussian and it facilitate calculations. However in con-
crete situations when the Gaussianity is not plausible for the model, one can use the Rosenblatt process.
In recent years, there exists many works that investigated on diverse theoretical aspects of the Rosenblatt
process. For example, Leonenko and Ahn [23] gave the rate of convergence to the Rosenblatt process in the
Non-Central Limit Theorem and the wavelet-type expansion has been presented by Abry and Pipiras [1]. Tu-
dor [34] established, the representation as aWiener-Itômultiple integral with respect to the Brownianmotion
on a �nite interval and developed the stochastic calculus with respect to it by using both pathwise type cal-
culus and Malliavin calculus (see also Maejima and Tudor [27]). For more details on Rosenblatt process, we
refer the reader to Maejima and Tudor [28, 29]), Pipiras and Taqqu [31] and the references therein.

Consider a time interval [0, T] with arbitrary �xed horizon T and let
{
ZH(t), t ∈ [0, T]

}
be a one-

dimensional Rosenblatt process with parameterH ∈ ( 1
2 , 1). According to the work of Tudor [34], the Rosen-

blatt process with parameter H > 1
2 can be written as

ZH(t) = d(H)
t∫

0

t∫
0

 t∫
y1∨y2

∂KH
′

∂u (u, y1)∂K
H′

∂u (u, y2)du

 dB(y1)dB(y2), (3)

where KH(t, s) is given by

KH(t, s) = cHs
1
2−H

t∫
s

(u − s)H−3/2uH−1/2du for t > s,

with

cH =
√

H(2H − 1)
β(2 − 2H, H − 1

2 )
,
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β(., .) denotes the Beta function, KH(t, s) = 0 when t ≤ s, (B(t), t ∈ [0, T]) is a Brownianmotion,H′ = H+1
2 and

d(H) = 1
H+1

√
H

2(2H−1) is a normalizing constant. The covariance of the Rosenblatt process
{
ZH(t), t ∈ [0, T]

}
satisfy

E(ZH(t)ZH(s)) = 1
2

(
s2H + t2H − |s − t|2H

)
.

The covariance structure of the Rosenblatt process allows to construct Wiener integral with respect to it. We
refer toMaejima and Tudor [27] for the de�nition ofWiener integral with respect to general Hermite processes
and to Kruk, Russo, and Tudor [19] for a more general context (see also Tudor [34]).

Note that

ZH(t) =
T∫

0

T∫
0

I(1[0,t])(y1, y2)dB(y1)dB(y2),

where the operator I is de�ned on the set of functions f : [0, T] → R, which takes its values in the set of
functions g : [0, T]2 → R2 and is given by

I(f )(y1, y2) = d(H)
T∫

y1∨y2

f (u)∂K
H′

∂u (u, y1)∂K
H′

∂u (u, y2)du.

Let f be an element of the set E of step functions on [0, T] of the form

f =
n−1∑
i=0

ai1(ti ,ti+1], ti ∈ [0, T].

Then, it is natural to de�ne its Wiener integral with respect to ZH as

T∫
0

f (u)dZH(u) :=
n−1∑
i=0

ai(ZH(ti+1) − ZH(ti)) =
T∫

0

T∫
0

I(f )(y1, y2)dB(y1)dB(y2).

LetH be the set of functions f such that

‖f‖2
H := 2

T∫
0

T∫
0

(I(f )(y1, y2))2dy1dy2 < ∞.

It follows that (see Tudor[34])

‖f‖2
H = H(2H − 1)

T∫
0

T∫
0

f (u)f (v)|u − v|2H−2dudv.

It has been proved in Maejima and Tudor [27] that the mapping

f →
T∫

0

f (u)dZH(u)

de�nes an isometry from E to L2(Ω) and it can be extended continuously to an isometry from H to L2(Ω)
because E is dense in H. We call this extension as the Wiener integral of f ∈ H with respect to ZH . It is
noted that the spaceH contains not only functions but its elements could be also distributions. Therefore it

is suitable to know subspaces |H| of H : |H| =
{
f : [0, T] → R|

∫ T
0
∫ T

0 |f (u)||f (v)|u − v|2H−2dudv < ∞
}
. The

space |H| is not complete with respect to the norm ‖.‖H but it is a Banach space with respect to the norm

‖f‖2
|H| = H(2H − 1)

T∫
0

T∫
0

|f (u)||f (v)|u − v|2H−2dudv.
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As a consequence, we have
L2([0, T]) ⊂ L1/H([0, T]) ⊂ |H| ⊂ H.

For any f ∈ L2([0, T]), we have

‖f‖2
|H| ≤ 2HT2H−1

T∫
0

|f (s)|2ds

and
‖f‖2

|H| ≤ C(H)‖f‖2
L1/H ([0,T]), (4)

for some constant C(H) > 0. Let C(H) > 0 stands for a positive constant depending only on H and its value
may be di�erent in di�erent appearances.

De�ne the linear operator K*H from E to L2([0, T]) by

(K*H f )(y1, y2) =
T∫

y1∨y2

f (t)∂K∂t (t, y1, y2)dt,

whereK is the kernel of Rosenblatt process in representation (3)

K(t, y1, y2) = 1[0,t](y1)1[0,t](y2)
t∫

y1∨y2

∂KH
′

∂u (u, y1)∂K
H′

∂u (u, y2)du.

