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Abstract
The objective of this paper is to investigate the approximate controllability of a
semilinear impulsive stochastic system with nonlocal conditions and Poisson jumps in
a Hilbert space. Nonlocal initial condition is a generalization of the classical initial
condition and is motivated by physical phenomena. The results are obtained by using
Sadovskii’s fixed point theorem. Finally, an example is provided to illustrate the
effectiveness of the obtained result.
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1 Introduction
The concept of controllability plays a major role in both finite and infinite dimensional
spaces for systems represented by ordinary differential equations and partial differential
equations. One of the basic qualitative behaviors of a dynamical system is the controlla-
bility. The problem of controllability is to show the existence of control function, which
steers the solution of the system from its initial state to the final state, where the initial and
final states may vary over the entire space. Conceived by Kalman, the controllability con-
cept has been studied extensively in the fields of finite and infinite-dimensional systems.
If a system cannot be controlled completely, then different types of controllability, such
as approximate, null, local null, and local approximate null controllability, can be defined.
For more details, the reader may refer to [1–9] and the references therein.

Meanwhile, the theory of impulsive differential equations describes processes which ex-
perience a sudden change of their state at certain moments. Dynamics of many evolution-
ary processes with such a characteristic arise naturally and are often, for example, popu-
lation dynamics, control theory, physics, biology, medicine, etc. These perturbations can
be well-approximated as instantaneous change of state or impulses. These processes are
modeled by impulsive differential equations. Few works have been reported in the study
of stochastic integrodifferential equations with impulsive effects, refer to [2, 10–13].
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The Poisson jumps have become very popular, they are extensively used to model many
of the phenomena arising in areas such as economics, finance, physics, biology, medicine,
and other sciences. Moreover, many practical systems (such as sudden price variations
[jumps] due to market crashes, earthquakes, epidemics, and so on) may undergo some
jump-type stochastic perturbations. The sample paths of such systems are not continuous.
Therefore, it is more appropriate to consider stochastic processes with jumps to describe
such models. In general, these jump models are derived from Poisson random measure.
The sample paths of such systems are right-continuous and have left limits. Recently, an
increasing interest in the study of stochastic differential equations with jumps has been ob-
served [14–16]. Luo and Liu [17] established the existence and uniqueness theory of mild
solutions to stochastic partial functional differential equations with Markovian switching
and Poisson jumps. It should be noted that most of the literature in this direction was
mainly concerned with results on controllability of stochastic equations without jumps.
However, up to now controllability problems for nonlinear stochastic dynamical systems
with jumps have not been considered in the literature. In order to fill this gap, this paper
considers the approximate controllability of semilinear stochastic control systems with
nonlocal conditions using Sadovskii’s fixed point theorem.

The goal of the present research work is to focus on studying the approximate control-
lability of a semilinear impulsive stochastic system with nonlocal conditions and Poisson
jumps of the form

dz(t) =
[
Az(t) + Bu(t) + f

(
t, z(t)

)]
dt + σ

(
t, z(t)

)
dw(t)

+
∫

U
h(t, zt , u)Ñ(dt, du), t ∈ J , t �= tk ,

�z(tk) = Ik
(
z(tk)

)
, t = tk , k = 1, 2, . . . , m,

z(0) = z0 + p(z),

(1)

where A is the infinitesimal generator of a semigroup of bounded linear operator {T (t)},
t ∈ [0, T] on H. B is a bounded linear operator from the Hilbert space U into H. The control
u ∈ L 2

� ([0, T], U); f : [0, T] × H → H; σ : [0, T] × H → L 0
2 ; h : [0, T] × H ×U → H and I :

H → H are suitable functions, and p is a continuous function from C ([0, T], H) → H. Also,
the fixed moments of time tk satisfy 0 = t0 < t1 < · · · < tm < tm+1 = b, z(t+

k ) and z(t–
k ) denotes

the right and left limits of z(t) at t = tk , respectively; �z(tk) = z(t+
t ) – z(t–

k ) represents the
jump in the state z at time tk with Ik determining the size of the jump.

