
Computer Speech and Language 76 (2022) 101404

A
0

O
a
M
K
G
B
a

b

c

d

e

A

K
A
C
F
H
M
M
O
T

k
g
(

h
R

Contents lists available at ScienceDirect

Computer Speech & Language

journal homepage: www.elsevier.com/locate/csl

ffensive language detection in Tamil YouTube comments by
dapters and cross-domain knowledge transfer
alliga Subramanian a,∗, Rahul Ponnusamy b, Sean Benhur c,
ogilavani Shanmugavadivel a, Adhithiya Ganesan a, Deepti Ravi a,
owtham Krishnan Shanmugasundaram a, Ruba Priyadharshini d,
harathi Raja Chakravarthi e

Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India
Indian Institute Of Information Technology and Management-Kerala, Kerala, India
PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
ULTRA Arts and Science College, Madurai, Tamil Nadu, India
Insight SFI Research Centre for Data Analytics, Data Science Institute, National University of Ireland Galway, Galway, Ireland

R T I C L E I N F O

eywords:
dapter
ross-domain analysis
inetuning
ASOC
ultilingual
achine learning models
ffensive texts
ransformer models

A B S T R A C T

Over the past few years, researchers have been focusing on the identification of offensive
language on social networks. In places where English is not the primary language, social
media users tend to post/comment using a code-mixed form of text. This poses various
hitches in identifying offensive texts, and when combined with the limited resources available
for languages such as Tamil, the task becomes considerably more challenging. This study
undertakes multiple tests in order to detect potentially offensive texts in YouTube comments,
made available through the HASOC-Offensive Language Identification track in Dravidian Code-
Mix FIRE 2021.1 To detect the offensive texts, models based on traditional machine learning
techniques, namely Bernoulli Naïve Bayes, Support Vector Machine, Logistic Regression, and K-
Nearest Neighbor, were created. In addition, pre-trained multilingual transformer-based natural
language processing models such as mBERT, MuRIL (Base and Large), and XLM-RoBERTa
(Base and Large) were also attempted. These models were used as fine-tuner and adapter
transformers. In essence, adapters and fine-tuners accomplish the same goal, but adapters
function by adding layers to the main pre-trained model and freezing their weights. This study
shows that transformer-based models outperform machine learning approaches. Furthermore,
in low-resource languages such as Tamil, adapter-based techniques surpass fine-tuned models
in terms of both time and efficiency.

Of all the adapter-based approaches, XLM-RoBERTa (Large) was found to have the highest
accuracy of 88.5%. The study also demonstrates that, compared to fine-tuning the models, the
adapter models require training of a fewer parameters. In addition, the tests revealed that the
proposed models performed notably well against a cross-domain data set.

∗ Corresponding author.
E-mail addresses: mallinishanth72@gmail.com (M. Subramanian), rahul.mi20@iiitmk.ac.in (R. Ponnusamy), seanbenhur@gmail.com (S. Benhur),

ogilavani.sv@gmail.com (K. Shanmugavadivel), adhithiyaganesan@gmail.com (A. Ganesan), deeptiravi01@gmail.com (D. Ravi),
owthamkrish1145@outlook.com (G.K. Shanmugasundaram), rubapriyadharshini.a@gmail.com (R. Priyadharshini), bharathi.raja@insight-centre.org
B.R. Chakravarthi).

1 https://competitions.codalab.org/competitions/31146.
vailable online 17 May 2022
885-2308/© 2022 Published by Elsevier Ltd.

ttps://doi.org/10.1016/j.csl.2022.101404
eceived 26 January 2022; Received in revised form 7 May 2022; Accepted 10 May 2022

http://www.elsevier.com/locate/csl
http://www.elsevier.com/locate/csl
mailto:mallinishanth72@gmail.com
mailto:rahul.mi20@iiitmk.ac.in
mailto:seanbenhur@gmail.com
mailto:kogilavani.sv@gmail.com
mailto:adhithiyaganesan@gmail.com
mailto:deeptiravi01@gmail.com
mailto:gowthamkrish1145@outlook.com
mailto:rubapriyadharshini.a@gmail.com
mailto:bharathi.raja@insight-centre.org
https://competitions.codalab.org/competitions/31146
https://doi.org/10.1016/j.csl.2022.101404
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csl.2022.101404&domain=pdf
https://doi.org/10.1016/j.csl.2022.101404


Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

u
c
L
p
f
a
2
h
n

f
l
l
a
t
c
t
s
2
o
t

u
o
v
i
M
t
n
i
l
T
c
a
s
m
s
S

i
(
t
o
d
t
b
l
b

e
r
c
t
a
t
t
s
s

1. Introduction

People all over the world are increasingly using social media to share information and communicate. However, the widespread
se of social media and microblogging platforms may have a parallel negative impact on people’s well being. Hateful and offensive
omments proliferate on social media, often by toxic users hiding behind the anonymity features of these platforms (Blair, 2003;
ee and Kim, 2015). If such toxic behavior is not addressed in a timely manner, it can have a cascading effect, discouraging other
eople from becoming involved in the online community (Obadimu, 2020). It is likely that such a hostile setting will prevent people
rom expressing themselves freely because of the fear of being abused or harassed. Consequently, offensive language, hate speech,
nd other unpleasant content available on the internet constitute a threat to the general welfare of our society (De Smedt et al.,
018). Since offensive language has a significant impact on public opinion, platforms such as YouTube, Facebook, and Twitter
ave policies and procedures in place to moderate hate speech content and related objectionable behavior in order to mitigate the
egative consequences on society (Alkiviadou, 2019).

Due to the development of social media, users from multilingual societies have been posting and commenting in a code-mixed
ormat in recent years. Code-mixed format is one in which a sentence contains vocabulary and grammar derived from more than one
anguage (Chakravarthi et al., 2020b). It is common for multilingual people to communicate through code-mixed text, since they
ack the ability to express themselves in a single language (Suryawanshi et al., 2020). Due to the lack of regulation, a considerable
mount of offensive content is frequently shared in the code-mixed format on various social media networks. Since it is impossible
o identify such content manually among the massive quantity of data generated on social media, automated moderation of this
ontent is imperative. Such a need has prompted a large number of researchers in the field of Natural Language Processing (NLP)
o design computational systems capable of limiting the spread of objectionable content or removing them altogether by utilizing
tate-of-the-art NLP techniques. Many dedicated workshops and evaluation campaigns have been conducted (Schmidt and Wiegand,
019; Suryawanshi and Chakravarthi, 2021; Liu et al., 2019a) to attract the active participation of the NLP community in detecting
ffensive contents. This has also led to the creation of a corpus for Dravidian languages such as Tamil, Malayalam, and Kannada in
he context of sentiment analysis and offensive language detection tasks (Chakravarthi et al., 2022b).

There are a number of NLP systems that can automatically identify hateful and offensive texts. These systems can be categorized
nder machine learning models and deep learning-based multilingual transformer models. The current study aims to classify
ffensive language from a Tamil code-mixed data set of comments and posts collected from YouTube (Chakravarthi et al., 2021) using
arious machine learning and multilingual transformer models. The study’s focus is limited to Tamil, a classical language originating
n India and spoken in Tamil Nadu, India’s southernmost state, as well as Sri Lanka, Malaysia, and Singapore (Thavareesan and
ahesan, 2021, 2020b,a, 2019; Sakuntharaj and Mahesan, 2016, 2017, 2021). There are small inscriptions in the city of Adichanallur

