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GOAL PROGRAMMING APPROACH FOR SOLVING MULTI-OBJECTIVE
FRACTIONAL TRANSPORTATION PROBLEM WITH FUZZY PARAMETERS

Paraman Anukokila1,∗, Bheeman Radhakrishnan2 and Antony Anju1

Abstract. In this paper, authors studied a goal programming approach for solving multi-objective
fractional transportation problem by representing the parameters (γ, δ) in terms of interval valued
fuzzy numbers. Fuzzy goal programming problem with multiple objectives is difficult for the decision
makers to determine the goal valued of each objective precisely. The proposed model presents a special
type of non-linear (hyperbolic) membership functions to solve multi-objective fractional transportation
problem with fuzzy parameters. To illustrate the proposed method numerical examples are solved.
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1. Introduction

Transportation problem is one of the important application of the linear programming problem. The basic
transportation problem was originally developed by Hitchcock [10]. It may be solved by using a simplified
version of the simplex technique called transportation method. Transportation problem with fractional objective
functions are widely used as performance measures in many real life situations. The problem of optimizing one or
several ratios of functions are called fractional programming. Fractional programming has attracted the attention
of many researchers in the past. The main reason for interest in fractional programming from the fact that linear
fractional objective functions occur frequently as a measure of performance in a variety of circumstances such as
when satisfying objectives under uncertainty. The fractional transportation problem (FTP) plays an important
role in logistics and supply management for reducing cost and improving service. In real life, there are many
diverse situations due to uncertainty in judgment, lack of evidence, etc., Fuzzy transportation problem is more
appropriate to model and solve the real world problems.

Goal programming [GP] was introduced by Charnes and Cooper in 1961. It has widely applied to solve
different problems which involve multiple objectives. GP requires decision maker to set an aspiration level
for each good which can be a very difficult task as there are several of uncertainties in nature that must be
considered. It is one of the powerful approach that has been proposed for the modeling, analysis and solution
to multi-objective optimization problems.
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This paper is motivated by Gupta and Kumar [9] and Radhakrishnan and Anukokila [21] are pointed out and
to overcome these shortcomings, a new method is proposed for finding the solution for linear multi-objective
fractional transportation problem by representing the parameters (γ, δ) interval valued fuzzy numbers. The
advantages of the proposed method over existing method are discussed in this article. Also the author extended
to solve existing method using fuzzy goal programming (FGP) approach with interval cost. Here the objectives
of the FGP model formulation problem are transformed into fuzzy goals by means of assigning an aspiration
level to each of them. The achievement of the hyperbolic membership value to the extent possible of each of
the fuzzy goal is considered. Lingo [16] software package is used to solve optimization problem. In the solution
process, the under and over deviational variables of the membership goals associated with the fuzzy goals are
introduced to transform the proposed method into an equivalent FGP model to solve the problem efficiently in
the decision situation.

This paper is organized as follows: Section 2 discusses the review of literature of the proposed problem.
Section 3 gives preliminary background of the paper. Section 4 analyzed problem formulation of linear multi-
objective fractional transportation problems in crisp and fuzzy environment with goal programming and Min-
max problem formulations are explained. Fractional goal programming approach applied in Section 5 also
illustrative examples were solved and the optimal solution is compared with the proposed approach are given
in Section 6.

2. Literature review

A lot of researchers have been studied the transportation problem, fractional transportation problem, goal
programming which is one way or the other relates to this paper. Kocken and Sivri [14] presented a simple para-
metric method to generate all optimal solution of fuzzy solid transportation problem. Kumar and Kaur [2,9,13]
proposed a new method for solving fuzzy transportation problem using ranking function and using generalized
trapezoidal fuzzy numbers. Ebrahimnejad [7] developed a simplified new approach for solving fuzzy transporta-
tion problem with generalized trapezoidal fuzzy numbers. Ringuest and Rinks [23] proposed two interactive
algorithms to obtain the solution of linear multi-objective transportation problems. Isermann [11] discussed an
algorithm for identifying all the non-dominated solutions, for a linear multi-objective transportation problem.
Kumar and Panda [3] proposed multi-objective optimization problem with bounded parameters. Anukokila et al.
[19,21,22] discussed a fuzzy goal programming approach for solving multi-objective transportation problem with
interval cost. Das et al. [6] presented a new approach for solving fully fuzzy linear fractional programming prob-
lems using the multi-objective linear programming. Zangiabadi et al. [27] proposed an application of fuzzy goal
programming to the linear multi-objective transportation problem. Ojha et al. [20] developed multi-objective
geometric programming problem with Karush–Kuhn–Tucker condition using (∈) constraint method. Wahed [1]
presented interactive fuzzy goal programming for a multi-objective transportation problem. Fegade et al. [8]
discussed a method for solving fuzzy transportation using zero suffix method and robust ranking methodology.
Liu et al. [15, 17] proposed uncertain multi-objective programming and uncertain goal programming. Pal et al.
[5, 24] developed interval goal programming approach to multi-objective fuzzy goal programming with interval
weights. Jahanshahloo et al. [12] discussed to find a solution for multi-objective linear fractional programming
problem based on goal programming and data envelopment analysis. Upmanyu et al. [26] solved multi-objective
set covering problem with imprecise linear fractional objectives. Chiang [4] found out the optimal solution of
the transportation problem with fuzzy demand and fuzzy product.

3. Preliminaries

In this section, some necessary background and notions of interval valued fuzzy numbers are reviewed.
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Definition 3.1. If the membership function of the fuzzy set Ã on R is

µÃ(x) =


γ(x− p)
(q − p)

, p < x ≤ q,
γ(r − x)
(r − q)

, q ≤ x ≤ r,

0, otherwise,

where 0 < γ ≤ 1, then Ã is called a level γ fuzzy numbers and it is denoted as Ã = (p, q, r; γ).

Definition 3.2. An interval valued fuzzy set Ã on R is given by

Ã
∆=
{(
x,
[
µÃL(x), µÃU (x)

])
: x ∈ R

}
,

where µÃL(x), µÃU (x) ∈ [0, 1] and µÃL(x) ≤ µÃU (x) ∀ x ∈ R and is denoted as Ã = [ÃL, ÃU ]. This means
that the grade of membership of x belongs to the interval

[
µÃL(x), µÃU (x)

]
, the lower grade of membership at

x is µÃL(x) and the upper grade of membership at x is µÃU (x). Let

µÃL(x) =


γ(x− p)
(q − p)

, p < x ≤ q,
γ(r − x)
(r − q)

, q ≤ x < r,

0, otherwise.

Then ÃL = (p, q, r; γ). Let

µÃU (x) =


δ(x− l)
(m− l)

, l < x ≤ m
δ(n− x)
(n−m)

, m ≤ x < n

0, otherwise.

Then ÃU = (l, q, n; δ). Here 0 < γ ≤ δ ≤ 1 and l < p < q < r < n. Then interval valued fuzzy set is

Ã
∆=
{(
x,
[
µÃL(x), µÃU (x)

])
: x ∈ R

}
,

is also denoted as,
Ã = [(p, q, r; γ), (l, q, n; δ)] =

[
ÃL, ÃU

]
Ã is called a level (γ, δ) interval valued fuzzy number (Fig. 1).

In Figure 1, interval values are marked in the x axis and level (γ, δ) are marked on the y axis. Lower grade
membership function (γ) and upper grade membership function (δ) are marked in the figure. General form is
represented as [(p, q, r; γ), (l, q, n; δ)] =

[
ÃL, ÃU

]
.

Property 3.3. Let FIV (γ, δ) = {[(p, q, r; γ), (l, q, n; δ)] : ∀ l < p < q < r < n} , 0 < γ ≤ δ ≤ 1 be the family
of (γ, δ) interval valued fuzzy numbers. Let Ã = [(p, q, r; γ), (l, q, n; δ)] and B̃ = [(p1, q1, r1; γ), (l1, q1, n1; δ)] ∈
FIV (γ, δ) be two interval valued fuzzy numbers. The arithmetic operations between interval valued fuzzy num-
bers Ã and B̃ are defined as follows:

Ã⊕ B̃ = [(p+ p1, q + q1, r + r1; γ), (l + l1,m+ q1, n+ n1; δ)] ,

KÃ = [(Kp,Kq,Kr; γ), (Kl,Kq,Kn; δ)] , K > 0,

KÃ = [(Kr,Kq,Kp; γ), (Kn,Kq,Kl; δ)] , K < 0,

KÃ = [(0, 0, 0; γ), (0, 0, 0; δ)] ,K = 0.
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Figure 1. Level (γ, δ) interval valued fuzzy number.