Note that (K*H1[0,t])(y1, y2) = K(t, y1, y2)1[0,t](y1)1[0,t](y2). The operator K*H is an isometry between E to
L2([0, T]), which can be extended to the Hilbert spaceH. In fact, for any s, t ∈ [0, T] we have〈

K*H1[0,t], K*H1[0,s]

〉
L2([0,T])

=
〈
K(t, ., .)1[0,t],K(s, ., .)1[0,s]

〉
L2([0,T])

=
t∧s∫
0

t∧s∫
0

K(t, y1, y2)K(s, y1, y2)dy1dy2

= H(2H − 1)
t∫

0

s∫
0

|u − v|2H−2dudv

=
〈

1[0,t], 1[0,s]
〉
H
.

Moreover, for f ∈ H, we have

ZH(f ) =
T∫

0

T∫
0

(K*H f )(y1, y2)dB(y1)dB(y2).

Let {Zn(t)}n∈N be a sequence of two-sided one dimensional Rosenblatt process mutually independent on
(Ω,F, P). We consider a K-valued stochastic process ZQ(t) given by the following series:

ZQ(t) =
∞∑
n=1

zn(t)Q1/2en , t ≥ 0.

Moreover, if Q is a non-negative self-adjoint trace class operator, then this series converges in the space K,
that is, it holds that ZQ(t) ∈ L2(Ω, K). Then, we say that the above ZQ(t) is a K-valued Q- Rosenblatt process
with covariance operator Q. For instance, if {σn}n∈N is a bounded sequence of non-negative real numbers
such that Qen = σnen, by assuming that Q is a nuclear operator in K, then the stochastic process

ZQ(t) =
∞∑
n=1

zn(t)Q1/2en =
∞∑
n=1

√
σnzn(t)en , t ≥ 0, (5)

is well-de�ned as a K-valued Q- Rosenblatt process.
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De�nition 2.2. (Tudor[34]). Let φ : [0, T] → L0
Q(K,H) such that

∑∞
n=1 ‖K*H(φQ1/2en)‖L2([0,T];H) < ∞. Then,

its stochastic integral with respect to the Rosenblatt process ZQ(t) is de�ned, for t ≥ 0, as follows :

t∫
0

φ(s)dZQ(s) :=
∞∑
n=1

t∫
0

φ(s)Q1/2endzn(s) =
∞∑
n=1

t∫
0

t∫
0

(K*H(φQ1/2en))(y1, y2)dB(y1)dB(y2). (6)

Lemma 2.1. For ψ : [0, T] → L0
Q(K,H) such that

∑∞
n=1 ‖ψQ

1/2en‖L1/H ([0,T];H) < ∞ holds, and for any a, b ∈
[0, T] with b > a, we have

E

∥∥∥∥∥∥
b∫
a

ψ(s)dZQ(s)

∥∥∥∥∥∥
2

≤ c(H)(b − a)2H−1
∞∑
n=1

b∫
a

‖ψ(s)Q1/2en‖2ds.

If, in addition,
∞∑
n=1
‖ψ(t)Q1/2en‖ is uniformly convergent for t ∈ [0, T],

then, it holds that

E

∥∥∥∥∥∥
b∫
a

ψ(s)dZQ(s)

∥∥∥∥∥∥
2

≤ C(H)(b − a)2H−1
b∫
a

‖ψ(s)‖2
L0
Q(K,H)ds.

Proof. Let {en}n∈N be the complete orthonormal basis of K introduced above.
Applying (6) and Hölder inequality, we have

E

∥∥∥∥∥∥
b∫
a

ψ(s)dZQ(s)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
∞∑
n=1

b∫
a

ψ(s)Q1/2endzn(s)

∥∥∥∥∥∥
2

=
∞∑
n=1

E

∥∥∥∥∥∥
b∫
a

ψ(s)Q1/2endzn(s)

∥∥∥∥∥∥
2

=
∞∑
n=1

H(2H − 1)
b∫
a

b∫
a

‖ψ(s)Q1/2en‖‖ψ(t)Q1/2en‖|t − s|2H−2dsdt

≤ C(H)
∞∑
n=1

 b∫
a

‖ψ(s)Q1/2en‖1/Hds

2H

≤ C(H)(b − a)2H−1
∞∑
n=1

b∫
a

‖ψ(s)Q1/2en‖2ds.

Lemma 2.2. [37] Let a function Γ : [−r, +∞) → [0, +∞) be such that there exist positive constants ω >
0, αj (j = 1, 2, 3), and βi(i = 1, 2, · · · ) such that

Γ(t) ≤



α1e−ωt for t ∈ [−r, 0],

α1e−ωt + α2 supθ∈[−r,0] Γ(t + θ) + α3

t∫
0

e−ω(t−s) sup
θ∈[−r,0]

Γ(t + θ)ds

+
∑
ti<t

βie−ω(t−ti)Γ(t−i ) for t ≥ 0.
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If α2 + α3
ω +

+∞∑
i=1

βi < 1, the Γ(t) ≤ Ne−γt for t ≥ −r, where Γ > 0 is the unique solution to the equation

α2 + α3
(ω−γ) e

γr +
+∞∑
i=1

βi = 1 and N = max{α1, α1(ω−γ)
α3eγr }) > 0.

2.3 Partial integro-di�erential equations in Banach spaces

In this section, we recall some fundamental results needed to establish our main results. For the theory of
resolvent operators we refer the reader to [13]. Throughout this paper, H is a Banach space, A and Υ(t) are
closed linear operators onH. Y represents the Banach space D(A) equipped with the graph norm de�ned by

|y|Y := |Ay| + |y| for y ∈ Y .

The notations C([0, +∞); Y),B(Y ,H) stand for the space of all continuous functions from [0, +∞) into Y, the
set of all bounded linear operators from Y intoH, respectively. We consider the following Cauchy problem

ρ′(t) = Aρ(t) +
t∫

0

Υ(t − s)ρ(s)ds, for t ≥ 0,

ρ(0) = v0 ∈ H.

