
DNA damage and physiological responses in an Indian
major carp Labeo rohita exposed to an antimicrobial agent
triclosan

Devan Hemalatha & Bojan Nataraj &
Basuvannan Rangasamy & Chellappan Shobana &

Mathan Ramesh

Received: 18 September 2018 /Accepted: 20 May 2019 /Published online: 20 June 2019
# Springer Nature B.V. 2019

Abstract This study is aimed to evaluate the toxic
effects of triclosan (TCS) in an Indian major carp Labeo
rohita. The 96-h LC50 value of triclosan to L. rohitawas
found to be 0.39 mg L−1. Fish were exposed to two
sublethal concentrations (0.039 mg L−1, treatment I and
0.078 mg L−1, treatment II) of TCS for 35 days, and
certain hematobiochemical, antioxidant, histopatholog-
ical responses were measured. Compared to the control
group, there was a significant (p < 0.05) decrease in the
values and genotoxicity of hematological parameters
such as hemoglobin (Hb), hematocrit (Hct), and eryth-
rocyte (RBC) in TCS-exposed fish, but the values of
leucocyte count (WBC), mean corpuscular volume
(MCV), and mean corpuscular hemoglobin (MCH)
were found to be increased. A biphasic response inmean
corpuscular hemoglobin concentration (MCHC) value
was observed during the study period (35 days). Signif-
icant (p < 0.05) alterations in plasma biochemical pa-
rameters (glucose and protein), electrolytes (Na+, K+,
and Cl−), and transaminases (GOT and GPT) were ob-
served in fish treated with TCS in both treatments. Gill
Na+/K+-ATPase activity was found to be decreased in

fish treated with TCS in both treatments. Enzymatic and
nonenzymatic antioxidant index levels have also fluctu-
ated in all the tissues (gill, liver, and kidney). The
histological lesions were comparatively more severe in
the gill than the liver and kidney. Comet assay showed
DNA damage on exposure at two sublethal concentra-
tions. The present results suggest that TCS is highly
toxic to fish even at sublethal concentrations.
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Introduction

The accumulation and persistence of chemicals in the
aquatic environment lead to the deterioration of water
quality and can cause long-term adverse effects in aquatic
environments (Toni et al. 2010). Pharmaceuticals and per-
sonal care products (PPCPs) have gained a great deal of
attention of both public as well as the scientific community
as being one of themost significant emerging environmen-
tal contaminants of this century (Matozzo et al. 2012b;
Geiger et al. 2016). PCPs are used to improve the quality
of daily life and include products such as lotions, tooth-
paste, fragrances, shampoos, antibacterial soaps, deter-
gents, insect repellents, and other cosmetics (Boxall et al.
2012; Hopkins andBlaney 2016). Unlike pharmaceuticals,
PCPs are intended for external use on the human body and
some ingredients are not subjected tometabolic alterations;
therefore, large quantities of PCPs enter the environment
through regular usage (Ternes et al. 2004; Zhang et al.
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2015). Even though the concentration of these compounds
in the environment is tiny, there is a concern about their
potential long-term impacts to ecological and public health
(Stephanie and Fraker 2004: Serra-Roig et al. 2016).

Triclosan (TCS), 5-chloro-2-(2,4-dichlorophenoxy)-
phenol, is an antimicrobial agent added to a variety of
consumer products such as cosmetics (i.e., deodorants,
soaps, hand washes, toothpastes, domestics, and medi-
cal disinfectants), household detergents, plastics, skin
care creams, textiles, and surgical scrub solutions (Ahn
et al. 2008; Liang et al. 2013; Hu et al. 2016). The
content of TCS in these products is typically in the range
of 0.1 to 0.3% by weight (Sabaliunas et al. 2003; Miller
et al. 2008). On the global front, the production of TCS
has exceeded 1500 tons per year (Singer et al. 2002).
Because of their widespread use, TCS has been detected
in a wide variety of environmental samples including
raw and treated wastewater, natural streams, sewage
sludge, fish, and also human samples of urine, plasma,
and breast milk (Adolfsson-Erici et al. 2002; Han et al.
2016). For example, TCS has been detected in the range
between 18 and 98 ng L−1 in Swiss freshwaters (Singer
et al. 2002) and 30 to 90 ng L−1 in Germany (Wind et al.
2004). Furthermore, a high level of TCS has been re-
ported in wastewater treatment plants (WWTPs) in the
USA (608–86,200 ng L−1), Europe (52–21,900 idem),
and Asia (140–2301 ng L−1) (Bedoux et al. 2012).

Even though trace amounts of TCS enter the aquatic
environment, they may still have some significant biolog-
ical effects due to its high lipophilicity (logKow 4.8). TCS is
persistent in the environment with a half-life of at least
11 days in river water (Bester 2005) and 18 to 108 days
in soil (Luzano et al. 2012).Amajor environmental concern
is the tendency of TCS to be transformed into a series of
chlorinated triclosan derivatives (CTDs) (Latch et al. 2005).
In addition, TCSmay be biotransformed intomethyl-triclo-
san, a more persistent compound than the parent com-
pound, by biological methylation (Lindstrom et al. 2002).
The aquatic organisms that appeared most sensitive to the
toxic effects of TCS were algae, molluscs, crustaceans, and
fish (Chalew and Halden 2009). Accumulation of TCS has
been reported in the bile of fish (Adolfsson-Erici et al. 2002;
Houtman et al. 2004). Likewise, TCS has also been detect-
ed in the range of 750 to > 10,000 pg g−1 of wet weight in
the plasma of fish collected fromDetroit River (Valters et al.
2005). Low concentrations of TCS (313 μg L−1,
1.47 mg L−1, and 250 μg L−1) delayed the hatching time
of fertilized eggs in medaka and decreased the hatchability
of each egg (Ishibashi et al. 2004), altered androgenic or

estrogenic pathways in fish indicating its endocrine disrup-
tion potentials (Foran et al. 2000; Ishibashi et al. 2004),
altered the enzymatic activities (Liang et al. 2013), and
impaired lipid metabolism in zebra fish (Ho et al. 2016).

Biochemical responses in organisms against environ-
mental stress are widely used as early warning signs and
are known as biomarkers of exposure. Inhibition and
induction of biomarkers is a good approach to measure
the potential impact of pollutants on environmental
organisms (Rendon-von Osten et al. 2005). The most
frequently used biomarkers of exposure to xenobiotics
in fish are blood index, biochemical status, electrolytes,
marker enzymes, detoxification of reactive oxygen spe-
cies, DNA damage, and histopathological examinations
of vital organs (Mayer et al. 1992; Wendelaar Bonga
1997; Mela et al. 2007). Changes in the hematological,
biochemical (glucose and protein), electrolytes (Na+,
K+, and Cl−), and enzymological (GOT, GPT, and
Na+/K+-ATPase) parameters of fish exposed to toxicants
indicate the physiological and immune status and health
status of the fish (Ramesh et al. 2018). In general, the
a l te ra t ions in hemato log ica l , b iochemica l ,
ionoregulation, and enzymological parameters of fish
provide warning signals in the field of environmental
risk assessment.