2 Preliminaries
Let (Ω ,�,P) be a complete probability space with a normal filtration �t , t ∈ [0, T]. Let H,
U, and E be the separable Hilbert spaces. Let w be a Q-Wiener process on (Ω ,�T ,P) with
the covariance operator Q such that tr Q < ∞. Let us suppose that there exists a complete
orthonormal system en in E, a bounded sequence of real numbers λn, where λn > 0 such
that Qen = λnen, n = 1, 2, 3, . . . , and a sequence βn of independent Brownian motions such
that

w(t) =
∞∑

n=1

√
λnβn(t)en, t ∈ J ,
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and �t = �W
t , where �W

t is the σ -algebra generated by w. Let L 0
2 = L2(Q1/2E; H) be the

space which consists of all Hilbert–Schmidt operators from Q1/2E to H with the norm
‖ζ‖ = tr[ζQζ ∗]. Let J1 = [–h, T] and the Banach space PC (J1,L2(Ω ,�t ,H)) of all piecewise
continuous functions z(t) from J1 = [–h, T] into L2(Ω ,�t ,H) be defined, which satisfies

sup
t∈J1

E
∥∥z(t)

∥∥2 < ∞.

Let H2 be a closed subspace of PC (J1,L2(Ω ,�t , H)) that consists of all measurable and
�t-adapted processes z(·) : t ∈ [–h, T] with the norm topology by

‖ϕ‖H2 =
(

sup
t∈[0,b]

E
∥∥ϕ(t)

∥∥2
H

)1/2
.

Suppose that {P(t), t ≥ 0} is a σ -finite stationary �t-adapted Poisson point process taking
values in measurable space (U,B(U)). The random measure Np defined by Np((0, t] ×
Λ) :=

∑
s∈(0,t] 1Λ(P(s)) for Λ ∈ B(U) is called the Poisson random measure induced by

P(·), thus, we can define the measure Ñ by Ñ(dt, du) = NP(dt, du)–v(du) dt, where v is the
characteristic measure of NP , which is called the compensated Poisson random measure.

Definition 2.1 ([2]) System (1) is approximately controllable on [0, T] if

R(T) = L2(Ω ,�T ,H),

where R(T) = {z(T ; u) : u ∈ L 2
� ([0, T],U)}.

Definition 2.2 A stochastic process z ∈ H2 is a mild solution of (1) if, for each u ∈
L 2

� ([0, T],U), it satisfies the integral equation

z(t) = T (t)
[
y0 + p(z)

]
+

∫ t

0
T (t – s)

[
Bu(s) + f

(
s, z(s)

)]
ds

+
∫ t

0
T (t – s)σ

(
s, z(s)

)
dw(s) +

∫ t

0

∫

U
T (t – s)h

(
s, z(s), u

)
Ñ(ds, du)

+
∑

0<tk<t

T (t – tk)Ik
(
z(tk)

)
.

The following are the main assumptions in this paper:
(H1) T(t), t ≥ 0 is the strongly continuous semigroup of the bounded linear operator

generated by A such that max0≤t≤T ‖T(t)‖ ≤ M.
(H2) The functions f : [0, T] × H→ H and σ : [0, T] × H→ L 0

2 satisfy that there exist
C1 > 0, C2 > 0, N1 > 0, and N2 > 0 such that

∥∥f (t, z1) – f (t, z2)
∥∥2 ≤ C1‖z1 – z2‖2,

∥∥f (t, z1)
∥∥2 ≤ C2

(
1 + ‖z1‖2),

∥∥σ (t, z1) – σ (t, z2)
∥∥2 ≤ N1‖z1 – z2‖2,

∥∥σ (t, z1)
∥∥2 ≤ N2

(
1 + ‖z1‖2).

(H3) The function h : [0, T] × H× U → H satisfies that there exist K1 > 0, K2 > 0, L1 > 0,
and L2 > 0 such that

∫

U

∥
∥h(t, z1, u) – h(t, z2, u)

∥
∥2
X

v(du) ≤ K1‖z1 – z2‖2
X

,
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∫

U

∥∥h(t, z1, u)
∥∥2
X

v(du) ≤ K2
(
1 + ‖z1‖2

X

)
,

∫

U

∥
∥h(t, z1, u) – h(t, z2, u)

∥
∥4
X

v(du) ≤ L1‖z1 – z2‖4,
∫

U

∥∥h(t, z1, u)
∥∥4v(du) ≤ L2

(
1 + ‖z1‖4).

(H4) There exist some positive constants Mp such that

∥∥p(z1) – p(z2)
∥∥2 ≤ Mp‖z1 – z2‖2,

∥∥p(z1)
∥∥2 ≤ Mp

(
1 + ‖z1‖2).