hat date back to 905 BC to 696 BC. Tamil has agglutinative grammar, which means that suffixes are used to show noun class,
umber, case, verb tense, and other grammatical types. Tamil’s standard metalinguistic terminology and scholarly vocabulary is
tself Tamil, as opposed to the Sanskrit used by most Aryan languages. Besides dialects, Tamil has a lot of different styles: a classical
iterary style that was written in the old language, a modern literary and formal style, and the current colloquial form (kotuntami).
hese styles blend into each other, making them look like they belong together. It is possible to write centami with words from the
ankattami language, for example, or to speak kotuntami with words from one of the other varieties. Tamil words are made up of
lexical root and one or more affixes, which are added to them. Most of the affixes in Tamil are endings. They can be derivational

uffixes, which change the word’s part of speech or meaning, or inflectional suffixes, which change things like person, number,
ood, tense, and so on. There is no limit to how long and wide agglutination can be. This could lead to big words with many

uffixes that need many words or a whole sentence in English (Subalalitha, 2019; Subalalitha and Poovammal, 2018; Anita and
ubalalitha, 2019b,a; Srinivasan and Subalalitha, 2019; Narasimhan et al., 2018).

In comparison to transformer models, machine learning models with feature selection approaches are simpler and easier to
nterpret. So, various machine learning algorithms such as Naïve Bayes (MNB), Support Vector Machine (SVM), Logistic Regression
LR), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbor (KNN), and a lot more have been used for creating models
o classify code-mixed data set. Current studies on recent developments in offensive language detection suggest an increased use
f deep learning-based transformer models. The majority of deep learning techniques require a large amount of manually labeled
ata, which limits their applicability in many fields with a scarcity of annotated resources (Tsvetkov, 2017). In such cases, models
hat can extract linguistic information from unlabeled data becomes an alternative to manually annotating the data, which can
e time-consuming and expensive. Such models can be fine-tuned to classify small amounts of labeled data. This is called transfer
earning and is a strategy in which a model is first pre-trained on large unlabeled text corpora using self-supervised learning before
eing used on labeled text corpora.

In recent years, transformer-based models such as BERT (Devlin et al., 2018), DistilBERT (Sanh et al., 2019), RoBERTa (Peters
t al., 2019), XLM-RoBERTa (Conneau et al., 2019), MuRIL (Dave et al., 2021), etc. have garnered attention for their ability to
ecognize and classify offensive texts via contextual and semantic learning. These models performed exceptionally well in classifying
ode-mixed texts of different languages with good accuracy (Chakravarthi et al., 2020b). These transformer models can be used in
wo ways: (i) by fine-tuning the transformer and (ii) by integrating and training an adapter on a transformer model. In the fine-tuning
pproach, the pre-trained models, such as BERT, RoBERTa, MuRIL, etc., are retrained in their entirety on a downstream task. Thus,
his approach requires a huge number of parameters to be retrained. Adapters, on the other hand, are typically lightweight modules
hat are inserted between transformer layers (Mahabadi et al., 2021b; Semnani et al., 2019). Model tuning on a downstream task
imply updates the parameters of adapters, while the weights of the original transformer layers remain unchanged. He et al. (2021)
2

howed that adapter-based tuning outperforms fine-tuning on low-resource and cross-lingual tasks.



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

c
I

a

H
c
t
o

r
s
p
i
c

2

l
t
w
f
n
u
i
c
i
o
2
d

The present study uses a few machine learning models and transformer-based models to identify offensive language content
onsisting of code-mixed data of Tamil comments collected from YouTube, made available through the HASOC-Offensive Language
dentification track in Dravidian Code-Mix FIRE 2021. Through this study, we address the following research questions:

RQ1. : What are the most predictive features that distinguish offensive contents in user-generated social media text in Dravidian
languages?
Upon investigating several state-of-the-art systems on available benchmark data sets from the Dravidian Codemixed (HASOC
2021) shared tasks, we found that most of the submitted systems used traditional machine-learning approaches. Therefore,
the present study aimed to explore more deeply the most predictive features that would help the classifiers identify offensive
texts in Tamil.

RQ2. : How effective are pre-trained transformer models in classifying offensive language content in user-generated social media
text?
To answer this question, we trained and fine-tuned multiple transformer and adapter pre-trained models. To further prove
our hypothesis (Deep learning-based transformer models perform better than machine learning models), we compared the
performance of the transformer-based models as well.