Definition 3.4. Let Ã = [(p, q, r; γ), (l, q, n; δ)] ∈ FIV (γ, δ), 0 < γ ≤ δ ≤ 1, so the signed distance of Ã from 0̃
(y-axis) is given as:

d0(Ã, 0̃) =
1
8

[
6q + p+ r + 4l + 4n+ 3(2m− l − n)

γ

δ

]
. (3.1)

Remark 3.5. If Ã = [(p− α3, p, p+ α4; γ), (p− α1, p, p+ α2; δ)], where 0 < α3 < α1 < p, 0 < α4 < α2, then
equation (3.1) reduces to d0(Ã, 0̃) = 2p+ 1

8

[
(α4 − α3) + (4− 3λ

p )(α2 − α1)
]
.

Property 3.6. Let Ã = [(p, q, r; γ), (l, q, n; δ)] and B̃ = [(p, q, r; γ), (l, q, n; δ)] ∈ FIV (γ, δ). Then,

d0(Ã⊕ B̃, 0̃) = d0(Ã, 0̃) + d0(B̃, 0̃)

d0(KÃ, 0̃) = Kd0(Ã, 0̃), K > 0.

It is clear from property, that the signed distance ranking is a linear ranking on FIV (γ, δ).

Definition 3.7. Let (+,−, .,÷) be a binary operation on the set of real numbers. Consider X and Y are the
closed intervals, then X ∗ Y = (x ∗ y : x ∈ X, y ∈ y) defines a binary operation on the set of closed intervals.
For division it is assumed that 0 /∈ Y . The interval operations are mentioned as follows:

X + Y = 〈xc, xw〉+ 〈yc, yw〉 = 〈xc + yc, xw + yw〉 ,
kX = k [xL, xR] = ([kxL, kxR] for k ≥ 0, [kxR, kxL] for k < 0),
kX = k 〈xc, xw〉 = 〈kxc, |k|xw〉 ,

where k is real number.

Definition 3.8. x0 ∈ S (S is the feasible region) yields optimal solution iff there is no other x ∈ S such that,

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
xij ≤

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
x0
ij , ∀ q,

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
xij <

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
x0
ij , for some q, q = 1, 2, . . . , ε.
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Definition 3.9. A point x0 ∈ S is efficient iff there does not exist another x ∈ S and

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
xij ≤

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
x0
ij , ∀ q,

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
xij 6=

m∑
i=1

n∑
j=1

[
P qLij

, P qRij

]
x0
ij , ∀ q, q = 1, 2, . . . , ε.

Otherwise x0 is an inefficient solution.

Definition 3.10. x0 ∈ S is an optimal solution iff there is no other solution x ∈ S which satisfies Z(x) <RC
Z(x0). The right limit ZqR(x) of the interval objective function ZqR(x) may be elicited from Definition 3.7.

ZqR =
m∑
i=1

n∑
j=1

pqCij
xij +

m∑
i=1

n∑
j=1

pqWij
|xij | ,

where pqCij
is the center and pqWij

is the half width of the coefficient pqij of Zq(x). In the case when xij ≥ 0, i =
1, 2, . . . ,m, j = 1, 2, . . . , n. ZqR(x) can be modified as

ZqR(x) =
m∑
i=1

n∑
j=1

pqCij
xij +

m∑
i=1

n∑
j=1

pqWij
xij .

The center of the objective function ZpC can be elicited as ZpC(x) =
m∑
i=1

n∑
j=1

pqCij
xij .

4. Problem formulation

4.1. Linear multi-objective FTP

Linear programming formulation of linear multi-objective transportation problems in crisp environment are
presented in this section. It can be stated mathematically as:

P1 :



Minimize Zq(x) =

m∑
i=1

n∑
j=1

Cq
ijxij+α

m∑
i=1

n∑
j=1

Dq
ijxij+β

, where q = 1, 2, . . . , Q

subject to
n∑
j=1

xij = ai, i = 1, 2, . . . ,m

m∑
i=1

xij = bj , j = 1, 2, . . . , n

xij ≥ 0, ∀ i, j,

where Z(x) =
{
Z1(x), Z2(x), . . . , Zq(x)

}
is a vector of q objective functions. xij represents the amount of the

product to be shipped from ith source to the jth destination. Cqij is the penalty associated with transporting
a unit of the product from ith source to the jth destination according to penalty criterion q. ai represents the
availability at ith source and bj represents the demand at jth destination. Without loss of generality, it may be

assumed that ai, bj > 0, ∀ i, j and Cqij , D
q
ij ≥ 0, ∀ i, j and

m∑
i=1

ai =
n∑
j=1

bj .
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4.2. Fuzzy environment

The linear multi-objective fractional transportation problems in fuzzy environment is presented in this section.
Let all the parameters (cost, availability and demand) by level (γ, δ) interval valued fuzzy numbers. Then P1 in
fuzzy environment is:

P2 :



Minimize Z̃q(x) ≈

m∑
i=1

n∑
j=1

C̃q
ijxij+α

m∑
i=1

n∑
j=1

D̃q
ijxij+β

, where q = 1, 2, . . . , Q

subject to
n∑
j=1

xij 1̃ ≈ ãi, i = 1, 2, . . . ,m

m∑
i=1

xij 1̃ ≈ b̃j , j = 1, 2, . . . , n

xij ≥ 0, ∀ i, j

with
∑m

i=1
ãi =

∑n

j=1
b̃j , where ãi = [(ai − α3i, ai, ai + α4i; γ), (ai − α1i, ai, ai + α2i; δ)] and 0 < α3i < α1i <

ai, 0 < α4i < α2i, i = 1, 2, . . . ,m. Similarly, interval valued fuzzy numbers b̃j and C̃qij are given as:

b̃j = [(bj − β3j , bj , bj + β4j ; γ), (bj − β1j , bj , bj + β2j ; δ)]

and

0 < β3j < β1j < bj , 0 < β4j < β2j , j = 1, 2, . . . , n

C̃qij =
[
(Cqij −∆q

3ij , C
q
ij , C

q
ij + ∆q

4ij ; γ), (Cqij −∆q
1ij , C

q
ij , C

q
ij + ∆q

2ij ; δ)
]

D̃q
ij =

[
(Dq

ij − µ
q
3ij , D

q
ij , D

q
ij + µq4ij ; γ), (Dq

ij − µ
q
1ij , D

q
ij , D

q
ij + µq2ij ; δ)

]
and

0 < ∆q
3ij < ∆q

1ij < Cqij , 0 < ∆q
4ij < ∆q

2ij ,

0 < µq3ij < µq1ij < Dq
ij , 0 < µq4ij < µq2ij for i = 1, 2, . . . ,m, j = 1, 2, . . . , n and q = 1, 2, . . . , Q;

1̃ = [(1, 1, 1; γ), (1, 1, 1; δ)] .

4.3. Existing method

The shortcomings of the existing methods [9] are pointed out. It can be applied for solving single objective
fractional transportation problem of the type:

P3 :



Minimize Z(x) =

m∑
i=1

n∑
j=1

Cijxij+α

m∑
i=1

n∑
j=1

Dijxij+β

,

subject to
n∑
j=1

xij 1̃ ≈ ãi, i = 1, 2, . . . ,m

m∑
i=1

xij 1̃ ≈ b̃j , j = 1, 2, . . . , n

xij ≥ 0, ∀ i, j
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along with the conditions:
m∑
i=1

ãi ≈
n∑
j=1

b̃j and
m∑
i=1

ai =
n∑
j=1

bj ,

where ãi = [(ai − α3i, ai, ai + α4i; γ), (ai − α1i, ai, ai + α2i; δ)] and 0 < α3i < α1i < ai, 0 < α4i < α2i,
b̃j = [(bj − β3j , bj , bj + β4j ; γ), (bj − β1j , bj , bj + β2j ; δ)] and 0 < β3j < β1j < bj , 0 < β4j < β2j , 1̃ =
[(1, 1, 1; γ), (1, 1, 1; δ)] .