(7)

De�nition 2.3. ([13]). A resolvent operator for Eq. (7) is a bounded linear operator valued function Π(t) ∈ L(H)
for t ≥ 0, satisfying the following properties:

(i) Π(0) = I and |Π(t)| ≤ Meβt for some constants M and β.
(ii) For each x ∈ H, Π(t)x is strongly continuous for t ≥ 0.
(iii) Π(t) ∈ L(Y) for t ≥ 0. For x ∈ Y , Π(·)x ∈ C1([0, +∞);H) ∩ C([0, +∞); Y) and

Π′(t)x = AΠ(t)x +
t∫

0

Υ(s)(t − s)Π(s)xds

= Π(t)Ax +
t∫

0

Π(t − s)Υ(s)xds for t ≥ 0.

Remark 2.1. There exist a constant M̂ > 0 such that ||Π(t)|| ≤ M̂, for t ∈ [0, T].

The following assumptions are imposed on the system under consideration:

(H1) A is the in�nitesimal generator of a strongly C0-semigroup {S(t)}t≥0 onH.

(H2) For all t ≥ 0, Υ(t) is a closed linear operator from D(A) toH, and Υ(t) ∈ B(Y ,H). For any y ∈ Y, the
map t → Υ(t)y is bounded, di�erentiable and the derivative t → Υ ′(t)y is bounded and uniformly
continuous on R+.

Theorem 2.3. ([13, Theorem 3.7]) Assume that (H1)-(H2) hold. Then there exists a unique resolvent operator
for the Cauchy problem (7).
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3 Main Results

3.1 Existence of mild solution

In this section, we present and prove the existence and uniqueness of mild solutions of Eq.(1) by means of
the theory of resolvent operator and contraction mapping principle. First of all, we begin with the de�nition
of mild solution for Eq.(1)

De�nition 3.1. AnH-valued stochastic process u(t), t ∈ [−τ, T], is called a mild solution of Eq.(1) if
1. u(·) ∈ PC([−τ, T], L2(Ω,H)),
2. for t ∈ [−τ, 0], u(t) = ϕ(t),
3. for t ∈ [0, T] , u(t) satis�es the following integral equation:

u(t) = Π(t)
[
ϕ(0) − q(0, ϕ)

]
+ q(t, ut)

+
t∫

0

Π(t − s)f (s, us)ds +
t∫

0

Π(t − s)
s∫

0

g(s, η, uη)dηds

+
∑

0<tk<t
Π(t − tk)Ik(u(t−k)) +

t∫
0

∫
θ

Π(t − s)h(s, us , v)Ñ(ds, dv)

+
t∫

0

Π(t − s)σ(s)dZHQ (s) P − a.s.

(8)

In order to attain the result, we impose the following assumptions:
(H3)(i) For all t ∈ [0, T], there exist constants 0 < K1 < 1 such that, for ψj ∈ PC, j = 1, 2, theH-valued
function q : [0, +∞) × PC → H satis�es the condition

||q(t, ψ1) − q(t, ψ2)|| ≤ K1||ψ1 − ψ2||.

Also, K̃1 = sup
t∈[0,T]

||q(t, 0)||.

(ii) The function q is continuous in the quadratic mean sense. ∀φ ∈ PC,

lim
t→s

E||q(t, φ) − q(s, φ)||2 = 0.

(H4) There exists a constant K2 > 0 such that, for ψj ∈ PC, j = 1, 2, the mapping f : [0, +∞) × PC → H
satis�es the following Lipschitz condition for all t ∈ [0, T]:

||f (t, ψ1) − f (t, ψ2)|| ≤ K2||ψ1 − ψ2||.

Here K̃2 = sup
t∈[0,T]

||f (t, 0)||.

(H5) The mapping g : [0, +∞) × [0, +∞) × PC → H satis�es the following Lipschitz condition. For t ∈ [0, T] ,
there exists a constant K3 > 0 such that, for ψj ∈ PC, j = 1, 2,

∣∣∣∣∣∣∣∣
t∫

0

[
g(t, s, ψ1) − g(t, s, ψ2)

]
ds
∣∣∣∣∣∣∣∣ ≤ K3||ψ1 − ψ2||.

Here K̃3 = T sup
0≤s≤t≤T

||g(t, s, 0)||.
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(H6) The mapping h : [0, +∞) × θ × PC → H satis�es the following Lipschitz condition. For t ∈ [0, T], there
exists a constant K4 > 0 such that, for ψj ∈ PC, j = 1, 2,

∫
θ

||h(t, ψ1, v) − f (t, ψ2, v)||2λ(dv) ∨

∫
θ

||h(t, ψ1, v) − f (t, ψ2, v)||2λ(dv)

1/2

≤ K4||ψ1 − ψ2||.

∫
θ

||h(t, ψ1, v) − f (t, ψ2, v)||2λ(dv)

1/2

≤ K4||ψ1 − ψ2||.

(H7) The impulsive function Ik : H→ H is continuous. There exists constants dk > 0 (k = 1, 2, ...) satisfying
+∞∑
k=1

dk < ∞, such that

||Ik(ψ1) − Ik(ψ2)|| ≤ dk||ψ1 − ψ2||, ||Ik(0)|| = 0 for all ψ1 , ψ2 ∈ PC.

(H8) The function σ : [0, +∞)→ L0
Q(Y ,H) satis�es

t∫
0

||σ(s)||2L0
Q
ds < ∞, ∀ t ∈ [0, T].

We have the following two conditions for the complete orthonormal basis {an}n∈N in Y.

(C.1)
∞∑
n=1
||σQ

1
2 an||L2([0,T];H) < ∞,

(C.2)
∞∑
n=1
||σ(t)Q

1
2 an||H is uniformly convergent for all t ∈ [0, T].