(H5) Ik : H → H satisfies

∥
∥Ik(z1) – Ik(z2)

∥
∥2 ≤ qk‖z1 – z2‖2,

∥
∥Ik(z1)

∥
∥2 ≤ qk

(
1 + ‖z1‖2).

(H6) For each 0 ≤ t < T , the operator ζ (ζ I + Γ T
t )–1 → 0 is the strong operator topology

as ζ → 0+, where

Γ T
t =

∫ T

t
T (T – s)BB∗T ∗(T – s) ds

is the controllability Gramian. Observe that the linear deterministic system
corresponding to (1)

dz(t) =
[
Az(t) + Bu(t)

]
dt, t ∈ [0, T],

z(0) = z0,
(2)

is approximately controllable on [t, T] iff the operator ζ (ζ I + Γ T
t )–1 → 0 strongly

as ζ → 0+.

3 Main result
Lemma 3.1 ([18]) For any zT ∈ L2(Ω ,�T ,H), there exists φ ∈ L �

2 ([0, T],L 0
2 ) such that

zT = EzT +
∫ T

0 φ(s) dw(s).
For any ζ > 0 and zT ∈ L2(Ω ,�T ,H), we define the control function

uζ (t, z1)

= B∗T ∗(T – t)
[
(
ζ I + Ψ T

0
)–1(EzT – T (T)

(
z0 + h(z1)

))
+

∫ t

0

(
ζ I + Ψ T

s
)–1

φ(s) dw(s)
]

– B∗T ∗(T – t)
∫ t

0

(
ζ I + Ψ T

s
)–1T (T – s)f

(
s, z1(s)

)
ds

– B∗T ∗(T – t)
∫ t

0

(
ζ I + Ψ T

s
)–1T (T – s)σ

(
s, z1(s)

)
dw(s)

– B∗T ∗(T – t)
∫ t

0

∫

U

(
ζ I + Ψ T

s
)–1T (T – s)h

(
s, z1(s), u

)
Ñ(ds, du)

– B∗T ∗(T – t)
(
ζ I + Ψ T

s
)–1

m∑

k=1

T (T – tk)Ik
(
z1(tk)

)
.
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Lemma 3.2 There exists Mu > 0 such that, for all z1, z2 ∈ H2, we have

E
∥
∥uζ (t, z1) – ua(t, z2)

∥
∥2 ≤ Mu

ζ 2 ‖z1 – z2‖2, (3)

E
∥
∥uζ (t, z1)

∥
∥2 ≤ Mu

ζ 2

(
1 + ‖z1‖2). (4)

Proof Let z1, z2 ∈ H2. By hypothesis and Holder’s inequality, we obtain

E
∥∥uζ (t, z1) – uζ (t, z2)

∥∥2

≤ 5E
∥∥B∗T ∗(T – t)

(
ζ I + Ψ T

0
)–1T (T)

[
p(z1) – p(z2)

]∥∥2

+ 5E
∥∥
∥∥B∗T ∗(T – t)

∫ t

0

(
ζ I + Ψ T

s
)–1T (T – s)

[
f
(
s, z1(s)

)
– f

(
s, z2(s)

)]
ds

∥∥
∥∥

2

+ 5E
∥∥
∥∥B∗T ∗(T – t)

∫ t

0

(
ζ I + Ψ T

s
)–1T (T – s)

[
σ
(
s, z1(s)

)
– σ

(
s, z2(s)

)]
dw(s)

∥∥
∥∥

2

+ 5E
∥
∥∥
∥B∗T ∗(T – t)

∫ t

0

∫

U

(
ζ I + Ψ T

s
)–1T (T – s)

[
h
(
s, z1(s), u

)
– h

(
s, z2(s), u

)]

× Ñ(ds, du)
∥
∥∥∥

2

+ 5E

∥∥
∥∥
∥

B∗T ∗(T – t)
(
ζ I + Ψ T

s
)–1

m∑

k=1

T (T – tk)
[
Ik

(
z1(tk)

)
– Ik

(
z2(tk)

)]
∥∥
∥∥
∥

2

≤ 5
ζ 2 M2

BM4Mg‖z1 – z2‖2
H +

5
ζ 2 M2

BM4b
∫ t

0
C1E

∥∥z1(s) – z2(s)
∥∥2
H

ds

+
5
ζ 2 M2

BM4Lσ

∫ t

0
N1E

∥
∥z1(s) – z2(s)