The generation of the reactive oxygen species (ROS)
in organisms exposed to pollutants can produce oxida-
tive damage to macromolecules. To counteract the oxi-
dative damage, enzymatic and nonenzymatic antioxi-
dants such as superoxide dismutase (SOD), catalase
(CAT), glutathione-S-transferase (GST), glutathione
peroxidase (GPx), and reduced glutathione (GSH) are
produced in living organisms, and the alteration of their
activities is widely used as potential biomarkers to as-
sess the toxicity of aquatic pollutants (Wu et al. 2011;
Maharajana et al. 2018). Likewise, generation of ROS
also affects the membrane lipids that undergo peroxida-
tion, and lipid peroxidation (LPO) level has been widely
used in toxicological assays (Hemalatha et al. 2016).
The single-cell gel electrophoresis assay also known as
comet assay is widely used in aquatic toxicology to
detect DNA strand breaks in fish exposed to toxicants
(Lin et al. 2010). The health condition of the fish can
also be evaluated by histopathological studies which
provide the direct effects of the toxicants on organs/
tissues (Figueiredo-Fernandes et al. 2007).

TCS level has been reported in the Indian rivers such
as Kaveri, Vellar, and Tamiraparani (Ramaswamy et al.
2011). These freshwater bodies harbor many fish
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species including the Indian major carp Labeo rohita
and fishing is a regular practice. Moreover, the informa-
tion on the toxicity of TCS on aquatic organisms is
limited. Furthermore, to our best knowledge, there is
no report on the impact of TCS on Indian major carps at
sublethal concentrations. Hence, the objectives of the
present study are to determine the 96-h LC50 value of
triclosan and to investigate the sublethal toxicity of
triclosan on hematological, biochemical, enzymatic,
and nonenzymatic antioxidants and histopathological
and genotoxic effects in the Indian major carp L. rohita.

Materials and methods

Chemicals

Ana l y t i c a l g r a d e PPCP, 5 - ch l o r o - 2 - ( 2 , 4 -
dichlorophenoxy) phenol (TCS, CAS # 3380345, 97%
purity), and dimethyl sulfoxide (DMSO, CAS # 67-68-
5, 99.9% purity) were purchased from Sigma-Aldrich,
USA. TCS was dissolved in DMSO to make a stock
solution at a concentration of 1000 mg L−1. DMSO in
the test solution was kept below 0.1%.

Test fish and acclimatization

The Department of Zoology, School of Life Sciences,
Bharathiar University, Coimbatore 46, Tamil Nadu, In-
dia, has been registered with the Committee for the
Purpose of Control and Supervision of Experiment on
Animals (CPCSEA), Government of India. The exper-
iments and the handling of the organisms were carried
out as per the guidelines of the CPCSEA.

Fingerlings of Indian major carp Labeo rohita (14 ±
0.20 g in body weight and 7.3 ± 0.04 cm in body length)
were collected from a government fish farm, Aliyar,
Tamil Nadu, India. The fish were held in a large cement
tank (1000 L capacity) containing 1000 L of freshwater
with continuous aeration, and they were acclimated to
the experimental condition (temperature (28.0 ± 1.0 °C),
pH (7.4 ± 0.2), and total hardness (16.2 ± 0.4 mg L−1))
for a month. Fish were fed ad libitum once in a day with
rice bran and groundnut oil cake, and 75% of the water
volume was renewed to assure water quality. The excess
food material and fecal matter were also removed. Feed-
ing was stopped 24 h prior to the experiment.

Determination of the median lethal concentration
and toxicity symptoms

Prior to performing 96 h static renewal acute tox-
icity tests (LC50), preliminary range-finding tests
(data not shown) were conducted to determine the
appropriate dose ranges for conducting the defini-
tive test (APHA 1998). Briefly, a set of 10 fish were
randomly selected and carefully distributed to each of the
eight TCS concentrations. The experiment was repeated in
triplicate to obtain the LC50 96-h value of the test chemical
for the target species. A control without TCS and a solvent
control (DMSO) for each concentration were also run
simultaneously with three replicates. The fish were not
fed during the experiment in order to maintain water
quality. The survival at the end of every 24, 48, 72, and
96 hwere recorded. Dead fish were removed immediately.

Treatment with sublethal concentrations

To evaluate the TCS toxicity at sublethal concentrations,
fish were randomly collected from the stock and were
housed in four glass aquarium (100 L capacity) with 50
fish in each; 0.039 mg L−1 (treatment I) and
0.078 mg L−1 (treatment II) of TCS were introduced
into two glass aquarium tanks. Fish were exposed to the
above concentrations of TCS for 35 days. The remain-
ing two glass aquaria were maintained as control (no
toxicant) and solvent control (DMSO). Three replicates
were also maintained simultaneously along with treat-
ments and control groups, with a similar setup. The
glass aquariums were aerated continuously, and at the
end of every 24 h, the test water was renewed, and the
freshly prepared TCS solution was added to maintain
the TCS at a constant level.

Fish sampling and homogenization

Blood samples were collected from the control and
TCS-exposed groups prior to anesthetizing of fish
to prevent hemolysis (McKnight 1966). The blood
samples were transferred into clean vials and he-
matological parameters were immediately deter-
mined. A portion of the diluted blood sample
was used for the genotoxicity assay. The remainder
of the blood samples was centrifuged for 15 min
at 10,000 rpm; the plasma was withdrawn and
transferred into clean vials and kept at low tem-
perature (4 °C) until use (for glucose, protein
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electrolytes, glutamic oxaloacetic transaminase
(GOT), and glutamic pyruvic transaminase
(GPT)). After drawing the blood, fish were washed
with double-distilled water and blotted dry with
absorbent paper, and the tissues such as the gill,
liver, and kidney were quickly removed and stored
at − 80 °C. Tissues were weighed and homoge-
nized with potassium phosphate buffer (pH 7.0,
containing 0.5 mM EDTA) in ice-cold condition.
Before storing, a portion of the tissue homogenate
was used for the estimation of LPO activity, and
the remaining portion was centrifuged at 12,000g
for 20 min at 4 °C and the supernatant was used
for the other antioxidant assays. For histopatholog-
ical studies, gill, liver, and kidney tissues were
carefully dissected and fixed in 35% formaldehyde
solution.

Hematological analysis

The whole blood was used for the hematological assays
such as erythrocyte (RBC) and leukocyte (WBC) counts
(Rusia and Sood Routine 1992), hemoglobin (Hb)
(Drabkin 1946), and hematocrit (HCT) (Nelson and
Morris 1989). The other hematological indices like
mean corpuscular volume (MCV), mean cell hemoglo-
bin (MCH), and mean cell hemoglobin concentration
(MCHC) were calculated using standard formulas.

Plasma biochemical analysis

Biochemical parameters such as glucose and protein in
plasma of fish were estimated following standard
procedures. Plasma glucose was estimated by the
method of Cooper and Mc Daniel (1970) and protein
by the method of Lowry et al. (1951).

Analysis of plasma electrolytes

Plasma electrolytes such as Na+, K+, and Cl− were
estimated using commercially available kits. Na+ and
K+ were analyzed by the method of Maruna (1958) and
Cl− was estimated by the method of Tietz (1990) and
Young et al. (1975) using Diagnostic Reagent kit sup-
plied by Monozyme, In vitro Diagnostics, Secundera-
bad, Hyderabad, India. All the colorimetric assays were
carried out using UV–VIS spectrophotometer.

Estimation of GOT and GPT activity

Plasma GOT and GPT activities were estimated follow-
ing the method of Reitman and Franckel (1957) using
commercially available kits.

Estimation of gill Na+/K+-ATPase activity

100 mg of gill tissue was separated from the control and
TCS-treated fish, homogenized with 1.0 mL of 0.1 M
Tris-HCl buffer (pH 7.4), and centrifuged at 1000 rpm at
4 °C for 15 min, and the supernatant was used as an
enzyme source for the analysis of Na+/K+-ATPase ac-
tivity (Shiosaka et al. 1971).