We now establish the existence and uniqueness results for Eq.(1).

Theorem 3.1. Assume that hypotheses (H1)—(H7) are satis�ed for all ϕ ∈ PC, T > 0, and

K1 + 4M2

(1 − K1)

( +∞∑
i=1

di

)2

< 1. (9)

Then, the Eq.(1) has a unique mild solution on [−τ, T].

Proof. To begin, we introduce ΛT := PC([−τ, T], L2(Ω,H)) the Banach space of all continuous functions
from [−τ, T] into L2(Ω,H) equipped with the supremum norm ||ξ ||2ΛT = sups∈[−τ,T](E||ξ (s)||2). Now consider
the closed subset Λ̂T =

{
u ∈ ΛT : u(τ) = ϕ(τ) for τ ∈ [−τ, 0]

}
of ΛT endowed with the norm || · ||ΛT . The

problem (1) is transformed into a �xed point problem. We de�ne the operator Ψ : Λ̂T → Λ̂T by
(Ψu)(t) = ϕ(t), t ∈ [−τ, 0] and for t ∈ [0, T]

(Ψu)(t) = Π(t)
[
ϕ(0) − g(0, ϕ)

]
+ g(t, ut)

+
t∫

0

Π(t − s)f (s, us)ds +
t∫

0

Π(t − s)
s∫

0

h(s, η, uη)dηds

+
∑

0<tk<t
Π(t − tk)Ik(u(t−k)) +

t∫
0

Π(t − s)σ(s)dZHQ (s) P − a.s.
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Now, to prove the existence result of mild solution of Eq.(1), it is su�cient to show that Ψ has a �xed point.
To this end we subdivide the proof into two steps.
Step 1 : First, we show that the map t → (Ψx)(t) is continuous on the interval [0, T]. Let

∣∣∣̃l∣∣∣ be su�icently
small, for u ∈ Λ̂T and 0 < t < T. We get

E||(Ψu)(t + l̃) − (Ψu)(t)||2 ≤ 12E
∣∣∣∣∣∣∣∣(Π(t + l̃) − Π(t)

) [
ϕ(0) − q(0, ϕ)

] ∣∣∣∣∣∣∣∣2+12E||q(t + l̃, ut+l̃) − q(t, ut)||2

+ 12E
∣∣∣∣∣∣∣∣

t∫
0

(
Π(t + l̃ − s) − Π(t − s)

)
f (s, us)ds

∣∣∣∣∣∣∣∣2+12E
∣∣∣∣∣∣∣∣
t+l̃∫
t

Π(t + l̃ − s)f (s, us)ds
∣∣∣∣∣∣∣∣2

+ 12E
∣∣∣∣∣∣∣∣

t∫
0

(
Π(t + l̃ − s) − Π(t − s)

) s∫
0

g(s, η, uη)dηds
∣∣∣∣∣∣∣∣2

+ 12E
∣∣∣∣∣∣∣∣
t+l̃∫
t

Π(t + l̃ − s)
s∫

0

g(s, η, uη)dηds
∣∣∣∣∣∣∣∣2

+ 12E
∣∣∣∣∣∣∣∣

t∫
0

∫
θ

(
Π(t + l̃ − s) − Π(t − s)

)
h(s, us , v)Ñ(ds, du)

∣∣∣∣∣∣∣∣2

+ 10E
∣∣∣∣∣∣∣∣
t+l̃∫
t

∫
θ

Π(t + l̃ − s)h(s, us , v)Ñ(ds, dv)
∣∣∣∣∣∣∣∣2

+ 12E
∣∣∣∣∣∣∣∣ ∑

0<tk<t

(
Π(t + l̃ − tk) − Π(t − tk)

)
Ik(u(t−k))

∣∣∣∣∣∣∣∣2

+ 12E
∣∣∣∣∣∣∣∣ ∑
t<tk<t+l̃

Π(t + l̃ − tk)Ik(u(t−k))
∣∣∣∣∣∣∣∣2

+ 12E
∣∣∣∣∣∣∣∣

t∫
0

Π(t + l̃ − s) − Π(t − s)σ(s)dZHQ (s)
∣∣∣∣∣∣∣∣+12E

∣∣∣∣∣∣∣∣
t+l̃∫
t

Π(t + l̃ − s)σ(s)dZHQ (s)
∣∣∣∣∣∣∣∣2

≤ 12
12∑
j=1

Pj .

By De�nition 2.3-(ii) , we have
lim
l̃→0

P1 = 0.

By using (ii) of (H3) we obtain that
lim
l̃→0

P2 = 0.

By using Hölder inequality we have:

P3 ≤ tE
t∫

0

∣∣∣∣∣∣∣∣(Π(t + l̃ − s) − Π(t − s)
)
f (s, us)

∣∣∣∣∣∣∣∣2ds.
By De�nition 2.3-(ii), we have

lim
l̃→0

(
(
Π(t + l̃ − s) − Π(t − s)

)
f (s, us)) = 0

and by combining the assumption (H4) and De�nition 2.3-(ii), we obtain∣∣∣∣∣∣∣∣(Π(t + l̃ − s) − Π(t − s)
)
f (s, us)

∣∣∣∣∣∣∣∣2≤ 2M2(e2(t+l̃)β + e2tβ)(K2||ut||2 + K̃2),
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The Lebesgue dominated theorem, implies that

lim
l̃→0

P3 = 0.

Using Hölder inequality, we have

P4 ≤ E

 t+l̃∫
t

∣∣∣∣∣∣∣∣Π(t + l̃ − s)f (s, us)
∣∣∣∣∣∣∣∣ds


2

≤
t+l̃∫
t

||Π(t + l̃ − s)||2dsE
t+l̃∫
t

||f (s, us)||2ds

≤ l̃M̂2
t+l̃∫
t

E||f (s, us)||2ds.