∥
∥2
H

ds

≤ 5
ζ 2 M2

BM4Mg‖z1 – z2‖2
H +

5
ζ 2 M2

BM4b
∫ t

0
C1E

∥∥z1(s) – z2(s)
∥∥2
H

ds

+
5
ζ 2 M2

BM4Lσ

∫ t

0
N1E

∥
∥z1(s) – z2(s)

∥
∥2
H

ds

+
5
ζ 2 M2

BM4
∫ t

0

∫

U
E
∥∥h

(
s, z1(s), u

)
– h

(
s, z2(s), u

)∥∥2
H

v(du) ds

+
5
ζ 2 M2

BM4
(∫ t

0

∫

U
E
∥∥h

(
s, z1(s), u

)
– h

(
s, z2(s), u

)∥∥4v(du) ds
)1/2

+
5
ζ 2 M2

BM4K
∫ t

0
E‖z1 – z2‖2

H ds

≤ 5
ζ 2 M2

BM4[Mp + C1T2 + Lσ N1T + K1b +
√

L1
√

T + K
]‖z1 – z2‖2

H2

=
Mu

ζ 2 ‖z1 – z2‖2
H2 ,

where K = E
∑m

k=1 ‖qk‖2, Mu = 5M2
BM4[Mp + C1T2 + LGN1T + K1T +

√
L1

√
T + K]. When

uζ (t, z2) = 0, the second inequality can be proved in the same approach. �
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Theorem 3.1 Assume that (H1)–(H5) are satisfied. Then equations (1) have mild solution
on [0, T] with the result that

12M2Mp + 6M2
(

6M2
BT2Mu

ζ 2 + T2C2 + LGN2T + TK2 +
√

L2
√

T + K
)

< 1,

5M2M2
BT

Mu

ζ 2 + 5M2TC1 + 5M2LGN1T + 5M2K1T + 5M2
√

L1
√

T + 5M2KT < 1.
(5)

Proof Define the operator Θζ : H2 → H2, for ζ > 0, by

(Θζ z)(t) = T(t)
[
z0 + p(z)

]
+

∫ t

0
T (t – s)

[
Buζ (s, z) + f

(
s, z(s)

)]
ds

+
∫ t

0
T (t – s)σ

(
s, z(s)

)
dw(s) +

∫ t

0

∫

U
T (t – s)h

(
s, z(s), u

)
Ñ(ds, du)

+
∑

0<tk<t

T (t – tk)Ik
(
z(tk)

)
.

Step 1. For any z ∈ H2,Θa(z)(t) is continuous on [0, T].
By assumptions and Holder’s inequality, we have

E
∥∥(Θζ z)(t2) – (Θζ z)(t1)

∥∥2

≤ 11
[[

2
(
E
∥
∥(
T (t2) – T (t1)

)
z0

∥
∥2 + E

∥
∥(
T (t2) – T (t1)

)
p(z)

∥
∥2)]

+ t1

∫ t1

0
E
∥∥[
T (t2 – s) – T (t1 – s)

]
f
(
s, z(s)

)∥∥2 ds

+ M2(t2 – t1)
∫ t2

t1

E
∥
∥f

(
s, z(s)

)∥∥2 ds

+ Lσ

∫ t1

0
E
∥
∥[
T (t2 – s) – T (t1 – s)

]
σ
(
s, z(s)

)∥∥2 ds

+ M2Lσ

∫ t2

t1

E
∥∥σ

(
s, z(s)

)∥∥2 ds

+ t1

∫ t1

0
E
∥
∥[
T (t2 – s) – T (t1 – s)

]
Buζ (s, z)

∥
∥2 ds

+ ‖B‖2M2(t2 – t1)
∫ t2

t1

E
∥∥uζ (s, z)

∥∥2 ds

+
∫ t1

0

∫

U
E
∥∥[
T (t2 – s) – T (t1 – s)

]
h
(
s, z(s), u

)∥∥2v(du) ds

+
(∫ t1

0

∫

U

E
∥∥[
T (t2 – s) – T (t1 – s)

]
h
(
s, z(s), u

)∥∥4v(du) ds
)1/2

+
∫ t2

t1

∫

U
E
∥∥T (t2 – s)h

(
s, z(s), u

)∥∥2v(du) ds

+
(∫ t2

t1

∫

U
E
∥∥T (t2 – s)h

(
s, z(s), u

)∥∥4v(du) ds
)1/2
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+
∑

0<tk<t1

E
(∥∥T (t2 – tk) – T (t1 – tk)

∥∥∥∥Ik
(
z(tk)

)∥∥)2

+
∑

t1<tk<t2

E
(∥∥T (t2 – tk)

∥∥∥∥Ik
(
z(tk)

)∥∥)2
]

.