Antioxidant indices

Indices of oxidative stress

LPO was determined by the thiobarbituric acid (TBA)
reaction with malondialdehyde (MDA), as the product
formed due to peroxidation of lipids by the method of
Devasagayam and Tarachand (1987). The MDA of the
samples was expressed as nanomoles of MDA formed/
mg protein.

Antioxidant enzyme assays

Superoxide dismutase (SOD; EC.1.15.1.1) activity was
estimated following the method of Marklund and
Marklund (1974) based on the autoxidation of pyrogal-
lol, and the activity was expressed as SOD per mg of
protein. The catalase (CAT; EC.1.11.1.6) activity was
determined according to Aebi (1974) by the decrease in
absorbance at 240 nm due to H2O2 consumption, and
the enzyme activity was expressed in micromoles H2O2

consumed/min/mg protein. Glutathione-S-transferase
(GST; EC.2.5.1.18) activity was estimated bymeasuring
the conjugation of 1-chloro-2,4-dinitrobenzene with re-
duced glutathione at 340 nm (Habig et al. 1974) and the
enzyme activity was expressed as micromoles of CDNB
conjugate formed/min/mg protein. Glutathione peroxi-
dase (GPx; EC.1.11.1.9) activity was assayed by the
method of Rotruck et al. (1973), and the enzyme activity
was expressed as units/mg protein (one unit is the
amount of enzyme that converts 1 μmol GSH to GSSG
in the presence of H2O2/min).
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Reduced glutathione assay

Reduced glutathione level was measured at 412 nm
using the method described by Ellman (1959), and the
level of glutathione was expressed as micrograms of
GSH formed/mg protein.

Histopathological analysis

Liver tissues were fixed in 10% neutral buffered forma-
lin for 24 h, passed through graded series of alcohol,
cleared with xylene, embedded in paraffin wax, sec-
tioned (7 μm), and stained with hematoxylin and eosin
(HE). Histopathological assessment was done and
photographed using Leica photomicroscope.

Single-cell gel electrophoresis

Single-cell gel electrophoresis/comet assay was per-
formed according to Singh et al. (1988) with some
modifications. A 30-μL subaliquot of diluted blood
sample was taken, mixed with 100 μL of 0.65% low
melting agarose (LMA) in PBS, and pipetted onto fully
frosted slides with precoated layer of 100 μL of 0.65%
normal agarose followed by incubation in a refrigera-
tor for solidification (10min). Subsequently, the slides
were immersed in freshly prepared cold lysing solution
(2.5 M NaCl, 100 M EDTA-2Na, 10 Mm Tris, 10%
DMSO, 1% Na sarcosinate, 1%Triton-X; pH 10.0) for
4 h in a refrigerator. Further, the slides were transferred
to an electrophoresis unit (15 × 10 cm) filled with de-
naturation buffer (300 mM NaOH, 1 mM EDTA, pH
13.0) for 20min and followed by electrophoresis in the
same buffer for 20 min at 0.6 V/cm and 300 mA. The
buffer volume was adjusted to cover the slides. Then
slides were neutralized with Tris buffer (pH 7.5) for
2min and stainedwith ethidiumbromide (20μgmL−1)
for microscopic examination. Approximately, 100
cells per slide were scored randomly and examined
using a florescent microscope, and the comet images
were assayed using Comet Assay Software Project
(CASP). The DNA damage was quantified as % DNA
tail which indicates damage in the cell (Imanikia et al.
2016).

Statistical analysis

Data are expressed as mean ± SE. The data were nor-
malized by Levene’s test. The statistical significance

was evaluated by using one-way ANOVA following
Duncan’s multiple range test (DMRT). Differences were
considered significant at p < 0.05 using the statistical
software SPSS version 20.

Results

Determination of LC50 and behavioral observation

The calculated 96-h LC50 value (95% confidence limits)
of TCS to L. rohita was 0.39 mg L−1. During the
exposure period, behavioral changes such as erratic
movement, rapid operculum movements, swimming at
the water surface, and gulping for air were noticed in
fish exposed to TCS.

During the sublethal exposure period, fish ex-
posed to TCS concentrations exhibited behavior
similar to the control group in the earlier stages,
but at later stages, fish exhibited abnormal behav-
ioral changes in the form of sluggish movement,
swimming imbalance, and rapid opercular move-
ment. Clinically, TCS-exposed fish showed in-
creased mucous secretion and hemorrhages on the
ventral skin surface. There were no mortalities
throughout the exposure period. Since no significant
differences were observed between the control and
DMSO group, the toxicant-free group (control) was
maintained as the reference group for comparison.

Hematological parameters

Hematological responses of L. rohita to sublethal con-
centrations of TCS (treatments I and II) showed a sig-
nificant decrease in Hb, Hct, and RBC values compared
to the control group. However, the values of WBCs,
MCH, and MCV were increased with increasing con-
centrations of TCS. A biphasic response was observed
for MCHC. Statistical analysis showed that the changes
in hematological parameters were found to be signifi-
cant (p < 0.05) and concentration-dependent (Table 1).

Biochemical and electrolytes analysis

Mean values of plasma glucose and protein levels were
significantly decreased (p < 0.05) in the TCS-exposed
group (treatments I and II) when compared with the
control group (Table 2). Sodium level was increased
significantly (p < 0.05) in the TCS-exposed group in
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both the treatments compared to the control. In contrast
to sodium level, potassium level was found to be de-
creased in both treatments. A significant increase
(p < 0.05) in plasma chloride (except at the end of the
21st day in treatment I) was noticed when compared
with their respective control group (Table 2).

Enzymological parameters

Na+/K+-ATPase activity in the gill was significantly
(p < 0.05) decreased in both TCS-exposed groups when
compared to the control group (Table 2). Moreover, the
decreases in Na+/K+-ATPase activity in the gills were

Table 1 Hematological indices in Labeo rohita exposed to sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for 35 days

Parameters Exposure period (days) Control 0.039 mg L−1 0.078 mg L−1

Hb (g/dL) 7 5.71 ± 0.25a 5.13 ± 0.14a,b (− 10.15) 4.34 ± 0.33b (− 23.93)
14 5.93 ± 0.25a 5.08 ± 0.29b (− 14.33) 3.99 ± 0.32b (− 32.72)
21 6.68 ± 0.21a 4.93 ± 0.32b (− 26.19) 3.54 ± 0.38c (− 47)
28 6.92 ± 0.19a 3.71 ± 0.29b (− 46.38) 2.72 ± 0.27c (− 60.69)
35 6.98 ± 0.25a 3.11 ± 0.26b (− 55.44) 1.96 ± 0.34c (− 71.91)

Hct (%) 7 17.45 ± 0.31a 15.47 ± 0.31b (− 11.34) 13.15 ± 0.22 c (− 24.64)
14 17.77 ± 0.30a 15.24 ± 0.16b (− 14.24) 12.30 ± 0.24c (− 30.68)
21 18.82 ± 0.26a 13.54 ± 0.21b (− 28.05) 11.04 ± 0.23c (− 41.34)
28 19.06 ± 0.29a 9.88 ± 0.28b (− 48.16) 8.13 ± 0.37c (− 57.34)
35 19.75 ± 0.24a 9.10 ± 0.26b (− 53.92) 5.34 ± 0.29c (− 72.94)