Thus, we have
lim
l̃→0

P4 = 0.

By using similar arguments to P2 and combining assumption (H5) we obtain

lim
l̃→0

P5 = 0.

Also, with the same argument to P3 and using assumption (H5) we obtain that

lim
l̃→0

P6 = 0.

Similarly, with the same argument to P3 and using assumption (H5) we obtain that

lim
l̃→0

P11 = 0, lim
l̃→0

P12 = 0.

For P7, application of Lemma 2.1 gives

P7 ≤ 2cH(2H − 1)t2H−1
t∫

0

||
(
Π(t + l̃ − s) − Π(t − s)

)
σ(s)||2L0

Q
ds.

By De�nition 2.3-(ii) we have (
Π(t + l̃ − s) − Π(t − s)

)
σ(s)→ 0, as l̃ → 0

and by De�nition 2.3-(i) we have the inequality :∣∣∣∣∣∣∣∣Π(t + l̃ − s) − Π(t − s)σ(s)
∣∣∣∣∣∣∣∣2
L0
Q

≤ 2M2(e2(t+l̃)β + e2tβ)||σ(s)||2L0
Q
,

and by the Lebesgue dominated convergence theorem, we get

lim
l̃→0

P7 = 0.

By Lemma 2.1 we have

P8 ≤ 2cH(2H − 1)̃l2H−1
t+l̃∫
t

||Π(t − s)σ(s)||2L0
Q
ds,
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since s ∈ [0, T], we have

P8 ≤ 2cH(2H − 1)̃l2H−1M2
t+l̃∫
t

||σ(s)||2L0
Q
ds,

and regarding to (H7), we get
lim
l̃→0

P8 = 0.

By using De�nition 2.3-(i) we have∣∣∣∣∣∣∣∣(Π(t + l̃ − tk) − Π(t − tk)
)
Ik(u(t−k))

∣∣∣∣∣∣∣∣2≤ 2M2(e2(t+l̃)β + e2tβ)dk||u(t−k)||2.

By combining assumption (H6) and De�nition 2.3-(i), we have

lim
l̃→0

P9 = 0.

By using assumption (H6) and De�nition 2.3-(i), we get

lim
l̃→0

P10 = 0.

Therefore,we can conclude
lim
l̃→0

E||(Ψx)(t + τ) − (Ψx)(t)||2 = 0.

Hence, the above arguments imply that function t → (Ψx)(t) is continuous on the interval [0, T].
Step 2: In this part of the proof, we will verify that Ψ is contraction mapping in Λ̂T1 with some T1 ≤ T to be
speci�ed later. Let u, v ∈ Λ̂T1 and t ∈ [0, T]. By virtue of elementary inequality we obtain

||(Ψu)(t) − (Ψv)(t)||2 ≤ 1
K1
||q(t, ut) − g(t, vt)||2 + 4

1−K1


∣∣∣∣∣∣∣∣

t∫
0

Π(t − s)
[
f (s, us) − f (s, vs)

]
ds
∣∣∣∣∣∣∣∣2

+
∣∣∣∣∣∣∣∣

t∫
0

Π(t − s)

 s∫
0

g(s, η, uη)dη −
s∫

0

g(s, η, vη)dη

 ds∣∣∣∣∣∣∣∣2

+
∣∣∣∣∣∣∣∣

t∫
0

∫
θ

Π(t − s)
[
h(s, us , v) − h(s, vs , v)Ñ(ds, dv)

]
ds
∣∣∣∣∣∣∣∣2

+
∣∣∣∣∣∣∣∣ ∑

0<tk<t
Π(t − tk)

[
Ik(x(t−k)) − Ik(y(t−k))

] ∣∣∣∣∣∣∣∣2
 .

By using assumptions (H3)-(H6), De�ntion 2.3 together with Hölder’s inequality, we get

E||(Ψu)(t) − (Ψv)(t)||2 ≤ K1E||ut − vt||2 + 4M2K2
2 t

1−k1

t∫
0

E||us − vs||2ds + 4M2K2
3 t

1 − K1

t∫
0

E||us − vs||2ds

+ 4M2K2
4

1−k

t∫
0

E||us − vs||2ds + 4M2

1 − k1

( ∞∑
i=1

dj

)2

E||u(t−k) − v(t−k)||2.

Hence, we have
sup

s∈[−τ,t]
E||(Ψu)(s) − (Ψv)(s)||2 ≤ θ(t) sup

s∈[−τ,t]
E||u(s) − v(s)||2,

where

θ(t) = K1 + 4M2
[
K2

2 t + K2
3 t + K2

4
]
t

1 − K1
+ 4M2

(1 − K1)

( +∞∑
i=1

di

)2

.
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By inequality (9), we have

θ(0) = K1 + 4M2

(1 − K1)

( +∞∑
k=1

di

)2

< 1.

Then there exists 0 < T1 ≤ T such that 0 < θ(T1) < 1 and the operator Ψ is a contraction on Λ̂T1 and hence it
has a unique �xed point on [−τ, T1], which is a mild solution of Eq.(1) on the interval [−τ, T1]. By repeating
a similar process the solution can be extended to the entire interval [−τ, T].

Remark 3.1. Notice that we can extend the solution for t ≥ T. Indeed, if we assume that the constants
K1, K2, K3, K4 which appear in assumptions (H3)-(H6) are independent of T > 0, then the mild solution is
de�ned for all t ∈ [−r, T], for each T > 0. This will play a crucial role in our analysis of stability. Therefore, in
the next section we will assume that the solutions are de�ned globally in time (for instance, under the previous
assumptions).