RQ3 . : Is the knowledge about offensive language learned from a given domain useful in predicting offensive language in another
domain?
The problem of offensive language is not constrained to a particular domain. So, we also examined the cross-domain transfer
ability of offensive text detection. To this end, we used other available data sets in Tamil and tested the ability of the developed
models to classify texts as misogynous and gauged their performance.

In this study, we created machine learning-based models and transformer-based models. The main contributions of this study
re as follows:

i. Extracted unigram-based Term Frequency-Inverse Document Frequency (TF-IDF) features and investigated the traditional
machine learning models for offensive language detection.

ii. Fine-tuned pre-trained multilingual transformer models such as MBERT, MuRIL, and XLM Roberta.
iii. Implemented an efficient adapter module with pre-trained models and assessed the effectiveness of adapters in offensive

language identification in Tamil.
iv. Tested the cross-domain ability of models by training them on offensive content identification data set and testing them on

the misogynous text identification data set.

ence, the current work investigates whether texts in a corpus are offensive or not using various conventional machine learning
lassifiers and deep learning transformer models. The novelty of this research study lies in the integration of adapters into pre-trained
ransformer models and adaption of the developed models to cross-domain tasks. The potential benefits of social media platforms are
bscured by the widespread use of offensive and abusive language; hence, this attempt focuses on finding solutions to this problem.

The rest of the article is structured as follows: Section 2 presents a brief overview of machine learning and transformer-based
esearch attempts at offensive language detection. Section 3 details the task description, a summary of the data set, and the feature
election approach used in the study. Section 4 provides an explanation of the proposed models. Section 5 discusses the training
rocedure for all experiments, including hyperparameter selection and performance metrics. Results and analysis are delineated
n Section 6. An in-depth analysis of error/mis-classification of the texts is presented in Section 7. Finally, Section 8 presents the
onclusion along with a summary and recommendations for future work.

. Literature survey

Offensive content on social media may have adverse implications for its users, including mental health issues, which can even
ead to suicide attempts (Del Vigna et al., 2017). With the vast number of people using social media, it is impossible for researchers
o manually identify and remove objectionable content. To preserve the social media ecosystem, researchers and stakeholders should
ork to develop computational models capable of quickly identifying and classifying objectionable contents. Automated techniques

or filtering offensive language on social media have exploded in the last several years, but the subjective and context-dependent
ature of the text has made it difficult to classify nuances (Vandersmissen, 2012; Schmidt and Wiegand, 2019). Multilingual
sers post texts containing more than one language, referred to as code-mixed data, which further adds to the challenge of
dentifying offensive content. There has been a shortage of research aimed at low-resource languages since many earlier systems are
haracterized by the exclusion of data in languages other than English (Schmidt and Wiegand, 2019; Cieri et al., 2016), resulting
n a dearth of study in this area for languages with limited resources. To direct the attention of researchers, many shared tasks
n low-resource languages have been released, and researchers have attempted to develop models for these tasks (Sampath et al.,
022; Chakravarthi et al., 2022a; Ravikiran et al., 2022; Priyadharshini et al., 2022; Bharathi et al., 2022). Four such attempts are
escribed below.
3



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

o
o
b
a
C
f
c
A
p
s
a
s
a
m
d
m
o

2

o
u
t
s
h
b
m
a
(
t
l
a
T
m

d
s
m
2
r
i

M
S
M
D
m
a
t
m
i
u

d

2.1. Shared tasks

The findings on offensive contents in Tamil, Malayalam, and Kannada have been reported by Chakravarthi et al. (2021) based
n the results of the first shared task2 on offensive content identification in Dravidian languages. The authors provided a summary
f the data set used for this task and an overview of the methodology and results of the proposed systems for this task. The authors
elieve that this work and data set will pique interest in and promote additional study on low-resource languages. In an innovative
pproach, Suryawanshi and Chakravarthi (2021) incorporated a multimodal classification challenge in the shared task ‘‘Troll Meme
lassification in Tamil’’, which contained an enhanced data set named TamilMeme that included Tamil texts from memes. The