RBC (millions/cu.mm) 7 6.37 ± 0.29a 5.36 ± 0.18b (− 15.85) 4.52 ± 0.26c (− 29.04)
14 6.20 ± 0.29a 4.94 ± 0.25b (− 20.32) 4.11 ± 0.24c (− 33.7)
21 7.04 ± 0.21a 4.67 ± 0.22b (− 33.64) 3.10 ± 0.35c (− 55.96)
28 7.08 ± 0.25a 3.23 ± 0.30b (− 54.37) 2.14 ± 0.30c (− 69.77)
35 7.15 ± 0.11a 2.98 ± 0.27b (− 58.32) 1.39 ± 0.22c (− 80.55)

WBC (1000/cu. mm) 7 82.85 ± 0.26c 98.07 ± 0.32 b (+ 15.83) 112.17 ± 0.35a (+ 32.08)

14 83.49 ± 0.34c 107.16 ± 0.15b (+ 28.35) 118.21 ± 0.31a (+ 42.28)

21 83.15 ± 0.32c 115.93 ± 0.25b (+ 39.42) 126.11 ± 0.23a (+ 51.66)

28 84.28 ± 0.20c 118.90 ± 0.23b (+ 41.07) 129.18 ± 0.27a (+ 53.27)

35 84.92 ± 0.37c 125.17 ± 0.21b (+ 51.08) 132.07 ± 0.25a (+ 59.4)

MCV(fl) 7 27.38 ± 0.13c 28.89 ± 0.34b (+ 5.51) 29.06 ± 0.29b (+ 6.13)

14 28.68 ± 0.29c 30.84 ± 0.28b (+ 7.53) 30.03 ± 0.27b (+ 4.7)

21 26.75 ± 0.23c 28.91 ± 0.26b (+ 8.07) 35.64 ± 0.27a (+ 33.23)

28 28.87 ± 2.08b 30.58 ± 0.28b (+ 19.27) 37.90 ± 0.33a (+ 31.27)

35 27.68 ± 0.23c 30.86 ± 0.33b (+ 11.48) 38.49 ± 0.26a (+ 39.05)

MCH (pg) 7 8.90 ± 0.23a 9.57 ± 0.29a (+7 .52) 9.66 ± 0.22a (+ 8.53)

14 9.50 ± 0.23a 10.28 ± 0.28a (+ 8.21) 9.66 ± 0.21a (+ 1.47)

21 9.44 ± 0.22c 10.53 ± 0.38b (+ 11.54) 11.48 ± 0.19a (+ 21.61)

28 9.77 ± 0.29c 11.41 ± 0.19b (+ 16.78) 12.75 ± 0.27a (+ 30.5)

35 9.75 ± 0.18b 10.45 ± 0.39b (+ 7.17) 14.10 ± 0.27a (+ 44.61)

MCHC (g/dL) 7 32.73 ± 0.43a 33.68 ± 0.30a (+ 2.9) 33.59 ± 0.29a (+ 2.62)

14 33.32 ± 0.28a 32.28 ± 0.29b (− 3.12) 32.43 ± 0.21b (− 2.67)
21 35.46 ± 0.36b 36.43 ± 0.25a (+ 2.73) 31.99 ± 0.23c (− 9.78)
28 36.39 ± 0.49a 37.54 ± 0.32a (+ 3.16) 33.43 ± 0.30b (− 8.13)
35 35.36 ± 0.25b 31.91 ± 0.24c (− 9.75) 36.70 ± 0.42a (+ 3.78)

Values are means ± SE of five individual observations. (−) Denotes percent decrease over control; (+) denotes percent increase over control.
The values indicated by different letters are significantly different from one another (p < 0.05)
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Table 2 Plasma biochemical parameters of L. rohita exposed to sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for 35 days

Parameters Exposure period
(days)

Control Treatment I
(0.039 mg L−1)

Treatment II
(0.078 mg L−1)

Plasma glucose (mg/100 mL) 7 132.42 ± 1.07a 124.96 ± 1.13b (− 5.63) 101.77 ± 0.24c (− 23.14)
14 132.14 ± 0.31a 116.82 ± 0.49b (− 11.59) 96.39 ± 0.40c (− 27.05)
21 134.74 ± 0.36a 102.50 ± 0.62b (− 23.92) 91.26 ± 0.47c (− 32.29)
28 133.71 ± 0.42a 91.99 ± 0.63b (− 31.20) 63.01 ± 0.79c (− 52.87)
35 136.14 ± 0.41a 86.16 ± 0.27b (− 36.71) 79.80 ± 0.42c (− 41.28)

Plasma protein (μg mL−1) 7 2.28 ± 0.27a 1.01 ± 0.21b (− 55.70) 1.19 ± 0.06b (− 47.80)
14 2.33 ± 0.26a 1.02 ± 0.17b (− 56.22) 2.08 ± 0.28a (− 10.72)
21 2.13 ± 0.29a 0.94 ± 0.05b (− 55.86) 1.34 ± 0.19b (− 37.08)
28 2.30 ± 0.24a 0.86 ± 0.02b (− 65.21) 1.28 ± 0.14b (− 34.44)
35 2.92 ± 0.29a 1.08 ± 0.05b (− 63.01) 1.72 ± 0.21b (− 40.68)

Plasma Na+ (mmol L−1) 7 105.42 ± 0.32c 117.85 ± 0.31b (+ 11.81) 128.96 ± 0.18a (+ 22.35)

14 108.09 ± 0.25c 124.42 ± 0.46b (+ 15.08) 147.00 ± 0.34a (+ 35.99)

21 104.27 ± 0.26c 119.25 ± 0.21b (+ 14.32) 150.80 ± 0.21a (+ 44.62)

28 109.87 ± 0.26c 113.47 ± 0.45b (+ 3.27) 133.09 ± 0.28a (+ 21.21)

35 107.95 ± 0.27c 115.96 ± 0.25b (+ 7.42) 149.98 ± 0.20a (+ 32.98)

Plasma K+ (mmol L−1) 7 60.32 ± 0.73a 32.10 ± 0.32c (− 46.78) 47.93 ± 0.13b (− 20.54)
14 62.36 ± 0.29a 51.80 ± 0.35b (− 16.93) 38.24 ± 0.28c (− 38.67)
21 62.12 ± 0.37a 43.15 ± 0.37c (− 30.43) 50.16 ± 0.51b (− 19.25)
28 63.48 ± 0.31a 53.88 ± 0.19b (− 15.12) 53.74 ± 0.41b (− 15.34)
35 61.76 ± 0.31a 58.16 ± 0.22c (− 5.82) 60.41 ± 0.42b (− 2.18)

Plasma Cl− (mmol L−1) 7 122.58 ± 0.29c 190.98 ± 0.41a (+ 55.80) 128.71 ± 0.19b (+ 5.06)

14 123.13 ± 0.54c 175.30 ± 0.46a (+ 42.36) 147.57 ± 0.53b (+ 18.49)

21 123.10 ± 0.43b 121.74 ± 0.19c (− 1.10) 132.13 ± 0.24a (+ 7.10)

28 124.35 ± 0.44c 149.10 ± 0.28b (+ 19.90) 154.74 ± 0.45a (+ 24.43)

35 122.24 ± 0.34c 153.20 ± 0.21a (+ 25.32) 158.99 ± 0.23b (+ 30.06)

Gill Na+/K+-ATPase activity
(mg/h/g)

7 7.12 ± 0.33a 6.08 ± 0.22a,b (− 14.60) 5.38 ± 0.44b (− 24.43)
14 6.20 ± 0.15a 5.85 ± 0.19a (− 5.64) 4.39 ± 0.33b (− 29.19)
21 6.44 ± 0.19a 3.66 ± 0.29b (− 43.16) 3.51 ± 0.10b (− 45.49)
28 6.06 ± 0.22a 5.64 ± 0.17a (− 6.93) 4.20 ± 0.22b (− 30.69)
35 7.28 ± 0.26a 4.39 ± 0.23c (− 39.69) 5.82 ± 0.17b (− 20.05)