3.2 Exponential stability

In this subsection, it is established the exponential stability in the mean square moment of the mild
solution for Eq.(1), we need to state the following additional assumptions.

(H9)The corresponding resolvent operator (Π(t))t≥ of Eq. (7) veri�es the following : There exist γ > 0 and M > 0
such that ||Π(t)|| ≤ Me−γt, for all t ≥ 0.

(H10)There exist nonnegative real numbers Ri ≥ 0 and continuous functions
ξi : [0, +∞)→ R+, ξi(t) ≤ αie−γt , i = 1, 2, 3, 4, αi > 0 such that for all t ≥ 0 and ψi ∈ PC

||q(t, ψ1)||2 ≤ R1||ψ1||2 + ξ1(t),
||f (t, ψ2)||2 ≤ R2||ψ2||2 + ξ2(t),∣∣∣∣∣∣∣∣

t∫
0

h(t, s, ψ3)ds
∣∣∣∣∣∣∣∣2 ≤ R3||ψ3||2 + ξ3(t),

∫
θ

∥∥h(t, ψ4, v)
∥∥2 λ(dv) ∨

∫
θ

∥∥h(t, ψ4, v)
∥∥2 λ(dv)

1/2

≤ R4||ψ4||2 + ξ4(t).

(H11)The function σ : [0, +∞)→ L0
Q(Y ,H) satis�es the following condition in addition to assumptions (C.1) and

(C.2):
+∞∫
0

eγs||σ(s)||2L0
Q
ds < ∞.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satis�ed and (H9)–(H11) are ful�lled. Then the
mild solution of Eq.(1) is exponentially stable in mean square moment provided

5{[M2(R2 + R3 + R4)/γ2] + [M2(
∑+∞

k=1 dk)2]}
(1 − k)2 < 1, (10)

where k :=
√
R1.

Proof. From (10), it is possible to �nd a suitable number l̃ > 0 small enough such that

k + 5M2(R2 + R3 + R4)
γ(γ − l̃)(1 − k)

+
5M2(

∑+∞
k=1 dk)2

(1 − k) < 1.
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Let assume that µ = γ − l̃ and u(t) be a mild solution of Eq.(1). Then, from (8) we have

E||u(t)||2 ≤ 1
kE||q(t, ut)||2 + 6

1−kE
{
||Π(t)[ϕ(0) − q(0, ϕ)]||2

+

∣∣∣∣∣
∣∣∣∣∣

t∫
0

Π(t − s)f (s, us)ds

∣∣∣∣∣
∣∣∣∣∣

2

+

∣∣∣∣∣
∣∣∣∣∣

t∫
0

Π(t − s)σ(s)dZHQ (s)

∣∣∣∣∣
∣∣∣∣∣

2

+

∣∣∣∣∣
∣∣∣∣∣

t∫
0

Π(t − s)
s∫

0

g(s, η, uη)dηds

∣∣∣∣∣
∣∣∣∣∣

2

+

∥∥∥∥∥∥
t∫

0

∫
θ

Π(t − s)h(s, us , v)Ñ(ds, dv)

∥∥∥∥∥∥
2

+

∣∣∣∣∣
∣∣∣∣∣ ∑

0<tk<t
Π(t − tk)Ik(u(t−k))

∣∣∣∣∣
∣∣∣∣∣

2


≤
7∑
j=1

Jj(t).

By assumption (H10) we get
J1(t) = 1

kE||q(t, ut)||2

≤ 1
k {R1E||ut||2 + ξ1(t)}

≤ kE||ut||2 + λ1e−γt ,

(11)

where λ1 = α1
k .

According to (H9) and (H10) we obtain

J2 ≤ 10
1 − kE||Π(t)ϕ(0)||2 + 10

1 − kE||Π(t)q(0, ϕ)||2

≤ 10M2

1 − k e
−2γtE||ϕ(0)||2 + 10M2

1 − k e
−2γt{R1E||ϕ||2 + ξ1(t)}

≤ λ2e−µt ,

(12)

where λ2 = 10M2

1 − k [E||ϕ(0)||2 + {R1E||ϕ||2 + α1}].
Employing (H9) , (H10) and Hölder’s inequality, we get

J3(t) = 5
1 − kE||

t∫
0

Π(t − s)f (s, us)ds||2

≤ 5
1 − kE

 t∫
0

Me−γ(t−s)||f (s, us)||ds

2

≤ 5M2R2
γ(1 − k)

t∫
0

e−γ(t−s)E||us||2ds + λ3e−µt

(13)

where λ3 = 5M2R3
γ(1 − k)

α3
γ − µ .
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Also with the same arguments, we have

J4(t) ≤ 5
1−kE

 t∫
0

Ne−γ(t−s)

∣∣∣∣∣
∣∣∣∣∣

t∫
0

g(s, η, xη)dη

∣∣∣∣∣
∣∣∣∣∣ds
2

≤ 5M2R3
γ(1−k)

t∫
0

e−γ(t−s)E||us||2ds + λ4e−µt ,

(14)

where λ4 = 5M2R4
γ(1 − k)

α4
γ − µ .

By Lemma 2.1 and (H11) we have

J5 ≤ 5
1 − kM

2c(H)t2H−1
t∫

0

e−2γ(t−s)||σ(s)||2L0
Q
ds

≤ e−µt 5M2

1 − k c(H)t2H−1e−l̃t
t∫

0

eγs||σ(s)||2L0
Q
ds.