If the conditions
∑m
i=1ai =

∑n
j=1bj is not satisfied in problem P3, then the existing method [9] cannot be

used for solving problems of the type P3, because the conditions
∑m
i=1ãi ≈

∑n
j=1b̃j and

∑m
i=1ai 6=

∑n
j=1bj lead

to violation of consistency condition given by the equation number (26) in [4].

4.4. Proposed method

A new method is proposed for the solution of linear multi-objective FTP in P2 which all the parameters
(cost, availability and demand) are represented by (γ, δ) interval valued fuzzy numbers. Following are the steps
to find the solution of problem P2 are:
Step 1:



Minimize d0(Z̃q(x), 0̃) = d0


m∑
i=1

n∑
j=1

C̃q
ijxij+α

m∑
i=1

n∑
j=1

D̃q
ijxij+β

, 0

 , q = 1, 2, . . . , Q.

subject to

d0

 n∑
j=1

xij 1̃, 0̃

 = d0(ãi, 0̃), i = 1, 2, . . . ,m

d0

(
m∑
i=1

xij 1̃, 0̃

)
= d0(b̃j , 0̃), j = 1, 2, . . . , n

xij ≥ 0 ∀ i, j,

for consistency d0

(
m∑
i=1

ãi, 0̃

)
= d0

 n∑
j=1

b̃j , 0̃

 .

Step 2: Using Property 3.6 and Remark 3.5, the crisp model of problem P2 is

P4 :



Minimize Zq(x) =

m∑
i=1

n∑
j=1

(Cq
ij)1xij

m∑
i=1

n∑
j=1

(Dq
ij)1xij

, q = 1, 2, . . . , Q.

subject to
n∑
j=1

xij = (ai)1, i = 1, 2, . . . ,m

m∑
i=1

xij = (bj)1, j = 1, 2, . . . , n

for consistency
m∑
i=1

(ai)1 =
n∑
j=1

(bj)1

xij ≥ 0, ∀ i, j,
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where Zq(x) = d0(Z̃q(x), 0̃).

(Cqij)
1 = 2Cqij +

1
8

[(
∆q

4ij −∆q
3ij

)
+
(

4−
(

3γ
δ

))(
∆q

2ij −∆q
1ij

)]
;

(Dq
ij)

1 = 2Dq
ij +

1
8

[(
µq4ij − µ

q
3ij

)
+
(

4−
(

3γ
δ

))(
µq2ij − µ

q
1ij

)]
;

(ai)1 = ai +
1
16

[
(α4i − α3i) +

(
4−

(
3γ
δ

))
(α2i − α1i)

]
;

(bj)1 = bj +
1
16

[
(β4j − β3j) +

(
4−

(
3γ
δ

))
(β2j − β1j)

]
.

Step 3: Now P4 is classical multi-objective fractional transportation problem and can be solved by any classical
multi-objective linear fractional programming approach.

4.5. Fractional transportation problem (FTP)

The FTP is the problem of minimizing q interval valued objective functions with interval cost. When the
objective functions coefficients

Cq
ij

Dq
ij

, Ai is the source parameters, Bj is the destination parameter and Cq, Dq

are the conveyance parameters, which are in the form of interval, where Ai = [sLi
, sRi

], i = 1, 2, . . . ,m and
Bj = [tLj , tRj ], j = 1, 2, . . . , n, are interval values of source and destination. The formulation for interval fuzzy
problem is 

Minimize Zq(x) =

m∑
i=1

n∑
j=1

[
Cq

Lij
,Cq

Rij

]
xij+α

m∑
i=1

n∑
j=1

[
Dq

Lij
,Dq

Rij

]
xij+β

, q = 1, 2, . . . , Q

subject to
n∑
j=1

xij = Ai = [sLi , sRi ], i = 1, 2, . . . ,m

m∑
i=1

xij = Bj = [tLj
, tRj

], j = 1, 2, . . . , n

xij ≥ 0, ∀ i, j.

The balanced condition is a necessary and sufficient condition for the existence of a feasible solution[
CqLij

, CqRij

]
and

[
Dq
Lij
, Dq

Rij

]
, (q = 1, 2, . . . , Q),

P qij =
[
P qLij

, P qRij

]
=
Cqij
Dq
ij

=
CqLij

, CqRij

Dq
Lij
, Dq

Rij

is an interval representing the uncertain cost for the transportation problem. When the feasible solutions are
uncertain cost for the transportation problem. Uncertainty specifically concerns right hand side constraints and
objective functions. When the set of feasible solutions is uncertain, we identify a class of linear programs for
which these classical approaches are no longer relevant. However it is possible to compute the worst optimum
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solution. By the above definition the equivalent multi-objective deterministic transportation problem as

Minimize ZqR(x) =
m∑
i=1

n∑
j=1

P qCij
xij +

m∑
i=1

n∑
j=1

P qWij
xij

Minimize ZqC(x) =
m∑
i=1

n∑
j=1

P qCij
xij

subject to
m∑
i=1

n∑
j=1

xij ≤ sRi ,

m∑
i=1

n∑
j=1

xij ≤ sLi

m∑
i=1

n∑
j=1

xij ≤ tRj ,

m∑
i=1

n∑
j=1

xij ≤ tLj

xij ≥ 0, ∀ i, j.

4.6. Goal programming

Fuzzy goal programming involves applying the fuzzy set theory to goal programming. The fuzzy goals are
then characterized by the membership functions which are transformed into fuzzy flexible membership goals
by means of introducing negative and positive deviational variables and assigning highest membership value
to each of them. The main purpose is to minimize the deviations between the achievement of goals Zq(x) and
aspiration levels G1 and G2. A mathematical formulation of goal programming is given below:

Minimize Zq(x) =

m∑
i=1

n∑
j=1

∣∣∣
[
Cq

Lij
,Cq

Rij

]
xij+α−G1

∣∣∣

m∑
i=1

n∑
j=1

∣∣∣
[
Dq

Lij
,Dq

Rij

]
xij+β−G2

∣∣∣

subject to
n∑
j=1

xij = Ai = [sLi , sRi ], i = 1, 2, . . . ,m,

m∑
i=1

xij = Bj = [tLj , tRj ], j = 1, 2, . . . , n,

xij ≥ 0, ∀ i, j, x ∈ F (F is a feasible set),

where Zq(x) is the linear function of the qth goal, Gq is the aspiration level of the qth goal. To solve the goal
programming, let the function Zq(x) = D+

q −D−q +Gq. Then the achievement function can be formulated as,

Minimize
m∑
i=1

n∑
j=1

(
D+
q −D−q

)
subject to[

CqLij
, CqRij

]
xij −G1[

Dq
Lij
, Dq

Rij

]
xij −G2

= D+
q −D−q , q = 1, 2, . . . , Q

X ∈ F (F is a feasible set)
D+
q −D−q ≥ 0, q = 1, 2, . . . , Q.

4.6.1. Min–Max approach

There are number of different methods have been developed goal programming, pre-emptive goal programming
and min–max goal programming are some of them. Among these the min–max approach of the fuzzy goal
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programming by Zimmermann [28], convert to the following model.

Minimize ψ
subject to

n∑
j=1

xij = [sLi , sRi ] = Ai, i = 1, 2, . . . ,m

m∑
i=1

xij = [tLj , tRj ] = Bj , j = 1, 2, . . . , n

Zq(x) +D−q −D+
q = G−q , q = 1, 2, . . . , Q

ψ ≥ D+
q , q = 1, 2, . . . , Q

D+
q , D

−
q ≥ 0, D+

q D
−
q = 0, q = 1, 2, . . . , Q

xij ≥ 0, ∀ i, j

where the equilibrium condition
∑m

i=1
Ai =

∑n

j=1
Bj is satisfied.