GOT (IU L−1) 7 61.98 ± 0.27c 72.80 ± 0.24b (+ 17.45) 81.08 ± 0.22 a (+ 30.81)

14 62.82 ± 0.27c 77.21 ± 0.14b (+ 22.9) 89.15 ± 0.19a (+ 41.91)

21 63.76 ± 0.15c 84.19 ± 0.17b (+ 32.04) 97.99 ± 0.35a (+ 53.68)

28 64.25 ± 0.19c 98.18 ± 0.36b (+ 52.8) 107.16 ± 0.29a (+ 66.78)

35 64.77 ± 0.23c 118.13 ± 0.24b (+ 82.38) 120.81 ± 0.23a (+ 86.52)

GPT (IU L−1) 7 38.43 ± 0.29c 43.11 ± 0.23b (+ 12.17) 78.57 ± 0.37a (+ 104.44)

14 38.84 ± 0.25c 57.97 ± 0.26b (+ 49.25) 87.74 ± 0.30a (+ 140.35)

21 39.45 ± 0.34c 62.00 ± 0.29b (+ 57.16) 95.29 ± 0.39a (+ 141.54)

28 40.07 ± 0.28c 84.94 ± 0.31b (+ 111.97) 123.54 ± 0.34a (+ 208.31)

35 40.34 ± 0.37c 109.03 ± 0.24b (+ 120.27) 138.55 ± 0.32a (+ 243.45)

Values are means ± SE of five individual observations. (−) Denotes percent decrease over control; (+) denotes percent increase over control.
The values indicated by different letters are significantly different from one another (p < 0.05)
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found to be concentration and exposure period depen-
dent. The activities of GOT and GPT enzymes were
significantly (p < 0.05) increased in both TCS-exposed
groups compared to the control (Table 2).

Antioxidant responses

During the first week of exposure, the TCS-exposed
fish showed concentration-dependent changes in
SOD activity (Fig. 1a–c). Noticeably, there was a
significant increase (p < 0.05) in SOD activity on
day 14 in all the tissues/organs in both the treatment
groups (except treatment I group in the liver). At
21 days, no statistically significant differences in
SOD activities between any exposure concentration
and the control were observed. A significant de-
crease (p < 0.05) in SOD activity in treatment groups
at days 28 and 35 in all the tissues. In all the tissues,

significant differences (p < 0.05) in CAT activity
between TCS-exposed fish and the controls were
observed in the first week of exposure (Fig. 2a–c).
After this time point, no differences were observed
among the treatment groups and the control group
on day 14. But in the case of the liver, the condition
persists till 21 days. After 21 days, a significant
decrease (p < 0.05) in CAT activity was observed
for the rest of the study period compared to the
control.

Compared with the control, a significant differ-
ence in GST activities was observed in the tissues
(gill, liver, and kidney) of fish exposed to TCS
throughout the exposure period (7, 14, 21, and
28 days) (Fig. 3a–c). The GST activities in fish were
significantly higher than those of the control on days
7, 14, and 21. After this time point, the enzyme
activity was inhibited (except 14th day of treatment

Fig. 1 Bar diagram showing changes in the gill (a), liver (b), and
kidney (c) SOD activity of a freshwater fish L. rohita exposed to
sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for

35 days. All values are expressed as means ± SEs. * Indicate
significantly different from the respective reference group
(p < 0.05)
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I in kidney) throughout the experimental period. The
activity of GPx in the gill, liver, and kidney (except
in gill) of TCS-exposed groups was significantly
increased (p < 0.05) at the time intervals of 7 and
14 days (Fig. 4a–c). After 14 days, GPx activity in
the TCS-exposed groups was decreased to control
levels. Further, the enzyme activity was significantly
inhibited on day 21. (p < 0.05) at days 28 and 35
compared with the control.

A significant increase in GSH level relative to the
control group was observed on days 7 and 14 (Fig. 5a–
c). However, there were no significant differences
among treatments compared with the control on day
21. After the 21st day, the GSH level was inhibited in
the treated groups throughout the exposure period com-
pared to the control. In all the tissues, there was a
significant increase in MDA levels for both test concen-
trations (0.039 and 0.078 mg L−1) when compared with
the control group (Fig. 6a–c).

Histopathological analysis

The degree of damages of the gill, liver, and kidney
tissues within the TCS-treated groups is determined
as none (−), mild (+), moderate (++), and severe
(+++) according to Thophon et al . (2003)
(Table 3). Histopathologically, no changes were ob-
served in the gills (Fig. 7a), liver (Fig. 7d), and
kidney (Fig. 7g) of the control fish. TCS-exposed
fish gill showed hypertrophy in the primary and
secondary lamella, lamellar fusion, and rupture and
necrosis in the tips of the lamellae (Fig. 7b, c). The
liver of TCS-exposed fish showed swelling of hepa-
tocytes, pyknotic nuclei, cellular edema, vacuolation
of hepatic cells, and nuclear degeneration (Fig.
7e, f). Likewise, in the kidney of TCS-exposed fish,
shrinking of the glomeruli, edema in Bowman’s
capsule, pyknotic nuclei, and renal tubular degener-
ation were observed (Fig. 7h, i).

Fig. 2 Bar diagram showing changes in the gill (a), liver (b), and
kidney (c) CAT activity of a freshwater fish L. rohita exposed to
sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for

35 days. All values are expressed as means ± SEs. * Indicate
significantly different from the respective reference group
(p < 0.05)
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Single-cell gel electrophoresis

SCGE/comet assay was employed to evaluate the
genotoxic effects of TCS on the fish L. rohita. The
comet assay results showed significantly higher DNA
damage in fish exposed to TCS than in the control group
(Figs. 8 and 9). Further, the damage was found to be
concentration dependent, peaking on the 21st day of the
exposure period. Subsequently, there was a decreasing
gradient of the percentage of DNA in the tail region in
both the exposed groups with the increase in exposure
time in the peripheral blood of the exposed fish.

Discussion

In the present study, the sublethal toxicity of TCS to
L. rohita was assessed using hematological,

biochemical, histological, and oxidative stress parame-
ters. The 96-h LC50 value calculated in this study
(0.37 mg L−1) is very similar to the values found by
Oliveira et al. (2009) for Danio rerio (0.34 mg L−1) and
Orvos et al. (2002) for Lepomis macrochirus
( 0 . 37 mg L − 1 ) and P imepha l e s p rome la s
(0.26 mg L−1). Likewise, the 96-h LC50 values of TCS
to medaka larvae were found to be 0.6 mg L−1 (Falisse
et al. 2017) and 1.47 mg L−1 to Xiphophorus helleri
(Liang et al. 2013). The differences within or among fish
species regarding their sensitivity to TCS may depend
on size, age, health status, and test conditions (Eaton and
Gilbert 2008). Fish are vulnerable to TCS during their
early development (Dann and Hontela 2011). The pres-
ent results show that TCS is highly toxic to L. rohita,
and the toxicity of TCS on L. rohita increased with
increasing concentration and exposure time. Recent
studies also indicate that the effects of TCS on the early

Fig. 3 Bar diagram showing changes in the gill (a), liver (b), and
kidney (c) GST activity of a freshwater fish L. rohita exposed to
sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for

35 days. All values are expressed as means ± SEs. * Indicate
significantly different from the respective reference group
(p < 0.05)
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life stage of zebra fish are specific to exposure concen-
tration (Falisse et al. 2017). TCS may exert its toxic
effect through thyroid axis disruption and oxidative
stress induction (Oliveira et al. 2009; Schnitzler et al.
2016). In the present study, oxidative stress induction
has been noticed in fish upon exposure to different
concentrations of TCS which may be one of the toxic
mechanisms of TCS as suggested by previous authors
(Binelli et al. 2009a, 2009b; Riva et al. 2012). Recent
studies indicate that TCS may interfere with iodide
uptake (Wu et al. 2016).