According to assumption (H11), there exist a constant γ5 > 0 such that, for all t ≥ 0,

5M2

1 − k c(H)t2H−1e−l̃t
t∫

0

eγs||σ(s)||2L0
Q
ds ≤ λ5. (15)

Thus
J5(t) ≤ λ5e−µt .

and

J6(t) ≤ 6
1 − kE

∥∥∥∥∥∥
t∫

0

∫
θ

h(s, us , v)Ñ(ds, dv)

∥∥∥∥∥∥
2

≤ 6M2

γ(1 − k)R
4

t∫
0

e−γ(t−s)E ‖u‖2
s ds + λ6e−µt , (16)

where λ6 = 6M2

γ(1−k)
α5
γ−µ .

By using (H7) and (H9) we have

J7(t) ≤ 5M2

1 − k

( +∞∑
i=1

di

)2

e−2γ(t−tk)E||u(t−k)||2

≤ 5M2

1 − k

( +∞∑
i=1

di

)( +∞∑
i=1

di

)
e−γ(t−tk)E||u(t−k)||2.

(17)

The above inequalities (11)-(17) together with Lemma 2.2, imply that

E||u(t)||2 ≤ νe−µt for t ∈ [−τ, 0]

and

E||u(t)||2 ≤ νe−µt + k sup
−τ≤θ≤0

E||u(t + θ)||2 + κ̂
t∫

0

e−µ(t−s) sup
−τ≤θ≤0

E||u(t + θ)||2ds

+
+∞∑
i=1

ωke−µ(t−tk)E||u(t−k)||2, t ≥ 0
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where

κ̂ = 5M2(R2 + R3 + R4)
γ(1 − k) and ν = max

( 6∑
i=1

λj , sup
−τ≤θ≤0

E||ϕ(θ)||2
)
.

And we observe that k + k̂
M +

∑+∞
i=1 ωk < 1.

Thus, the mild solution of Eq.(1) is exponentially stable in mean square moment, since k + κ̂
µ +
∑+∞

k=1 ωk < 1
and by Lemma 2.2 we have the existence of two positive constants C and r such that E||u(t)||2 ≤ Ce−rt for any
t ≥ −τ, where θ > 0 is the unique solution to the equation k + k

µ−θ e
rτ +

∑+∞
k=1 ωk = 1 and

C = max{ν, ν(µ−r)
k̂erτ
} > 0.

This completes the proof of the theorem.

4 Illustration
This part consist to make an application of the theory studied above. Consider the impulsive neutral
stochastic partial integrodi�erential equations of the form

d[w(t, ξ ) − β1(t, w(t − r, ξ ))] =
[
∂2

∂ξ2 [w(t, ξ ) − β1(t, w(t − r, ξ ))]

+
t∫

0

b(t − s) ∂
2

∂ξ2 [w(s, ξ ) − β1(s, w(s − r, ξ ))]ds

+β2(t, w(t − r, ξ )) +
t∫

0

β3(t, s, w(s − r, ξ ))ds
]
dt

+
∫
θ

β4(t, x(t − s), z)Ñ(ds, dz), +σ(t)dZHQ (t), 0 ≤ ξ ≤ π, t ≠ tk , t ∈ [0, T],

w(t, 0) = w(t, π) = 0, 0 ≤ t ≤ T,

∆w(tk , ·)(ξ ) = β5
k2 w(t−k , ξ ), t = tk , k = 1, 2, · · · ,

w(t, ξ ) = φ(t, ξ ) ∈ PC([−τ, 0], L2[0, π]), −τ ≤ t ≤ 0,

(18)

where ZHQ is Rosenblatt process de�ne on probability space (Ω,F, P) , β1, β2 : R+ ×R 7→ R,
β3, β4 : R+ ×R+ ×R 7→ R, b : R+ 7→ R are continuous functions, β5 ≥ 0 constant and
σ : [0,∞) 7→ L0

Q
(
L2([0, π]), L2([0, π])

)
.

LetH = Y = L2[0, π] with the norm ‖ · ‖ and en(x) =
√

2
π sin nx, n = 1, 2, · · · . Then (en)n∈N is a complete

orthogonal basis in Y. In order to de�ne the operator Q : Y → Y, we chose a sequence (σn)n≥1 ⊂ R+ and set
Qen = σnen , and assume that

∑∞
n=1
√σn < ∞. De�ne the process ZH by

ZH(t) =
∞∑
n=1

√
σnzHn en ,

where H ∈ ( 1
2 , 1) and

{
zHn
}
n∈N

is a sequence of two-side one-dimensional Rosenblatt process mutually
independent.
De�ne the operator A : D(A) ⊂ H→ H by A = ∂2

∂τ2 with domain D(A) = H1
0(0, π) ∩ H2(0, π).

It is well-known that A is the in�nitesimal generator of a strong continuous semigroup {T(t)}t≥0 onH,
which is given by

T(t)x =
∞∑
n=1

e−n
2 t〈x, en〉en and Ax = −

+∞∑
n=1

n2〈x, en〉en , x ∈ D(A).

We suppose that:
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(i) There exist a positive constant l1, 0 < πl21 < 1 such that∣∣β1(t, y1) − β1(t, y2)
∣∣ ≤ l1|y1 − y2|, t ≥ 0, y1, y2 ∈ R.

(ii) There exist a positive constant, l2 > 0 such that∣∣β2(t, y1) − β2(t, y2)
∣∣ ≤ l2|y1 − y2|, t ≥ 0, y1, y2 ∈ R.

(iii) There exist a positive constant, l3 > 0 such that

∣∣∣ t∫
0

[
β3(t, y1) − β3(t, y2)

]
ds
∣∣∣ ≤ l3|y1 − y2|, t ≥ 0, y1, y2 ∈ R.

(iv) There exist a positive constant, l4 > 0 such that∣∣∣ ∫
θ

[
β4(t, y1, v) − β4(t, y2, v)

]
Ñ(ds, dv)

∣∣∣ ≤ l4|y1 − y2|, t ≥ 0, y1, y2 ∈ R.