4.6.2. Hyperbolic membership function

Membership function is one of the most important element of the fuzzy approach and it allows a fuzzy
approach to evaluate uncertain and ambiguous matters. The role of the membership function is to represent an
individual and subjective human perception as a member of a fuzzy set. Besides an exponential membership
function hyperbolic function are non-linear function, a fuzzy mathematical programming with a non-linear
membership function is non-linear programming. Hyperbolic functions arise from simple combinations of the
exponential function. The hyperbolic function is convex over a part of the objective function value and is concave
over the remaining part.

Hyperbolic membership function can be defined as,

µHq (Zq(x)) =
1
2

tanh

Uq + Lq
2

−
m∑
i=1

n∑
j=1

Zq(x)xij

 q +
1
2

where αq = 6
Uq−Lq

. The fuzzy programming with hyperbolic membership functions for obtaining efficient solu-
tions as well as the best compromise solution of a multi-objective fractional transportation problem. It is used
to represent objective functions into fuzzy environment. This membership function has the following properties.

(1) µHq (Xq(x)) is strictly monotonically decreasing function with respect to Zq(x).
(2) µHq (Zq(x)) = 1

2 iff Zq(x) = 1
2 (Uq + Lq).

(3) µHq (Zq(x)) is strictly convex for Zq(x) ≤ 1
2 (Uq + Lq).

(4) µHq (Zq(x)) satisfies 0 < µHq (Zq(x)) < 1 for Lq < F q(x) < 1 for Lq < Zq(x) < Uq.

An hyperbolic function of the qth objective function can be defined as

µHq Z
q(x) =



1, if
m∑
i=1

n∑
j=1

Cq
R,C

q
C

Dq
R,D

q
C
xij ≤ Lq

1
2 tanh

Uq+Lq

2 −
m∑
i=1

n∑
j=1

Cq
R,C

q
C

Dq
R,D

q
C
xij

αq

+ 1
2 , if Lq <

m∑
i=1

n∑
j=1

Cq
R,C

q
C

Dq
R,D

q
C
xij < Uq

0, if
m∑
i=1

n∑
j=1

Cq
R,C

q
C

Dq
R,D

q
C
xij ≥ Uq
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where αq = 6
Uq−Lq

. Then an equivalent crisp model for the fuzzy model can be formulated as



Maximize φ
subject to

φ ≤ 1
2 tanh

Uq+Lq

2 −
m∑
i=1

n∑
j=1

Cq
R,C

q
C

Dq
R,D

q
C
xij

αq

+ 1
2

n∑
j=1

xij = [sLi
, sRi

] = Ai, i = 1, 2, . . . ,m

m∑
i=1

xij = [tLj
, tRj

] = Bj , j = 1, 2, . . . , n

xij ≥ 0, ∀ i, j ≥ 0.

5. Fractional goal programming approach

In this section, Mohamed in [18] used linear membership functions, in which he introduced fuzzy goal pro-
gramming approach to a multi-objective linear programming problem. In this paper we introduce the deviational
variables D−q , D

+
q ≥ 0 corresponding to the qth hyperbolic membership function, the flexible membership goal

with aspired level can be presented as,

1
2

tanh

Uq + Lq
2

−
m∑
i=1

n∑
j=1

CqR, C
q
C

Dq
R, D

q
C

xij

αq +
1
2

+D−q −D+
q = 1

where D−q D
+
q = 0. Now, we apply the min–max form of goal programming to the fuzzy model of multi-objective

transportation problem, with the hyperbolic membership function leads the following model:



Minimize φ
subject to

1
2 tanh

Uq+Lq

2 −
m∑
i=1

n∑
j=1

Cq
R,C

q
C

Dq
R,D

q
C
xij

αq

+ 1
2 +D−q −D+

q = 1

φ ≥ D−q , q = 1, 2, . . . , Q



n∑
j=1

xij = [sLi
, sRi

] = Ai, i = 1, 2, . . . ,m

m∑
i=1

xij = [tLj
, tRj

] = Bj , j = 1, 2, . . . , n

φ ≤ 1, φ ≥ 0, xij ≥ 0 ∀ i, j.

The equilibrium condition
∑m
i=1Ai =

∑n
j=1Bj is satisfied. When the objective function coefficients Cqij

are in the form of interval, that is Cqij =
[
CqLij

, CqRij

]
and the constraints are deterministic, interval valued
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transportation problem will be defined as,

Minimize Zq(x) =
m∑
i=1

n∑
j=1

[
Cq

Lij
,Cq

Rij

]
xij

[
Dq

Lij
,Dq

Rij

]
xij

, q = 1, 2, . . . , Q

subject to
n∑
j=1

xij = Ai, i = 1, 2, . . . ,m,

m∑
i=1

xij = Bj , j = 1, 2, . . . , n,

xij ≥ 0, ∀ i, j.

6. Numerical example

The existing methods [9] cannot be used for solving single objective transportation problem by using existing
method is illustrated here:

Minimize Z(x) =

11x11 + 8x12 + 14x13 + 19x14 + 6x21 + 18x22 + 9x23 + 4x24

+ 16x31 + 18x32 + 8x33 + 12x34 + 12x41 + 12x42 + 12x43 + 16x44 + α
16x11 + 38x12 + 34x13 + 22x14 + 6x21 + 28x22 + 32x23 + 22x24

+ 2x31 + 9x32 + 6x33 + 6x34 + 12x41 + 14x32 + 22x43 + 11x44 + β

subject to
4∑
j=1

xij 1̃ ≈ ãi, i = 1, 2, 3, 4,

4∑
i=1

xij 1̃ ≈ b̃j , j = 1, 2, 3, 4,

xij ≥ 0 ∀ i, j,

with
∑4

i=1
ãi ≈

∑4

j=1
b̃j where the values of ãi, and b̃j , for i, j = 1, 2, 3, 4 are given as

ã1 = [(3, 10, 12; 0.6), (1, 10, 14; 0.9)] ã2 = [(15, 18, 20; 0.6), (13, 18, 22; 0.9)]
ã3 = [(17, 22, 24; 0.6), (15, 22, 26; 0.9)] ã4 = [(10, 12, 15; 0.6), (7, 12, 15; 0.9)] (6.1)

b̃1 = [(13, 18, 20; 0.6), (12, 18, 21; 0.9)] b̃2 = [(9, 13, 18; 0.6), (6, 13, 19; 0.9)]

b̃3 = [(10, 12, 14; 0.6), (9, 12, 16; 0.9)] b̃4 = [(13, 15, 20; 0.6), (10, 15, 23; 0.9)] .

The existing method cannot be used for solving single objective transportation problem as all the parameters
cij , ai, bj are represented by (γ, δ) interval valued fuzzy numbers

Minimize Z̃(x) ≈

4∑
i=1

4∑
j=1

C̃ijxij+α

4∑
i=1

4∑
j=1

D̃ijxij+β

subject to
4∑
j=1

xij 1̃ ≈ ãi, i = 1, 2, 3, 4.