The study on the behavior of animals under toxicant
stress may be useful for studying environmental pollut-
ants and their effects. Fish are widely used as an excel-
lent model in this regard to understand the ecotoxicity of
many toxicants in a controlled environment (Scott and

Sloman 2004). In the present study, abnormal behavior-
al changes induced in the TCS-exposed fish appear to be
a manifestation of TCS toxicity. The increase in surfac-
ing and gulping of surface water upon exposure to TCS
appears to be an attempt by the fish to avoid breathing in
poisoned water. Erratic swimming may be due to the
effects of TCS on the central nervous system. The
clinical signs of excessive mucus secretion may have
been caused by melanosis, due to exposure of the fish to
stress, which irritates the gills (Ferguson 1989). The
observed behavioral and clinical signs in L. rohita are
consistent with those reported by Oliveira et al. (2009).
Similar observations were also reported by Orvos et al.
(2002) with Oncorhynchus mykiss, exposed to TCS. On
the basis of the study by Fritsch et al. (2013), we inferred
that altered swimming pattern occurred in L. rohita after

Fig. 4 Bar diagram showing changes in the gill (a), liver (b), and
kidney (c) GPx activity of a freshwater fish L. rohita exposed to
sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for

35 days. All values are expressed as means ± SEs. * Indicate
significantly different from the respective reference group
(p < 0.05)
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TCS exposure. The observed swimming behavior of
fish may also be due to neurological dysfunction due
to TCS toxicity (Falisse et al. 2017).

Hematological parameters are widely used for the
measurement of physiological disturbances in toxicant-
exposed fish (Schlenk et al. 2008). To the best of our
knowledge, there is no available information on the
effects of TCS on hematological parameters of
L. rohita. Hb, Hct, and RBC play a vital role in the
transportation of nutrition, oxygen, and metabolic
wastes in many organisms (Min and Kang 2008). In
the present study, the decrease of hematological param-
eters such as Hb, Hct, and RBC content indicates shrink-
age of red blood cells due to the toxic action of TCS. A
similar observation was also reported in C. carpio after
exposure to pharmaceutical drugs such as clofibric acid
and diclofenac (Saravanan et al. 2011). The higher

values of erythrocyte indices may be due to hypoxia,
impaired water balance, or macrocytic anemia. In-
creased WBC count in the present study indicates that
TCS may activate the immune system in fish thus sig-
naling an adaptive immune response (Modesto and
Martinez 2010).Moreover, the increase inWBC content
might have resulted from hypoxia and gill damage due
to the accumulation of toxicants in the gill region (El-
Sayed et al. 2015).

Changes in the biochemical parameters are widely
used to assess the health condition of the fish exposed to
contaminants both in laboratory and field studies
(Shailaja and D’Silva 2003) because they are sensitive
to environmental changes and provide important
information about the internal environment of the
organism (Qiu et al. 2009). The decrease in the
plasma glucose level of fish exposed to toxicants

Fig. 5 Bar diagram showing changes in the gill (a), liver (b), and
kidney (c) GSH level of a freshwater fish L. rohita exposed to
sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for

35 days. All values are expressed as means ± SEs. * Indicate
significantly different from the respective reference group
(p < 0.05)
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may be due to enhanced energy demand that stim-
ulates utilization and exhaustion of glucose (El-
Sayed et al. 2007) or may be due to the rapid
utilization of blood glucose during stress condition
(Agrahari et al. 2007). In the present study, the
decrease in plasma glucose level indicates high
utilization of glucose to tolerate the stress condi-
tion of TCS. The decrease in plasma protein level
noted in this study may be due to the necrosis of
cells which may lead to impairment in protein
synthesis machinery (Fontana et al. 1998). Alter-
ations in heat shock proteins were also reported in
zebra fish embryos upon exposure to TCS (Falisse
et al. 2017). The significant decrease in plasma
protein in toxicant-exposed fish may also be
caused due to impaired protein synthesis due to
liver disorder (Saravanan et al. 2011). In the pres-
ent investigation, also the observed decrease in

plasma protein in TCS-exposed fish indicates liver
disorder due to the accumulation of TCS in the
liver.

The alterations in the GOT and GPT activities may
offer an early warning of potentially harmful alterations
in aquatic organisms under stress conditions (Abdel-
Khalek et al. 2015). Moreover, the alterations in these
enzyme activities can be used as sensitive biomarkers in
the field of ecotoxicology. In general, alterations in the
activities of these two enzymes in blood plasma indicate
tissue impairment caused by stress (Svoboda 2001). In
the present study, there was a significant increase in
GOT and GPT activities in the plasma of L. rohita
exposed to TCS for 35 days which may result from the
accumulation of TCS in target organs resulting in
damage or injury in the target organs. Chen et al.
(2004) reported that the elevated levels of these two
enzymes in tilapia are linked with hepatic injury.

Fig. 6 Bar diagram showing changes in the gill (a), liver (b), and
kidney (c) MDA level of a freshwater fish L. rohita exposed to
sublethal concentrations of TCS (0.039 and 0.078 mg L−1) for

35 days. All values are expressed as means ± SEs. * Indicate
significantly different from the respective reference group
(p < 0.05)
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Alterations in GOTand GPTactivities were also noticed
in goldfish and rainbow trout upon treated with sencor
and carbamazepine, respectively (Li et al. 2010;
Maksymiv et al. 2015). Furthermore, any changes in
the protein and carbohydrate metabolism due to toxicant
stress may also affect transaminase activity (Ramesh
et al. 2018).

Sodium, potassium, and chloride concentrations in
fish blood play a vital role for active regulation of water
influx, and ion efflux and their alterations upon expo-
sure to toxicants can be used as sensitive biomarkers of
chemical exposure and effects (Mayer et al. 1992). In
general, plasma Na+ and Cl− levels in aquatic organisms
tend to be affected by waterborne toxicants (Pelgrom
et al. 1995). In the present study, plasma Na+ and Cl−

concentrations were more strongly affected in TCS-
exposed fish. These ion increases could be the result of
plasma water moving out of the circulation and into the
tissues (Wendelaar Bonga 1997). Unlike the other plas-
ma ions, plasma K+ concentrations decreased in fish
exposed to TCS. This decrease in plasma K+

concentration may reflect an increase in potassium in-
flux to erythrocytes and/or other cell types in response to
TCS present in the water. Furthermore, the action of
aquatic pollutants on organs involved in osmoregula-
tion, endocrine system, and metabolism and on active
transport processes may cause a shift in the
hydromineral balance of the organisms (Martinez and
Colus 2002). Osmoregulatory failure due to toxicant
stress may also cause a decrease in plasma electrolyte
levels (Poopal et al. 2017). In general, organic pollutants
in the environment affect the Na+/K+-ATPase by de-
creasing its activity. In the present investigation, inhibi-
tion in the activity of Na+/K+-ATPase in gill tissues after
TCS exposure suggests reduced NAK transport across
the membrane. Furthermore, the alterations in the plas-
maNa+, Cl−, and K+ in the present studymight be due to
inhibition of Na+/K+-ATPase by TCS toxicity.