(v) There exist nonegative real numbers Q1, Q2, Q3, Q4 > 0 and functions ξ1, ξ2, ξ3, ξ4 : [0,∞) 7→ R+ with
ξi(t) ≤ Pie−λt (i = 1, 2, 3, 4), Pi > 0, such that∣∣β1(t, y)

∣∣2 ≤ Q1|y|2 + ξ1(t),∣∣β2(t, y)
∣∣2 ≤ Q2|y|2 + ξ2(t),∣∣∣ t∫

0

β3(t, s, y)ds
∣∣∣2 ≤ Q3|y|2 + ξ3(t),∣∣∣ ∫

θ

β4(t, v, y)Ñ(ds, dv)
∣∣∣2 ≤ Q4|y|2 + ξ4(t).

(v) The function σ : [0,∞) 7→ L0
Q
(
L2([0, π]), L2([0, π])

)
satis�es

t∫
0

‖σ(s)‖2
L0
Q
ds < ∞, t ∈ [0, T] and

∞∫
0

eλs‖σ(s)‖2
L0
Q
ds < ∞.

Let Υ : D(A) ⊂ H→ H the operator de�ne by Υ(t)(z) = b(t)Az for t ≥ 0, z ∈ D(A). For ξ ∈ [0, π], we de�ne
the operators q, f : [0,∞) ×H 7→ H, g : [0,∞) × [0,∞) ×H 7→ H, h : [0,∞) × θ ×H 7→ H and Ik : H 7→ H by

G(t, ϕ)(ξ ) = β1(t, ϕ(ξ )),
F(t, ϕ)(ξ ) = β2(t, ϕ(ξ )),
t∫

0

H̃(t, s, ϕ)(ξ )ds =
t∫

0

β3(t, s, ϕ(ξ ))ds,

∫
θ

h(t, ϕ)(ξ ) = β4(t, ϕ(ξ )),

Ik(ϕ)(ξ ) = β5
k2 ϕ(ξ ) (k = 1, 2, · · · ).

If we put {
u(t)(ξ ) = w(t, ξ ), for t ≥ 0, and ξ ∈ [0, π],
φ(θ)(ξ ) = u0(θ, ξ ), for − τ ≤ θ ≤ 0, and ξ ∈ [0, π],
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then, Eq.(18) takes the following abstract form

d
[
u(t) − q(t, ut)

]
=

[
A
(
u(t) − q(t, ut)

)
+

t∫
0

Υ(t − s)
[
u(s) − q(s, us)

]
ds + f (t, ut)

+
t∫

0

g(t, s, us)ds
]
dt +

∫
θ

h(t, ut , v)Ñ(dt, dv) + σ(t)dZHQ (t), t ∈ [0, T], t ≠ tk ,

∆u(t) = Ik(u(t−k)), t = tk , k = 1, 2, · · · ,
u0(t) = ϕ(t) ∈ PC

(
[−τ, 0],H

)
, −τ ≤ t ≤ 0,

(19)
Moreover , if b is bounded and C1 function such that b′ is bounded and uniformly continuous, then (H1)
and (H2) are satis�ed, and hence, by Theorem 2.3, Eq.(7) has a resolvent operator

(
Π(t)

)
t≥0 onH. Using

Lemma 5.2 [9], let µ > δ > 1 and b(t) < exp(−βt), for all t ≥ 0. Then the above resolvent operator decays
exponentially to zero. Speci�cally ‖Π(t)‖ ≤ exp(−at) where a = 1 − 1/δ.
For (t, s, ϕi) ∈ R+ ×R+ ×H, j = 1, 2, respectively by assumptions (i), (ii), (iii) and (iv), we get

‖q(t, ϕ1) − q(t, ϕ2)‖ ≤ l1‖ϕ1 − ϕ2‖,
‖f (t, ϕ1) − f (t, ϕ2)‖ ≤ l2‖ϕ1 − ϕ2‖,∥∥∥ t∫

0

[
g(t, s, ϕ1) − g(t, s, ϕ2)

]
ds
∥∥∥ ≤ l3‖ϕ1 − ϕ2‖,

∥∥∥∫
Z

[
h(t, ϕ1, v) − h(t, ϕ2, v)Ñ(dt, dv)

] ∥∥∥ ≤ l4‖ϕ1 − ϕ2‖,

‖q(t, ϕ1)‖2 ≤ Q1‖ϕ1‖2 + ξ1(t),
‖f (t, ϕ1)‖2 ≤ Q2‖ϕ1‖2 + ξ2(t),∥∥∥ t∫

0

g(t, s, ϕ1)ds
∥∥∥2
≤ Q3‖ϕ1‖2 + ξ3(t),

∥∥∥∫
θ

h(t, ϕ1, v)ds
∥∥∥2
≤ Q4‖ϕ1‖2 + ξ4(t).

We have also that ∥∥∥Ik(ϕ1) − Ik(ϕ2)
∥∥∥ ≤ dk‖ϕ1 − ϕ2‖,

where dk = β5
k2 , k=1,2,. . .and

∞∑
k=1

dk =
∞∑
k=1

β5
k2 < ∞.

Thus, all assumptions of Theorem 3.1 are ful�lled. Therefore, the existence of a mild solution of Eq.(18)
follows. In addition, by Theorem 3.2, we easily see that the mild solution of Eq.(18) is exponentially stable
in the 2nd moment.

5 Conclusion
In this article, we showed existence and unicity of mild solution to Eq.(1) by using Banach �xed point
theorem. Further, we investigated exponential stability of mild solutions. The last part of this paper is
devoted to an example to illustrate our results.
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