Thus utilizing LDC theorem, the RHS of the considered inequality tends to zero since
(t2 – t1) → 0. Accordingly, Θζ (z)(t) is continuous from the right in [0, T). A relative intent
demonstrates that Θζ (z)(t) is similarly continuous from the left in (0, T]. Consequently,
on [0, T], Θζ (z)(t) is continuous.

Step 2. Let Bn = {z ∈ H2 : E‖z(t)‖2
H ≤ n}, then the set Bn is obviously a bounded, closed,

and convex set in H2 for each integer n > 0.
From Holder’s inequality and (H1), we get

E
∥
∥∥
∥

∫ t

0
T (t – s)f

(
s, z(s)

)
ds

∥
∥∥
∥

2

H

≤ E
[∫ t

0

∥∥T (t – s)f
(
s, z(s)

)∥∥
H

ds
]2

≤ M2T
∫ t

0
C2

(
1 + E

∥
∥z(s)

∥
∥2
H

)
ds

≤ M2TC2

∫ t

0

(
1 + sup

s∈[0,T]
E
∥∥z(s)

∥∥2
H

)
ds

≤ M2T2C2
(
1 + ‖z‖2

H

)
.

From (H2), we get

E
∥∥T (t – s)σ

(
s, z(s)

)
dw(s)

∥∥ ≤ Lσ

∫ t

0
E
∥∥T (t – s)σ

(
s, z(s)

)∥∥2
L0

2
ds

≤ Lσ M2N2

∫ t

0

(
1 + sup

s∈[0,b]
E
∥
∥z(s)

∥
∥2
H

)
ds

≤ Lσ M2N2T
(
1 + ‖z‖2

H2

)
.

Next, from (H4) and (H5), we get

E
∥
∥∥
∥

∫ t

0

∫

U
T (t – s)h

(
s, z(s), u

)
Ñ(ds, du)

∥
∥∥
∥

2

≤ M2
(∫ t

0

∫

U
E
∥∥h

(
s, z(s), u

)∥∥2v(du) ds
)

+ M2
(∫ t

0

∫

U
E
∥
∥h

(
s, z(s), u

)∥∥4v(du) ds
)1/2

≤ M2TK2
(
1 + ‖z‖2

H

)
+ M2

√
L2

√
T

(
1 + ‖z‖2

H

)
.

Similarly, from assumption (H7), we get

E
∥
∥∥
∥

∑

0<tk <t

T (t – tk)Ik
(
z(tk)

)
∥
∥∥
∥

2

≤ M2K
(
1 + ‖z‖2

H

)
.

Now, we have to prove that there exists a number n > 0 such that Θζ (Bn) ⊆ Bn.
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If not, for each n > 0, there exists a function zn(·) ∈ Bn but Θζ zn does not belong to Bn,
that is, E‖Θζ zn(t)‖2

H > n for t ∈ J . Also, by Lemma 3.2 and hypotheses (H2), (H3), we get

n ≤ E
∥
∥Θζ zn(t)

∥
∥2
H

= 6E
∥
∥T (t)

[
z0 + p(z)

]∥∥2
H

+ 6E
∥∥
∥∥

∫ t

0
T (t – s)Buζ (s, z)

∥∥
∥∥

2

H

+ 6E
∥∥
∥∥

∫ t

0
T (t – s)f

(
s, z(s)

)
ds

∥∥
∥∥

2

H

+ 6E
∥∥
∥∥

∫ t

0
T (t – s)σ

(
s, z(s)

)
dw(s)

∥∥
∥∥

2

H

+ 6E
∥∥
∥∥

∫ t

0

∫

U
T (t – s)h

(
s, z(s), u

)
Ñ(ds, du)

∥∥
∥∥

2

H

+ 6E
∥∥
∥∥

∑

0<tk <t

T (t – tk)Ik
(
z(tk)

)
∥∥
∥∥

2

H

≤ 6M2[2E‖z0‖2 + 2E
∥
∥p(z)

∥
∥2] + 6M2M2

BT2Mu

ζ 2

(
1 + ‖z‖2

H

)

+ 6M2T2C2
(
1 + ‖z‖2

H

)
+ 6Lσ M2N2T

(
1 + ‖z‖2

H

)
+ 6M2TK2

(
1 + ‖z‖2

H

)