4∑
i=1

xij 1̃ ≈ b̃j , j = 1, 2, 3, 4.

xij ≥ 0 ∀ i, j,



MULTI-OBJECTIVE FRACTIONAL TRANSPORTATION PROBLEM 169

with
∑4

i=1
ãi ≈

∑4

j=1
b̃j where the values of C̃ij , D̃ij for i = 1, 2, 3, 4, j = 1, 2, 3, 4, are:

C̃11 = [(3, 6, 8; 0.6), (2, 6, 9; 0.9)] C̃12 = [(1, 3, 8; 0.6), (1, 3, 9; 0.9)]

C̃13 = [(4, 6, 12; 0.6), (2, 6, 16; 0.9)] C̃14 = [(6, 7, 8; 0.6), (5, 7, 29; 0.9)]

C̃21 = [(2, 3, 4; 0.6), (1, 3, 5; 0.9)] C̃22 = [(6, 8, 12; 0.6), (5, 8, 18; 0.9)]

C̃23 = [(2, 3, 4; 0.6), (1, 3, 18; 0.9)] C̃24 = [(0.5, 1, 5.5; 0.6), (0.25, 1, 7.75; 0.9)]

C̃31 = [(5, 7, 13; 0.6), (3, 7, 17; 0.9)] C̃32 = [(8.5, 9, 9.5; 0.6), (7, 9, 11; 0.9)]

C̃33 = [(2, 3, 4; 0.6), (1, 3, 13; 0.9)] C̃34 = [(5, 6, 7; 0.6), (3, 6, 9; 0.9)]

C̃41 = [(3, 6, 9; 0.6), (2, 6, 12; 0.9)] C̃42 = [(5, 6, 9; 0.6), (3, 6, 12; 0.9)]

C̃43 = [(2, 5, 9; 0.6), (1, 5, 17; 0.9)] C̃44 = [(2, 7, 12; 0.6), (1, 7, 19; 0.9)]

D̃11 = [(6, 7, 12; 0.6), (5, 7, 15; 0.9)] D̃12 = [(17, 20, 21; 0.6), (11, 20, 22; 0.9)]

D̃13 = [(15, 16, 21; 0.6), (14, 16, 24; 0.9)] D̃14 = [(10, 11, 12; 0.6), (9, 11, 13; 0.9)]

D̃21 = [(1.5, 2, 4.5; 0.6), (1, 2, 10; 0.9)] D̃22 = [(13, 14, 15; 0.6), (11, 14, 17; 0.9)]

D̃23 = [(14, 15, 20; 0.6), (13, 15, 23; 0.9)] D̃24 = [(10, 11, 12; 0.6), (8, 11, 13; 0.9)]

D̃31 = [(1.5, 3, 4.5; 0.6), (1, 3, 9; 0.9)] D̃32 = [(2.5, 4, 5.5; 0.6), (2, 4, 10; 0.9)]

D̃33 = [(2, 3, 5; 0.6), (1, 3, 5; 0.9)] D̃34 = [(5, 6, 12; 0.6), (3, 6, 16; 0.9)]

D̃41 = [(3, 6, 8; 0.6), (2, 6, 12; 0.9)] D̃42 = [(6, 7, 8; 0.6), (3, 7, 9; 0.9)]

D̃43 = [(6, 11, 16; 0.6), (5, 11, 17; 0.9)] D̃44 = [(2, 6, 7; 0.6), (1, 6, 8; 0.9)] . (6.2)

The values of ãi for i = 1, 2, 3, 4 and b̃j for j = 1, 2, 3, 4 are given as in (6.1) Proposed method is illustrated
here with the help of an example



Minimize Z̃1(x) ≈

4∑
i=1

4∑
j=1

C̃1
ijxij+α

4∑
i=1

4∑
j=1

D̃1
ijxij+β

Minimize Z̃2(x) ≈

4∑
i=1

4∑
j=1

C̃2
ijxij+α

4∑
i=1

4∑
j=1

D̃2
ijxij+β

subject to
4∑
j=1

xij 1̃ ≈ ãi, i = 1, 2, 3, 4.

4∑
i=1

xij 1̃ ≈ b̃j , j = 1, 2, 3, 4.

xij ≥ 0 ∀ i, j with
4∑
i=1

ãi ≈
4∑
j=1

b̃j
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where the values of C̃qij , for i = 1, 2, 3, 4, j = 1, 2, 3, 4 and q = 1, 2 are

C̃1
11 = [(3, 6, 8; 0.6), (2, 6, 9; 0.9)] C̃1

12 = [(1, 3, 8; 0.6), (1, 3, 9; 0.9)]

C̃1
13 = [(4, 6, 12; 0.6), (2, 6, 16; 0.9)] C̃1

14 = [(6, 7, 8; 0.6), (5, 7, 9; 0.9)]

C̃1
21 = [(2, 3, 4; 0.6), (1, 3, 5; 0.9)] C̃1

22 = [(6, 8, 12; 0.6), (5, 8, 18; 0.9)]

C̃1
23 = [(2, 3, 4; 0.6), (1, 3, 18; 0.9)] C̃1

24 = [(0.5, 1, 5.5; 0.6), (0.25, 1, 7.75; 0.9)]

C̃1
31 = [(5, 7, 13; 0.6), (3, 7, 17; 0.9)] C̃1

32 = [(8.5, 9, 9.5; 0.6), (7, 9, 11; 0.9)]

C̃1
33 = [(2, 3, 4; 0.6), (1, 3, 13; 0.9)] C̃1

34 = [(5, 6, 7; 0.6), (3, 6, 9; 0.9)]

C̃1
41 = [(3, 6, 9; 0.6), (2, 6, 12; 0.9)] C̃1

42 = [(5, 6, 9; 0.6), (3, 6, 12; 0.9)]

C̃1
43 = [(2, 5, 9; 0.6), (1, 5, 17; 0.9)] C̃1

44 = [(2, 7, 12; 0.6), (1, 7, 19; 0.9)]

D̃1
11 = [(6, 7, 12; 0.6), (5, 7, 15; 0.9)] D̃1

12 = [(17, 20, 21; 0.6), (11, 20, 22; 0.9)]

D̃1
13 = [(15, 16, 21; 0.6), (14, 16, 24; 0.9)] D̃1

14 = [(10, 11, 12; 0.6), (9, 11, 13; 0.9)]

D̃1
21 = [(1.5, 2, 4.5; 0.6), (1, 2, 10; 0.9)] D̃1

22 = [(13, 14, 15; 0.6), (11, 14, 17; 0.9)]

D̃1
23 = [(14, 15, 20; 0.6), (13, 15, 23; 0.9)] D̃1

24 = [(10, 11, 12; 0.6), (8, 11, 13; 0.9)]

D̃1
31 = [(1.5, 3, 4.5; 0.6), (1, 3, 9; 0.9)] D̃1

32 = [(2.5, 4, 5.5; 0.6), (2, 4, 10; 0.9)]

D̃1
33 = [(2, 3, 5; 0.6), (1, 3, 5; 0.9)] D̃1

34 = [(5, 6, 12; 0.6), (3, 6, 16; 0.9)]

D̃1
41 = [(3, 6, 8; 0.6), (2, 6, 12; 0.9)] D̃1

42 = [(6, 7, 8; 0.6), (3, 7, 9; 0.9)]

D̃1
43 = [(6, 11, 16; 0.6), (5, 11, 17; 0.9)] D̃1

44 = [(2, 6, 7; 0.6), (1, 6, 8; 0.9)]

C̃2
11 = [(3, 6, 10; 0.6), (4, 6, 9; 0.9)] C̃2

12 = [(5, 8, 12; 0.6), (6, 8, 12; 0.9)]

C̃2
13 = [(4, 8, 13; 0.6), (6, 8, 15; 0.9)] C̃2

14 = [(3, 8, 14; 0.6), (6, 8, 16; 0.9)]

C̃2
21 = [(6.5, 8.5, 12; 0.6), (10.5, 8.5, 9.5; 0.9)] C̃2

22 = [(6.5, 9.5, 12.5; 0.6), (7, 9.5, 12.5; 0.9)]

C̃2
23 = [(6, 9.5, 16; 0.6), (6, 9.5, 14; 0.9)] C̃2

24 = [(5, 7, 13; 0.6), (3, 7, 17; 0.9)]

C̃2
31 = [(2.5, 4, 5.5; 0.6), (2, 4, 10; 0.9)] C̃2

32 = [(6, 8, 12; 0.6), (2, 8, 18; 0.9)]

C̃2
33 = [(2, 7, 13; 0.6), (6, 7, 10; 0.9)] C̃2

34 = [(4, 13, 23; 0.6), (6, 13, 29; 0.9)]

C̃2
41 = [(6, 8, 17; 0.6), (5, 8, 17; 0.9)] C̃2

42 = [(12, 16, 21; 0.6), (7, 16, 26; 0.9)]

C̃2
43 = [(5, 9, 19; 0.6), (6, 9, 19; 0.9)] C̃2

44 = [(9.5, 12, 19.5; 0.6), (7.5, 12, 20; 0.9)]