There is ample evidence indicating that TCS may
alter the pro-oxidant/antioxidant balance and induce
oxidative stress in diverse aquatic species. The knowl-
edge of oxidative stress in fish has great importance for
environmental and aquatic toxicology. The enzyme
SOD plays a vital role in the body’s antioxidant system
under stress conditions (Kappus 1985). SOD, which
catalyzes the dismutation of superoxide into oxygen
and hydrogen peroxide, plays an important role in
defending against the accumulation of toxic activated
oxygen species (AOS) (Salin 1987; Lin et al. 2010). In
the present study, SOD activity increased at sublethal
concentrations of TCS during the early exposure period
(7 and 14 days). A significant increase in SOD activity
has been reported in the gills of clam Ruditapes
philippinarum exposed to 600 and 900 ng of TCS/L
(Matozzo et al. 2012a). Liu et al. (2010) reported that an
increase in oxygen free radical production occurred in
fish under a low level of stress condition. Consequently,
excessive ROS may have induced the synthesis of more
SOD or increased its activity to protect against oxidative
stress. As the exposure time increased (28 and 35 days),
SOD activity decreased below the levels detected in the
control groups. This decrease in SOD activity may be
because of the increased oxygen free radicals in fish that
rendered SOD inactive by oxidation. Previous research
demonstrated that SOD activity was activated under
mild adverse stress and declined under more intense
stress (Shao et al. 2012). Inhibition of SOD activity
has also been reported in the digestive gland of the clam
Ruditapes philippinarum exposed to 600 and 900 ng
TCS/L (Matozzo et al. 2012a). The inhibition of SOD

Table 3 Histopathological findings of L. rohita exposed to sub-
lethal concentrations of TCS (0.039 and 0.078mgL−1) for 35 days.
Lesions were scored based on their severity (none (−), mild (+),
moderate (++), and severe (+++))

Tissue Histopathological
effects

Control Treatment
I

Treatment
II

Gill Epithelial lifting − ++ +++

Epithelial necrosis − + ++

Hypertrophy − + ++

Lamellar fusion − ++ +++

Hyperplasia − + ++

Kidney Tubular necrosis − ++ +++

Renal tubular
separation

− + ++

Renal tubular
degeneration

− + +

Shrinking of the
glomuruli

− ++ +++

Hyaline droplets
degeneration

− + ++

Pyknotic nucleus − + +

Glomerular necrosis − + ++

Liver Cellular edema − + ++

Necrotic hepatocytes − + ++

Nuclear degeneration − + ++

Pyknotic nucleus − + +

Vacuolation − + ++
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activity can be explained by the metabolism of TCS
over time, which may have reduced the toxicant con-
centrations during prolonged exposure, and the adverse
effects exerted on SOD synthesis, and its activity was
induced by excess ROS. These results show that the
toxic effect of TCS on SOD activity is much more
evident at higher concentrations.

CAT located in the peroxisomes plays a vital role in
the reduction in hydrogen peroxide produced from the
metabolism of long chain fatty acids to water and oxy-
gen (Stanic et al. 2006). In this assay, CAT activities in
fish exposed to different TCS concentrations increased
during the first week of exposure and then decreased to
control levels and even inhibited at later time points.

Elevation of CAT activity has also been reported in
Ruditapes philippinarum exposed to different concen-
trations of TCS (Binelli et al. 2011; Matozzo et al.
2012a). Lin et al. (2010) reported a biphasic response
in CAT activity in the earthworm Eisenia fetida follow-
ing TCS treatment which is in agreement with our
results. They also suggested that TCS can induce CAT
synthesis in fish in response to scavenging H2O2 into
H2O and O2 to maintain free radical balance. According
to Sanchez et al. (2015), an increase in the CAT activity
may be caused by the increase of pro-oxidants. In the
present study, the decrease in the CAT activity indicates
damage to the antioxidant defense system due to TCS
toxicity (Lin et al. 2010).

Fig. 7 a Control gill. L—lamellae. b, c HP—hyperplasia;
LF—lamellar fusion; HT—hypertrophy; EN—epithelial necrosis;
EL—epithelial lifting. d Control liver. H—hepatocytes. e, f
V—vacuolation; PN—pyknotic nucleus; ND—nuclear degenera-
tion; NH—necrotic hepatocytes; CE—cellular edema. g Control

kidney. h, i GN—glomerular necrosis; PN—pyknotic nucleus;
HDD—hyaline droplets degeneration; SG—shrinking of the glo-
meruli; RTD—renal tubular degeneration; RTS—renal tubular
separation; TN—tubular necrosis. (H & E, × 100). Scale bar =
50 μm
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Glutathione-S-transferases catalyze the conjugation
of glutathione to a variety of compounds and also in-
volved in the cellular detoxification of xenobiotic com-
pounds (Livingstone 2003). In our study, GST activities
were activated after 7, 14, and 21 days of exposure in all
tissues and then suppressed at the end of the 28th and
35th day. The fluctuations in GST activity have been
demonstrated (except gill) in several fishes in response
to organic contaminants (Kubrak et al. 2010; Ge et al.
2015). An elevation in GSTactivity has been reported in
zebra fish (Danio rerio) exposed to TCS at 0.25 and
0.35 mg L−1 concentrations (Oliveira et al. 2009). Like-
wise, GSTactivity was increased in the digestive gland of
Mytilus galloprovincialis when exposed to TCS (Canesi
et al. 2007). However, no significant effect of TCS tox-
icity on GST activity was noticed in zebra fish upon
exposure to 50 and 100 μg TCS/L (Falisse et al. 2017).

In the present study, the observed increase in GST
activity in all tissues suggests an increase in detoxifica-
tion processes in L. rohita. Furthermore, the decline in

GST activity reflects impairment in the detoxifying ca-
pacity of the fish and the occurrence of oxidative stress.
The GSTwas more active in liver tissue than in the gill
and kidney, which indicates the effective role of the liver
in xenobiotic detoxification (Basha and Rani 2003).

Glutathione peroxidase catalyzes GSH-dependent re-
duction of many peroxides, including H2O2 and LOOH,
thereby protecting cells from ROS-induced damage
(Lushchak 2012). In this assay, GPx activities in
L. rohita exposed to different TCS concentrations in-
creased after 7, 14, and 21 days of exposure in the gill,
liver, and kidney and then decreased to control levels and
even inhibited at later time points. This biphasic response
is considered an adaptation to a detoxification activity
increase. The initial elevated level of GPx activity in fish
exposed to TCS indicates stimulation of the antioxidant
pathway due to increasing peroxide concentrations. On the
contrary, a reduced GPx activity in a given tissue could
indicate that its antioxidant capacity was exceeded by the
amount of hydroperoxide products. Thus, inhibition of

Fig. 8 Bar diagram showing
changes in the percentage of tail
DNA in erythrocytes of L. rohita
exposed to TCS. All values are
expressed as means ± SEs. The
values indicated by different
letters are significantly different
from one another (p < 0.05)

Fig. 9 Blood cells after comet
assay from control (a) and TCS-
exposed (b) specimens of
L. rohita
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GPx activity might reflect a possible failure of the antiox-
idant system in tissues of exposed fish (Ballesteros et al.
2009). Ahmad et al. (2006) observed an altered GPx
activity in the tissues of European eel after polluted water
exposure. Likewise, GPx activity was significantly in-
creased in zebrafish embryos when exposed to 50 and
100 μg TCS/L (Falisse et al. 2017).