indings of numerous models built for this task were also summarized. While this study presented a multimodal classification
hallenge, it also explored the problems associated with the NLP of a language- and code-mixed data set with limited resources.
dditionally, Chakravarthi et al. (2021) described a shared task of machine translation for Dravidian languages (Tamil) that was
resented at the first workshop on Speech and Language Technologies for Dravidian Technologies,3 where the best-performing
ystems achieved a high Bilingual Evaluation Understudy Score despite a lack of training data. Chakravarthi et al. (2020a) collected
code-mixed data set of comments/posts in Dravidian languages (Malayalam-English and Tamil-English) from social media. A

ummary and the findings of this shared task on detecting offensive texts in Dravidian languages were presented. Based on an
nnotated data set, a wide variety of systems were tested for two different tasks in two languages. In this effort, it was found that
any models rely on transformers and pre-trained embedding systems. These shared tasks stress the need for further study in the
etection of offensive texts in under-resourced languages. Recently, several machine learning and NLP-based research attempts have
ade a breakthrough in detecting offensive texts on social media platforms. A comprehensive review of the techniques and findings

f such attempts is provided below.

.2. Machine learning models

Traditional machine learning algorithms use the features extracted using word-level and character-level n-grams, among
thers. Davidson et al. (2017) created a multi-class classifier to classify tweets as hate speech, offensive, or neither hate nor offensive
sing NB, DT, and RF, with a five-fold cross-validation and claimed model performance metrics of 0.91, 0.90, and 0.90 pertaining
o precision, recall, and F1 score respectively. Gaydhani et al. (2018) created a machine learning technique for detecting hate
peech and offensive language on Twitter using n-gram features weighted by TF-IDF. Using various sets of feature values and model
yperparameters, a comparative analysis of LR, NB, and SVM were carried out in this attempt. The results indicate that LR performs
etter with an optimal n-gram range of 1 to 3 for L2 normalization, and a 95.6% accuracy rate was obtained while assessing the
odel against test data. De Gibert et al. (2018) constructed a data set of hate speech that was manually labeled from Stormfront,
white supremacist internet forum that contains both hateful and non-hateful sentences. SVM, Convolutional Neural Networks

CNN), and Long Short Term Memory (LSTM) were utilized to annotate the test data using hand-annotated training data, of which
he LSTM-based classifier obtained better results. Ayo et al. (2020) collected hate speech benchmark data sets to evaluate machine
earning models for offensive text classification. This attempt evaluated the pros and cons of single and hybrid machine learning
lgorithms for text classification. Additionally, this study presented a general metadata architecture for categorizing hate speech on
witter in order to address the challenges associated with categorizing hate speech in Twitter data streams. The proposed generic
etadata architecture outperformed comparable approaches on all metrics.

Apart from investigating algorithms and data sets for offensive speech recognition, MacAvaney et al. (2019) examined the
ifficulties associated with online automated offensive speech detection. This work developed a multi-view SVM strategy using data
ets such as HatebaseTwitter, Stormfront, and TRAC, and it was found to outperform neural approaches while remaining simpler and
ore interpretable than neural methods. Silva and Roman tested four distinct models (SVM, MLP, LR, and NB) (Silva and Roman,
020) with various configurations in order to test their performance in detecting hate speech in tweets written in Portuguese. The
esults revealed that these algorithms outperform the benchmark LSTM in terms of micro-averaged F1 score as well as other results
n the related literature.