D̃2
11 = [(6, 7, 12; 0.6), (3, 7, 15; 0.9)] D̃2

12 = [(10, 13, 19; 0.6), (5, 13, 22; 0.9)]

D̃2
13 = [(7, 14, 22; 0.6), (10, 14, 19; 0.9)] D̃2

14 = [(4, 11, 21; 0.6), (3, 11, 21; 0.9)]

D̃2
21 = [(12, 16, 21; 0.6), (9, 16, 24; 0.9)] D̃2

22 = [(15, 19, 24; 0.6), (17, 19, 26; 0.9)]

D̃2
23 = [(18, 22, 28; 0.6), (20, 22, 29; 0.9)] D̃2

24 = [(12, 18, 28; 0.6), (16, 18, 21; 0.9)]

D̃2
31 = [(6, 12, 19; 0.6), (7, 12, 23; 0.9)] D̃2

32 = [(12, 17, 23; 0.6), (10, 17, 28; 0.9)]

D̃2
33 = [(9, 16, 27; 0.6), (10, 16, 24; 0.9)] D̃2

34 = [(0, 16, 26; 0.6), (8, 16, 28; 0.9)]

D̃2
41 = [(19, 23, 29; 0.6), (20, 23, 29; 0.9)] D̃2

42 = [(12, 19, 29; 0.6), (14, 22, 31; 0.9)]

D̃2
43 = [(22, 24, 31; 0.6), (21, 24, 33; 0.9)] D̃2

44 = [(22, 27, 33; 0.6), (21, 27, 35; 0.9)]

The values of ãi for i = 1, 2, 3, 4 and b̃j for j = 1, 2, 3, 4 are given as in (6.1)
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Figure 2. Level (γ, δ) interval valued fuzzy number for Z1(x).

Using step 1 and step 2 of proposed method, the crisp model P4

Minimize Z1(x) =

11x11 + 8x12 + 14x13 + 19x14 + 6x21 + 18x22 + 9x23

+4x24 + 16x31 + 18x32 + 8x33 + 12x34

+ 12x41 + 12x42 + 12x43 + 16x44 + α
16x11 + 38x12 + 34x13 + 22x14 + 6x21 + 28x22 + 32x23

+22x24 + 2x31 + 9x32 + 6x33 + 6x34

+ 12x41 + 14x42 + 22x43 + 11x44 + β

Minimize Z2(x) =

12x11 + 16x12 + 16x13 + 17x14 + 20x21 + 19x22 + 19x23

+15x24 + 9x31 + 17x32 + 13x33 + 27x34

+ 15x41 + 40x42 + 17x43 + 24x44 + α
15x11 + 27x12 + 27x13 + 22x14 + 33x21 + 38x22 + 44x23

+34x24 + 25x31 + 36x32 + 32x33 + 33x34

+ 46x41 + 38x42 + 49x43 + 55x44 + β
subject to

4∑
j=1

x1j = 9;
4∑
j=1

x2j = 18;
4∑
j=1

x3j = 20;
4∑
j=1

x4j = 12.

4∑
i=1

xi1 = 18;
4∑
i=1

xi2 = 13;
4∑
i=1

xi3 = 12;
4∑
i=1

xi4 = 16.

Solving the above fuzzy programming technique used in [28], the dominated solution is x11 = 9, x21 = 9, x24 =
9, x32 = 1, x33 = 12, x34 = 7, x42 = 12 x11 = 6.1, x12 = 2.8, x22 = 10.1, x24 = 7.8, x31 = 11.8, x33 = 8.18, x43 =
3.81, x44 = 8.18 and fuzzy values of objective functions are:

Z1(x) = [(369, 525, 690; 0.6), (240, 525, 924.8)]
Z2(x) = [(797, 1326, 1914.5; 0.6), (897, 1326, 2003)].

Level (γ, δ) interval valued fuzzy number for Z1(x) and Z2(x) are plotted below.
In Figure 2, interval values are marked in the x axis and level (γ, δ) are marked on the y axis. Lower grade

membership function at 0.6 and upper grade membership function at 0.9 are marked.General form is represented
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Figure 3. Level (γ, δ) interval valued fuzzy number for Z2(x).

as [(p, q, r; γ), (l, q, n; δ)] =
[
ÃL, ÃU

]
, also in this q values are same for both interval valued numbers. In this,

the objective values of Z1(x) and Z2(x) are plotted.
Advantages of proposed method over existing method is discussed here. It is shown that by using the proposed

method all the shortcomings of the existing method [9]discussed are removed and also it is shown that it is
better to use proposed method for solving fractional transportation problems occurring in real life situations
as compared to the existing method [9]. It is pointed out that existing method [9] cannot be applied to find
solution, as the condition

∑m

i=1
ai =

∑n

j=1
bj is satisfied. By using the proposed method it can be solved as,



Minimize Z1(x) =

11x11 + 8x12 + 14x13 + 19x14 + 6x21 + 18x22 + 9x23

+4x24 + 16x31 + 18x32 + 8x33 + 12x34

+ 12x41 + 12x42 + 12x43 + 16x44 + α
16x11 + 38x12 + 34x13 + 22x14 + 6x21 + 28x22 + 32x23

+22x24 + 2x31 + 9x32 + 6x33 + 6x34

+ 12x41 + 14x42 + 22x43 + 11x44 + β

Minimize Z2(x) =

12x11 + 16x12 + 16x13 + 17x14 + 20x21 + 19x22 + 19x23

+15x24 + 9x31 + 17x32 + 13x33 + 27x34

+ 15x41 + 40x42 + 17x43 + 24x44 + α
15x11 + 27x12 + 27x13 + 22x14 + 33x21 + 38x22 + 44x23

+34x24 + 25x31 + 36x32 + 32x33 + 33x34

+ 46x41 + 38x42 + 49x43 + 55x44 + β
subject to

4∑
j=1

xij 1̃ ≈ ãi, i = 1, 2, 3, 4,

4∑
i=1

xij 1̃ ≈ b̃j , j = 1, 2, 3, 4,

xij ≥ 0 ∀ i, j,

with
∑4

i=1
ãi ≈

∑4

j=1
b̃j where the values of ãi for i = 1, 2, 3, 4 and b̃j for j = 1, 2, 3, 4 are given as in (6.1).
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Using step 1 and step 2 in the proposed method, we get

Minimize Z1(x) =

11x11 + 8x12 + 14x13 + 19x14 + 6x21 + 18x22 + 9x23

+4x24 + 16x31 + 18x32 + 8x33 + 12x34

+ 12x41 + 12x42 + 12x43 + 16x44 + α
16x11 + 38x12 + 34x13 + 22x14 + 6x21 + 28x22 + 32x23

+22x24 + 2x31 + 9x32 + 6x33 + 6x34

+ 12x41 + 14x42 + 22x43 + 11x44 + β

Minimize Z2(x) =

12x11 + 16x12 + 16x13 + 17x14 + 20x21 + 19x22 + 19x23

+15x24 + 9x31 + 17x32 + 13x33 + 27x34

+ 15x41 + 40x42 + 17x43 + 24x44 + α
15x11 + 27x12 + 27x13 + 22x14 + 33x21 + 38x22 + 44x23

+34x24 + 25x31 + 36x32 + 32x33 + 33x34

+ 46x41 + 38x42 + 49x43 + 55x44 + β
subject to

4∑
j=1

x1j = 9;
4∑
j=1

x2j = 18;
4∑
j=1

x3j = 20;
4∑
j=1

x4j = 12.

4∑
i=1

xi1 = 18;
4∑
i=1

xi2 = 13;
4∑
i=1

xi3 = 12;
4∑
i=1

xi4 = 16.

Solving the fuzzy programming technique we get the objective values as,

Z1(x) = 1074 and Z2(x) = 2711.74.

The solutions for the above objective values are mentioned below,
x11 = 9, x21 = 9, x24 = 9, x33 = 12, x34 = 7, x42 = 12 and x11 = 6.1, x12 = 2.8, x22 = 10.1, x24 = 7.8, x31 =

11.8, x33 = 8.18, x43 = 3.81, x44 = 8.18.
To illustrate the proposed method, we consider the following example of multi-objective fractional trans-

portation problem with interval cost.