Reduced glutathione is the main nonprotein thiol and
one of the main reductants found in cells (Siegers 1989). It
possesses antioxidant properties and its protective role
against oxidative-stress-induced toxicity in aquatic animals
is well established (Hasspielar et al. 1994). We found an
initial increase in L. rohita gill, liver, and kidney GSH
levels exposed to TCS. However, the tissue GSH levels
decreased to the control level after 21 days of exposure,
whereas it significantly decreased in later exposure pe-
riods. This altered response is considered as an adaptation
to a detoxification activity increase (Buchner et al. 1993).
Moreover, the protective effects of GSH were attributed to
its ability to stabilize the pollutants by scavenging the free
radicals and thereby blocking LPO development (Meister
and Anderson 1983). The significant decrease in GSH in
all treated groups indicates the imbalance between the
oxidative and antioxidant systems with longer exposure
time. Peroxidation of lipids is essential for aquatic animals
since they usually contain greater amounts of highly un-
saturated fatty acids (Huang et al. 2003). In the present
study, fish exposed to TCS for 35 days showed enhanced
LPO levels in the gill, liver, and kidney which indicate an
overproduction of free radicals and/or an insufficient anti-
oxidant response to scavenger ROS and the prevention of
oxidative stress. Earlier studies show that LPO may be
induced in various tissues by a variety of environmental
pollutants (Ahmad et al. 2003; Isik and Celik 2008).
Recently, Pan et al. (2018) reported that the increase of
LPO level in Chlamydomonas reinhardtii cell membranes
indicates that TCS induced oxidative stress or the increase
of ROS production. The increase of MDA content in
E. fetida exposed to TCS may be a response to oxidative
stress caused by the toxicant (Lin et al. 2010).

Histopathological investigations of organ sections of
TCS-exposed fish revealed adverse effects in the gill,
liver, and kidney. In fish, gills play an important role in
respiratory, osmoregulatory, and excretory functions
and also a target organ for pollutants (Evans 1993).
Toxicants may affect the structural morphology of the
gill or damage the organ which results in respiratory
distress in fish (Magare and Patil 2000). In the present
investigation, exposure of L. rohita to TCS resulted in

structural alterations of the gill lamellae including hy-
pertrophy and necrosis of the epithelium, epithelial
lifting, lamellar fusion, and hyperplasia of the lamella.
Similar results were also observed by Barja-Fernández
et al. (2013), Barišić et al. (2015), and Samanta et al.
(2015). Histopathological lesions such as lamellar fu-
sion, hyperplasia, and epithelial necrosis were noticed in
fish gills of rainbow trout (Oncorhynchus mykiss) upon
exposure to TCS (Capkin et al. 2017). The observed
epithelial necrosis of the gill epithelium is a direct re-
sponse to TCS toxicity, whereas lifting of the epitheli-
um, hyperplasia, and lamellar fusion indicate the de-
fense responses of the fish. The lifting up of the epithe-
lium increases the distance through which the toxicant
has to travel or reach the bloodstream. Lifting is reported
to be induced by the incidence of severe edema
(Schwaiger et al. 2004) as it was found in the present
experiment. Changes in the structural morphology of the
gill may allow the toxicants to enter which results in
disruption mechanism of the fish (Ramesh et al. 2018).

Fish liver is one of the most receptive organs which
show alterations in histoarchitecture following exposure
to various types of environmental pollutants (Ahmed
et al. 2013). The histopathological lesions observed in
the liver were vacuolation, cellular edema, low number
of necrotic hepatocytes, nuclear degeneration, and pyk-
notic nuclei. Pyknotic nucleus and necrotic hepatocytes
were observed in the liver of the TCS-exposed fish
Oncorhynchus mykiss (Capkin et al. 2017). Vacuolation
of hepatocytes is associated with the excessive accumu-
lation of fat in the cytoplasm (Bogiswariy et al. 2008).
Degeneration of liver tissue and necrosis of central vein
could be due to the accumulation of neutrophils and
lymphocytes. Mohamed (2001) reported that the cellu-
lar degeneration in the liver might be due to oxygen
deficiency as a result of gill degeneration. Myers et al.
(1987) reported that pyknosis is the state of condensed
nuclei present in the hepatocytes; it might be due to the
deposition of lipids and glycogen.

The teleostean kidney is one of the first organs to be
affected by contaminants in the water (Thophon et al.
2003). Most common alterations found in the kidney of
fishes exposed to TCS are hyaline droplet degeneration,
renal tubular separation, renal tubular degeneration,
shrinking of the glomeruli and pyknotic nuclei. Like-
wise, pyknotic nuclei and glomerulus degeneration were
observed in the kidney of the TCS-exposed fish Onco-
rhynchus mykiss (Capkin et al. 2017). The earlier results
correlate with the findings of Bucher and Hofer (1993).
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Samanta et al. (2015) observed shrinkage of the glomer-
ulus, damaged and hypertrophied proximal convoluted
tubule, and loss of hematopoietic tissue in the fish
Anabas testudineus (Bloch) treated with almix. In the
present study, among the three organs studied, the struc-
tural alterations were more in the gill which may be due
to its direct contact with the environment. In general,
due to its lipophilic nature, TCS may accumulate in the
target organs of fish, which may lead to morphological
changes (Dann and Hontela 2011).

The analysis of DNA integrity in aquatic organisms has
been shown to be a highly suitable method for evaluating
the impact of environmental genotoxicants, allowing the
detection of exposure to low concentrations of contami-
nants (Scalon et al. 2010). Furthermore, DNA damage
along with nuclear abnormalities can be used as bio-
markers to monitor the pollution of freshwater bodies
(Hussain et al. 2018). In the present study, TCS exposure
to fish caused a pronounced increase in the percentage of
DNA in the tail indicating DNA damage in both treatment
groups. Such results are concordant with the previous
reports of the effects of TCS on other species such as zebra
mussel (Binelli et al. 2009b), aquatic insect (Martínez-Paz
et al. 2013), protozoan (Gao et al. 2015), and in Onco-
rhynchus mykiss (Capkin et al. 2017). Recently, Wang
et al. (2018) also reported the genotoxic effect of TCS
throughmicronucleus formation and nuclear abnormalities
in the peripheral blood and liver of goldfish. Moreover,
reports on the genotoxicity of TCS, particularly on fish, are
rather scarce. Our results provide the first evidence for
genotoxicity effects of TCS on the freshwater fish
L. rohita. The precise mechanism of TCS-induced DNA
damage is unclear, but it is suggested that TCS affects the
stability of DNA both by generating ROS and by
preventing the base excision repair system (Binelli et al.
2009a, 2009b). Further, this may be associated with ne-
crotic or apoptotic DNA fragmentation (Gichner et al.
2006). The present study shows that DNA damage was
significantly higher as the concentration of TCS was in-
creased which indicates that TCS is genotoxic to the fish
Labeo rohita. Furthermore, the damage can be used to
monitor the potential risk of TCS to aquatic organisms.

Conclusion

The results of our study suggest that the exposure of
L. rohita to TCS alters hematological, biochemical, and
physiological parameters together with histopathological

changes in certain target tissues. This study also confirms
that TCS is genotoxic to fish since it induces DNA strand
breaks. Furthermore, these parameters can be used as
potential biomarkers for risk assessment in the aquatic
ecosystem. Studies on TCS toxicity to fish are rare, and
the present findings may contribute to the scarce literature
regarding fish sublethal exposure to TCS. In addition to
this, our results implied that constant TCS release to the
environment is able to cause toxic effects to aquatic
organisms.
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