+ 6M2
√

L2
√

T
(
1 + ‖z‖2

H

)
+ 6M2K

(
1 + ‖z‖2

H

)

≤ 12M2E‖z0‖2 + 12M2Mp(1 + n) + 6M2M2
BT2Mu

ζ 2 (1 + n)

+ 6M2b2C2(1 + n) + 6LGM2N2T(1 + n) + 6M2TK2(1 + n)

+ 6M2
√

L2
√

b(1 + n) + 6M2K(1 + n)

≤
(

12M2E‖z0‖2 + 12M2Mp + 6M2M2
BT2Mu

a2 + 6M2T2C2

+ 6LGM2N2T + 6M2TK2 + 6M2
√

L2
√

TT + 6M2K
)

+
(

12M2Mp + 6M2M2
BT2Mu

a2 + 6M2T2C2

+ 6LGM2N2T + 6M2TK2 + 6M2
√

L2
√

b + 6M2K
)

n.

Now dividing each side by n and considering the limit as n → ∞, we get

12M2Mp + 6M2
(

6M2
BT2Mu

ζ 2 + T2C2 + Lσ N2T + TK2 +
√

L2
√

T + K
)

> 1.

This is a contradiction to condition (5). Thus, Θζ Bn ⊆ Bn for any n > 0.
Step 3. The operators Θζ1 and Θζ2 are defined as follows:

(Θζ1 z)(t) = T (t)
[
z0 + p(z)

]
,

(Θζ2 z)(t) =
∫ t

0
T (t – s)

[
Buζ (s, z) + f

(
s, z(s)

)]
ds +

∫ t

0
T (t – s)σ

(
s, z(s)

)
dw(s)

+
∫ t

0

∫

U
T (t – s)h

(
s, z(s), u

)
Ñ(ds, du) +

∑

0<tk<t

T (t – tk)Ik
(
z(tk)

)
, t ∈ [0, T].
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From (H3) it is clear that Θζ1 is completely continuous, then for z1, z2 ∈ Bn. Hence from
hypotheses (H2), (H3) and for any t ∈ [0, T], we get

E
∥
∥(Θζ2 z1)(t) – (Θζ2 z2)(t)

∥
∥2
H

≤ 5E
∥
∥∥
∥

∫ t

0
T (t – s)B

[
uζ (s, z1) – uζ (s, z2)

]
ds

∥
∥∥
∥

2

H

+ 5E
∥
∥∥
∥

∫ t

0
T (t – s)

[
f
(
s, z1(s)

)
– f

(
s, z2(s)

)]
ds

∥
∥∥
∥

2

H

+ 5E
∥
∥∥∥

∫ t

0
T (t – s)

[
σ
(
s, z1(s)

)
– σ

(
s, z2(s)

)]
dw(s)

∥
∥∥∥

2

H

+ 5E
∥∥
∥∥

∫ t

0
T (t – s)

∫

U

[
h
(
s, z1(s), u

)
– h

(
s, z2(s), u

)]
Ñ(ds, du)

∥∥
∥∥

2

H

+ 5E
∥∥
∥∥

∑

0<tk <t

T (t – tk)Ik
[(

z1(tk) – z2(tk)
)]

∥∥
∥∥

2

H

≤ 5M2M2
Bb
Mu

ζ 2 ‖z1 – z2‖2
H + 5M2TC1‖z1 – z2‖2

H + 5M2Lσ N1T‖z1 – z2‖2
H

+ 5M2K1T‖z1 – z2‖2
H + 5M2

√
L1

√
T‖z1 – z2‖2

H + 5M2KT‖z1 – z2‖2
H.

≤
(

5M2M2
BT

Mu

ζ 2 + 5M2TC1 + 5M2Lσ N1T

+ 5M2K1T + 5M2
√

L1
√

T + 5M2KT
)

‖z1 – z2‖2
H.

Therefore

E
∥∥(Θζ2 z1)(t) – (Θζ2 z2)(t)

∥∥2
H

≤ L0‖z1 – z2‖2
H,

where

L0 =
(

5M2M2
BT

Mu

a2 + 5M2TC1 + 5M2Lσ N1T + 5M2K1T + 5M2
√

L1
√

T + 5M2KT
)

< 1.