Minimize Z1(x) =
4∑
i=1

4∑
j=1

[
C1
Lij
, C1

Rij

]
[
D1
Lij
, D1

Rij

]xij
Minimize Z2(x) =

4∑
i=1

4∑
j=1

[
C2
Lij
, C2

Rij

]
[
D2
Lij
, D2

Rij

]xij
subject to

4∑
i=1

4∑
j=1

x1j = [8, 8]
4∑
i=1

4∑
j=1

x2j = [18, 18]

4∑
i=1

4∑
j=1

x3j = [21, 21]
4∑
i=1

4∑
j=1

x4j = [12, 11]

4∑
i=1

4∑
j=1

xi1 = [17, 17]
4∑
i=1

4∑
j=1

xi2 = [13, 13]

4∑
i=1

4∑
j=1

xi3 = [12, 12]
4∑
i=1

4∑
j=1

xi4 = [16, 16]

xij ≥ 0, i, j = 1, 2, 3, 4,
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where

C1
Rij

=

 (3, 6, 8)(2, 6, 9)(1, 3, 8)(1, 3, 9)(4, 6, 12)(2, 6, 16)(6, 7, 8)(5, 7, 29)
(2, 3, 4)(1, 3, 5)(6, 8, 12)(5, 8, 18)(2, 3, 4)(1, 3, 18)(0.5, 1, 5.5)(0.25, 1, 7.75)

(5, 7, 13)(3, 7, 17)(8.5, 9, 9.5)(7, 9, 11)(2, 3, 4)(1, 3, 13)(5, 6, 7)(3, 6, 9)
(3, 6, 9)(2, 6, 12)(5, 6, 9)(3, 6, 12)(2, 5, 9)(1, 5, 17)(2, 7, 12)(1, 7, 19)



D1
Rij

=

 (6, 7, 12)(5, 7, 15)(17, 20, 21)(11, 20, 22)(15, 16, 21)(14, 16, 24)(10, 11, 12)(9, 11, 13)
(1.5, 2, 4.5)(1, 2, 10)(13, 14, 15)(11, 14, 17)(14, 15, 20)(13, 15, 23)(10, 11, 12)(8, 11, 13)

(1.5, 3, 4.5)(1, 3, 9)(2.5, 4, 5.5)(2, 4, 10)(2, 3, 5)(1, 3, 5)(5, 6, 12)(3, 6, 16)
(3, 6, 8)(2, 6, 12)(6, 7, 8)(3, 7, 9)(6, 11, 16)(5, 11, 17)(2, 6, 7)(1, 6, 8)



C2
Rij

=





(3, 6, 10)(4, 6, 9)(5, 8, 12)(6, 8, 12)(4, 8, 13)(6, 8, 15)(3, 8, 14)(6, 8, 16)
(6.5, 8.5, 12)(10.5, 8.5, 9.5)(6.5, 9.5, 12.5)(7, 9.5, 12.5)(6, 9.5, 16)(6, 9.5, 14)(5, 7, 13)(3, 7, 17)

(2.5, 4, 5.5)(2, 4, 10)(6, 8, 12)(2, 8, 18)(2, 7, 13)(6, 7, 10)(4, 13, 23)(6, 13, 29)
(6, 8, 17)(5, 8, 17)(12, 16, 21)(7, 16, 26)(5, 9, 19)(6, 9, 19)(9.5, 12, 19.5)(7.5, 12, 20)





D2
Rij

=

 (6, 7, 12)(3, 7, 15)(10, 13, 19)(5, 13, 22)(7, 14, 22)(10, 14, 19)(4, 11, 21)(3, 11, 21)
(12, 16, 21)(9, 6, 24)(15, 19, 24)(17, 19, 26)(18, 22, 28)(20, 22, 29)(12, 18, 28)(16, 18, 21)

(6, 12, 19)(7, 12, 23)(12, 17, 23)(10, 17, 28)(9, 16, 27)(10, 16, 24)(0, 16, 26)(8, 16, 28)
(19, 23, 29)(20, 23, 29)(12, 19, 29)(14, 22, 31)(22, 24, 31)(21, 24, 33)(22, 27, 33)(21, 27, 35)

 .
By Definition 3.10, the equivalent multi-objective deterministic problem as,

Minimize Z1
R(x) =

4∑
i=1

4∑
j=1

[
C1
Rij

]
[
D1
Rij

]xij Minimize Z2
R(x) =

4∑
i=1

4∑
j=1

[
C2
Rij

]
[
D2
Rij

]xij
Minimize Z1

C(x) =
4∑
i=1

4∑
j=1

[
C1
Rij

]
[
D1
Rij

]xij Minimize Z2
C(x) =

4∑
i=1

4∑
j=1

[
C2
Rij

]
[
D2
Rij

]xij
subject to

4∑
j=1

x1j ≤ 2
4∑
j=1

x1j ≥ 10

4∑
j=1

x2j ≤ 18
4∑
j=1

x2j ≥ 18

4∑
j=1

x3j ≤ 21
4∑
j=1

x3j ≥ 21

4∑
j=1

x4j ≤ 11
4∑
j=1

x4j ≥ 12

4∑
i=1

xi1 ≤ 17
4∑
i=1

xi1 ≥ 17

4∑
i=1

xi2 ≤ 13
4∑
i=1

xi2 ≥ 13

4∑
i=1

xi3 ≤ 12
4∑
i=1

xi3 ≥ 12

4∑
i=1

xi4 ≤ 16
4∑
i=1

xi4 ≥ 16
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as well as the condition stated in

C1
Rij

=

 8.5 8.5 14 18.5
4.5 15 11 6.6
15 10.2 8.5 8

10.5 10.5 13 15.5

 C2
Rij

=

 9.5 12 14 15
10.75 12.5 15 15
7.75 18 11.5 26
17 26 19 19.75



D1
Rij

=

13.5 21.5 22.5 12.5
7.25 16 21.5 12.5
6.75 7.75 5 14
10 8.5 16.5 7.5

 D2
Rij

=

13.5 20.5 20.5 21
22.5 25 28.5 24.5
21 25.5 25.5 27
29 30 32 34



C1
cij

=

6 3 6 7
3 8 3 1
7 9 3 6
6 6 5 7

 C2
cij

=

 6 8 8 8
8.5 9.5 9.5 7
4 8 9.5 13
8 16 7 12



D1
cij

=

7 20 16 11
2 14 15 11
3 15 3 6
6 11 11 6

 D2
cij

=

 7 13 14 11
16 19 22 18
12 17 16 16
23 19 24 27

 .
The optimal solution to the problem is obtained by using the following proposed steps of the previous section,

those steps are presented as well.





Minimize Z1
R(x) =

8.5 ∗ x11 + 8.5 ∗ x12 + 14 ∗ x13 + 18.5 ∗ x14 + 4.5 ∗ x21 + 15 ∗ x22 + 11 ∗ x23

+6.6 ∗ x24 + 15 ∗ x31 + 10.2 ∗ x32 + 8.5 ∗ x33 + 8 ∗ x34

+ 10.5 ∗ x41 + 10.5 ∗ x42 + 13 ∗ x43 + 15.5 ∗ x44 + α
13.5 ∗ x11 + 21.5 ∗ x12 + 22.5 ∗ x13 + 12.5 ∗ x14 + 7.25 ∗ x21 + 16 ∗ x22 + 21.5 ∗ x23

+12.5 ∗ x24 + 6.75 ∗ x31 + 7.75 ∗ x32 + 5 ∗ x33 + 14 ∗ x34

+ 10 ∗ x41 + 8.5 ∗ x42 + 16.5 ∗ x43 + 7.5 ∗ x44 + β

Minimize Z2
R(x) =

9.5 ∗ x11 + 12 ∗ x12 + 14 ∗ x13 + 15 ∗ x14 + 10.75 ∗ x21 + 12.5 ∗ x22 + 15 ∗ x23

+15 ∗ x24 + 7.75 ∗ x31 + 18 ∗ x32 + 11.5 ∗ x33 + 26 ∗ x34

+ 17 ∗ x41 + 26 ∗ x42 + 19 ∗ x43 + 19.75 ∗ x44 + α
13.5 ∗ x11 + 20.5 ∗ x12 + 20.5 ∗ x13 + 21 ∗ x14 + 22.5 ∗ x21 + 25 ∗ x22 + 28.5 ∗ x23

+24.5 ∗ x24 + 21 ∗ x31 + 25.5 ∗ x32 + 25.5 ∗ x33 + 27 ∗ x34

+ 29 ∗ x41 + 30 ∗ x42 + 32 ∗ x43 + 34 ∗ x44 + β
subject to

x11 + x12 + x13 + x14 = 9
x21 + x22 + x23 + x24 = 18
x31 + x32 + x33 + x34 = 20
x41 + x42 + x43 + x44 = 12
x11 + x21 + x31 + x41 = 18
x12 + x22 + x32 + x42 = 13
x13 + x23 + x33 + x43 = 12
x14 + x24 + x34 + x44 = 16

xi,j ≥ 0.