Thus Θζ2 is a contraction mapping.
Now we have a condensing mapping Θζ = Θζ1 + Θζ2 on Bn. Thus, by Sadovskii’s fixed

point theorem, the mild solution of (1) is the fixed point z(·) for Θζ on Bn. �

Theorem 3.2 Assume that (H1)–(H5) hold and if f , σ , and h are uniformly bounded, then
equation (1) is approximately controllable on [0, T].

Proof Let za be a fixed point of Θζ in H2. By using stochastic Fubini’s theorem, we can
clearly see that

zζ (T) = zT – ζ
(
ζ I + Γ T

0
)–1(EzT – T (T)

(
z0 + p(z)

))

+ ζ

∫ T

0

(
ζ I + Γ T

s
)–1T (b – s)f

(
s, za(s)

)
ds
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+ ζ

∫ T

0

(
ζ I + Γ T

s
)–1[T (T – s)σ

(
s, za(s)

)
– φ(s)

]
dw(s)

+ ζ

∫ T

0

∫

U

(
aI + Γ T

s
)–1[T (T – s)h

(
s, za(s), u

)
Ñ(ds, du)

]

+ ζ
(
ζ I + Γ T

s
)–1 ∑

0<tk <t

T (T – tk)Ik
(
za(tk)

)
.

From our assumptions, f , σ , and h are uniformly bounded, then there exists D > 0 such
that

∥∥f
(
s, za(s)

)∥∥2 +
∥∥σ

(
s, za(s)

)∥∥2 +
∥∥h

(
s, za(s), u

)∥∥2 ≤ D

in [0, T] × Ω . Now there exist subsequences, indicated by {f (s, za(s))}, {σ (s, za(s))}, and
{h(s, za(s), u)}, which converge weakly to f (s), σ (s) in H × L0

2 and h(s, u) in H × H × L0
2

respectively. Thus, the compactness of T (t) gives T (T – s)f (s, za(s)) → T (T – s)f (s),
T (T – s)σ (s, za(s)) → T (T – s)σ (s), T (T – s)h(s, za(s), u) → T (T – s)h(s, u) in [0, T] × Ω .
Then we have

E
∥∥zζ (T) – zT

∥∥2

≤ 9E
∥∥ζ

(
ζ I + Γ T

0
)–1[EzT – T (T)

[
z0 + p(z)

]]∥∥2

+ 9E
(∫ T

0

∥∥ζ
(
ζ I + Γ T

0
)–1

φ(s)
∥∥2

L 0
2

ds
)

+ 9E
(∫ T

0

∥∥ζ
(
ζ I + Γ T

s
)–1∥∥∥∥T (T – s)

[
f
(
s, za(s)

)
– f (s)

]∥∥ds
)2

+ 9E
(∫ T

0

∥∥ζ
(
ζ I + Γ T

s
)–1T (T – s)f (s)

∥∥ds
)2

+ 9E
(∫ T

0

∥
∥ζ

(
ζ I + Γ T

s
)–1∥∥

∥
∥T (T – s)

[
σ
(
s, za(s)

)
– σ (s)

]∥∥2
L 0

2
ds

)

+ 9E
(∫ T

0

∥∥ζ
(
ζ I + Γ T

s
)–1T (T – s)σ (s)

∥∥2
L 0

2
ds

)

+ 9E
(∫ T

0

∫

U

∥∥ζ
(
ζ I + Γ T

s
)–1∥∥∥∥T (T – s)

[
h
(
s, za(s)

)
– h(s, u)

]
Ñ(ds, du)

∥∥ds
)2

+ 9E
(∫ T

0

∥
∥ζ

(
ζ I + Γ T

s
)–1T (T – s)h(s, u)Ñ(ds, du)

∥
∥
)2

+ 9E
(∥∥

∥∥ζ
(
ζ I + Γ T

0
)–1 ∑

0<tk <t

T (t – tk)Ik
(
za(tk)

)
∥∥
∥∥

)2

.