(1) The optimal solution to each single objective transportation problem is

[x12 = 9, x21 = 6, x23 = 12, x32 = 4, x34 = 16, x41 = 12]
[x12 = 5, x14 = 4, x22 = 8, x23 = 10, x31 = 18, x33 = 2, x44 = 12] .
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(2) The objective values are

Z1
R(x) = 0.6095 Z2

R(x) = 0.510
Z1
C(x) = 0.4045 Z2

C(x) = 0.3822

(3) The upper and lower bounds of each objective function can be written as follows:
0.311 ≤ 0.40 ≤ 0.6, 0.32 ≤ 0.38 ≤ 0.5
Hence, L1 = 0.311 U1 = 0.6 L2 = 0.32 U2 = 0.5

(4) The model is

Minimize φ
subject to

1
2 tanh

[[
Uq+Lq

2 −
m∑
i=1

n∑
j=1

Cq
R,C

q
C

Dq
R,D

q
C
xij

]
αq

]
+ 1

2 +D−q −D+
q = 1.

where,

Z1
R =

8.5 ∗ x11 + 8.5 ∗ x12 + 14 ∗ x13 + 18.5 ∗ x14 + 4.5 ∗ x21 + 15 ∗ x22 + 11 ∗ x23

+6.6 ∗ x24 + 15 ∗ x31 + 10.2 ∗ x32 + 8.5 ∗ x33 + 8 ∗ x34

+ 10.5 ∗ x41 + 10.5 ∗ x42 + 13 ∗ x43 + 15.5 ∗ x44 + α
13.5 ∗ x11 + 21.5 ∗ x12 + 22.5 ∗ x13 + 12.5 ∗ x14 + 7.25 ∗ x21 + 16 ∗ x22 + 21.5 ∗ x23

+12.5 ∗ x24 + 6.75 ∗ x31 + 7.75 ∗ x32 + 5 ∗ x33 + 14 ∗ x34

+ 10 ∗ x41 + 8.5 ∗ x42 + 16.5 ∗ x43 + 7.5 ∗ x44 + β

Z2
R =

9.5 ∗ x11 + 12 ∗ x12 + 14 ∗ x13 + 15 ∗ x14 + 10.75 ∗ x21 + 12.5 ∗ x22 + 15 ∗ x23

+15 ∗ x24 + 7.75 ∗ x31 + 18 ∗ x32 + 11.5 ∗ x33 + 26 ∗ x34

+ 17 ∗ x41 + 26 ∗ x42 + 19 ∗ x43 + 19.75 ∗ x44 + α
13.5 ∗ x11 + 20.5 ∗ x12 + 20.5 ∗ x13 + 21 ∗ x14 + 22.5 ∗ x21 + 25 ∗ x22 + 28.5 ∗ x23

+24.5 ∗ x24 + 21 ∗ x31 + 25.5 ∗ x32 + 25.5 ∗ x33 + 27 ∗ x34

+ 29 ∗ x41 + 30 ∗ x42 + 32 ∗ x43 + 34 ∗ x44 + β

Z1
C =

6 ∗ x11 + 3 ∗ x12 + 6 ∗ x13 + 7 ∗ x14 + 3 ∗ x21 + 8 ∗ x22 + 3 ∗ x23

+1 ∗ x24 + 7 ∗ x31 + 9 ∗ x32 + 3 ∗ x33 + 6 ∗ x34

+ 6 ∗ x41 + 6 ∗ x42 + 5 ∗ x43 + 7 ∗ x44 + α
7 ∗ x11 + 20 ∗ x12 + 16 ∗ x13 + 11 ∗ x14 + 2 ∗ x21 + 14 ∗ x22 + 15 ∗ x23

+11 ∗ x24 + 3 ∗ x31 + 15 ∗ x32 + 3 ∗ x33 + 6 ∗ x34

+ 6 ∗ x41 + 11 ∗ x42 + 11 ∗ x43 + 6 ∗ x44 + β

Z2
C =

6 ∗ x11 + 8 ∗ x12 + 8 ∗ x13 + 8 ∗ x14 + 8.5 ∗ x21 + 9.5 ∗ x22 + 9.5 ∗ x23

+7 ∗ x24 + 4 ∗ x31 + 8 ∗ x32 + 9.5 ∗ x33 + 13 ∗ x34

+ 8 ∗ x41 + 16 ∗ x42 + 7 ∗ x43 + 12 ∗ x44 + α
7 ∗ x11 + 13 ∗ x12 + 14 ∗ x13 + 11 ∗ x14 + 16 ∗ x21 + 19 ∗ x22 + 22 ∗ x23

+18 ∗ x24 + 12 ∗ x31 + 17 ∗ x32 + 16 ∗ x33 + 16 ∗ x34

+ 23 ∗ x41 + 19 ∗ x42 + 24 ∗ x43 + 27 ∗ x44 + β
.

The problem was solved by the linear interactive global optimization (LINGO) [16] software and the optimal
compromise solution is presented as follows:

Z1 =
[
Z1
R, Z

1
C

]
= [0.6, 0.404] Z2 =

[
Z2
R, Z

2
C

]
= [0.510, 0.3822]

D+
1 = [2.49, 1.07] D+

2 = [2.49, 0.95] D−1,2 = [0] and φ = 0.1.

7. Comparison

In [9], the linear multi-objective transportation problem representing all parameters as (λ, ρ) interval valued
fuzzy numbers, and it is applied to all single and multi-objective transportation problem occuring in real life
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problems. Hence it is better to use the proposed method. While comparing with the existing paper, the proposed
method has dominated solution and existing paper has non-dominated solution.

In [21], a special type of hyperbolic membership function is used and a non-linear optimization model is de-
veloped to solve a multi-objective solid transportation problem with interval cost, when compared the proposed
method has dominated solution and existing paper has non-dominated solution.

In this paper multi-objective fractional transportation problem representing all parameters as (λ, ρ) interval
valued fuzzy numbers, and it is applied to single and multi-objective transportation problem occuring in real
life problems. Hence fractional transportation problem are very useful in our daily lives and learning them is
a very useful and important skill in our daily lives, and helps with many daily tasks and jobs. Also in this
paper a goal programmic approach is used with a special type of hyperbolic membership function, and a non-
linear optimization also developed to solve a mult-objective solid transportation problem with interval cost. As
compared to the above papers this paper shows greater domination.

The comparison of the existing papers and proposed method are tabulated below.

Figure 4. Comparison Table.

8. Conclusion

Transportation problem with fractional objective function are widely used as performance measure in many
real life situations. Goal programming is a useful technique in operational research and decision theory, which
permit us to find solutions which fulfill some goals. The advantage of a fuzzy programming technique is that, for a
goal programming, approach is utilizes in order to allow for the optimization of conflicting goals while permitting
an explicit consideration of an existing decision environment. A special type of hyperbolic membership function
is used and a non linear optimization model is developed to solve a multi-objective fractional transportation
problem with fuzzy parameters, which can be solved by using one of the software LINGO. These results shows
great promise in developing an efficient solution for multi-objective fractional transportation problems and this
can be extended for all engineering applications in the future to achieve a global solution.
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