By (H5), for all 0 ≤ s ≤ T , the operator ζ (ζ I + Γ T
0 )–1 → 0 strongly as ζ → 0; moreover,

‖ζ (ζ I +Γ T
0 )–1‖ ≤ 1. Thus, by the LDC theorem, we obtain E‖zζ (T) – zT‖2 → 0. Hence the

proof. �
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4 Example
Consider the stochastic control system:

dx(t, θ ) =
[
xθθ + Bu(t, θ ) + f̃

(
t, x(t)

)]
dt + σ̃

(
t, x(t)

)
dw(t)

+
∫

U
h̃
(
t, x(t), u

)
Ñ(ds, du), t ∈ J , t �= tk ,

�x(tk , θ ) = Ĩk
(
x(tk), θ

)
, t = tk , k = 1, 2, . . . , m,

x(t, 0) = x(t,π ) = 0, t ∈ [0, T], 0 < θ < π ,

x(0, θ ) +
n∑

i=1

αix(ti, θ ) = x0(θ ), θ ∈ [0,π ],

(6)

where B is a bounded linear operator from a Hilbert space U into H; f̃ : J × H → H, σ̃ : J ×
H →L0

2, h̃ : J × X × U → H are all continuous and uniformly bounded, u(t) is a feedback
control, and w(t) is a Q-Wiener process.

Let H = L2[0,π ], and let A : D(A) ⊂ H → H be an operator defined by Ax = xθθ with
domain

D(A) =
{

x ∈ H : x, xθ are absolutely continuous xθθ ∈ H, x(0) = x(π ) = 0
}

.

Furthermore, A has discrete spectrum, the eigenvalues are –n2, n = 1, 2, . . . , with the cor-
responding normalized characteristic vectors en(s) = (2/π )1/2 sin ns, then

Ax =
∞∑

n=1

–n2〈x, en〉en, x ∈ H.

Here, A generates a compact semigroup T(t), t > 0, in H and is given by

T(t)x =
∞∑

n=1

e–n2t〈x, en〉en(θ ), x ∈ H.

Define f : [0, T] × H → H, σ : [0, T] × H →L0
2, h : J × H × U → H, and I : H → H by

f
(
t, x(t)

)
(θ ) = f̃

(
t, x(t)

)
(θ ),

σ
(
t, x(t)

)
(θ ) = σ̃

(
t, x(t)

)
(θ ),

h
(
t, x(t), u

)
(θ ) = h̃

(
t, x(t), u

)
(θ ),

Ik
(
x(tk)

)
(θ ) = Ĩk

(
x(tk)

)
(θ ),

(
t, x(t)

) ∈ [0, T], θ ∈ [0,π ].

The function g : C ([0, T]; H) → H is defined as

g(z)(θ ) =
n∑

i=1

αix(ti, θ ), 0 < ti < T , θ ∈ [0,π ],

with this choice of A, B, f , σ , I and g , (1) is the abstract formulation of (6) such that the
conditions in (H1)–(H5) are satisfied.
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Now define an infinite-dimensional space

U =

{

u : u =
∞∑

n=2

unen(θ )
∣∣
∣∣

∞∑

n=2

u2
n < 2

}

with the norm defined by

‖u‖U =

( ∞∑

n=2

u2
n

) 1
2

and a linear continuous mapping B from U → H as follows:

Bu = 2u2e1(θ ) +
∞∑

n=2

un(t)en(θ ).

It is obvious that, for u(t, θ ,ω) =
∑∞

n=2 un(t,ω)en(θ ) ∈ L �
2 ([0, T]; U),

Bu = 2u2(t)e1(θ ) +
∞∑

n=2

un(t)en(θ ) ∈ L �
2

(
[0, T]; U

)
.

Moreover,

B∗v = (2v1 + v2)e2(θ ) +
∞∑

n=3

vnen(θ ),

B∗S∗(t)x =
(
2x1e–t + x2e–4t)e2(θ ) +

∞∑

n=3

xne–n2ten(θ )

for v =
∑∞

n=1 vnen(θ ) and x =
∑∞

n=1 xnen(θ ). Let ‖B∗S∗(t)x‖ = 0, t ∈ [0, T], it follows that

∥
∥2x1e–t + x2e–4t∥∥2 +

∞∑

n=3

∥
∥xne–n2t∥∥2 = 0, t ∈ [0, T]

⇒ 0, n = 1, 2, . . .

⇒ x = 0.

Thus, by Theorem 4.1.7 of [19], the deterministic linear system corresponding to (6) is
approximate controllable on [0, T]. Therefore system (6) is approximate controllable pro-
vided that f , σ , I , and g satisfy assumptions (H1)–(H5).

5 Conclusion
In this paper we have established the approximate controllability of a semilinear impul-
sive stochastic system with nonlocal conditions and Poisson jumps in a Hilbert space.
The results are obtained by using Sadovskii’s fixed point theorem and semigroup theory.
Further the results have been verified by a proper example. In future the criteria may be
extended to semilinear impulsive stochastic integrodifferential equations driven by a frac-
tional Brownian motion.
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