Research by Putri et al. (2020) sought to automatically detect hate speech in Indonesian posts on Twitter. The models used NB,
ulti-Level Perceptron (MLP), AdaBoost Classifier, DT, and SVMs. The study assessed the model’s performance with and without

ynthetic Minority Oversampling Technique (SMOTE), a commonly used oversampling method to solve the imbalance problem. The
ultinomial NB (MNB) algorithm delivered the best model with a 93.2% recall and a 71.2% accuracy for detecting hate speech.
ave et al. (2021) classified the YouTube comments in Tamil, Malayalam, and Kannada into five classes using LR and linear SVM
odels. The comments were converted into word embeddings using TF-IDF and pre-trained MuRIL and fed into the classifiers. The

uthors found that MuRIL worked better for Malayalam, while TF-IDF worked better for Tamil and Kannada. Machine learning and
ext mining feature extraction techniques were used in an attempt by Mohapatra et al. (2021) to present a hate speech detection
odel. The authors collected code-mixed data having English and Odia from a Facebook public page and manually classified them

nto three categories. Machine learning models such as SVM, NB, and RF were trained using the features extracted from word
nigram, bigrams, trigram, n-grams, word2vec, and TF-IDF. SVM with word2vec was found to outperform NB and RF models.

Nayel and Shashirekha (2019) proposed three classification algorithms, namely Linear classifier, SVM, and MLP, to train the
ata sets provided by the Hate Speech and Offensive Content Identification in Indo-European Languages (HASOC) shared task. This

2 https://competitions.codalab.org/competitions/27654.
3 https://competitions.codalab.org/competitions/27650.
4

https://competitions.codalab.org/competitions/27654
https://competitions.codalab.org/competitions/27650


Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

d
n
B
m
E
c
c
w
g
b
a
c
o

d
i
m
s
p
a
b

l
s
B
s
m
b
m
o
e
T
w

c
c
o

task was applied for three languages, namely English, German, and Hindi. The authors claimed that the proposed models achieved
good results considering their simplicity. Another study by Saroj et al. (2019) used the same task and proposed text classification
approaches to distinguish between hate speech, profane language, and offensive contents by employing XGBoost and SVM classifiers.
The best result was attained by XGBoost with an accuracy of 81%. Zampieri et al. (2019) analyzed various models submitted for the
‘‘OffensEval’’ task for identifying and categorizing offensive language in the Offensive Language Identification (OLID) data set. The
models employed in the task submissions ranged from classical machine learning techniques, such as SVM and LR, to deep learning
techniques, such as CNN, RNN, and BiLSTM, which included an attention mechanism. In the shared task on Tamil, Malayalam, and
Kannada (Chakravarthi et al., 2021), a few machine learning-based approaches have been attempted. One such attempt by Andrew
(2021) performed language-specific pre-processing and applied machine learning algorithms for offensive text classification. This
effort produced a precision of 0.54, a recall of 0.73, and an F1 score of 0.61 for the Tamil language. For the Malayalam language,
a precision of 0.94, a recall of 0.94, and an F1 score of 0.93 were obtained. Correspondingly, the Kannada language achieved a
precision of 0.66, a recall of 0.67, and an F1 score of 0.63. Bharathi et al. (2021) presented a method for automatically identifying
offensive languages in Dravidian languages using a variety of machine learning methods. On the test set, they received F1 scores of
0.95 for Malayalam, 0.7 for Kannada, and 0.73 for Tamil. Chakravarthi et al. (2020a) also summarized the methodologies, including
the machine learning models used for offensive language identification from code-mixed data with comments in Tamil, Malayalam,
and Kannada. The results of these methodologies seem to be appreciable. Although numerous feature extraction methods have been
utilized in machine learning-based approaches, they require a common, well-defined feature extraction strategy. To increase the
performance of hate speech and offensive content detection models, neural network models now use text representation and deep
learning methodologies such as CNNs, Bi-directional LSTMs, and BERT (Ayo et al., 2020).

2.3. Deep learning and transformer models

While a variety of feature extraction techniques have been used in machine learning-based approaches, they all require a well-
efined feature extraction strategy. To improve the performance of models for detecting hate speech and objectionable content,
eural network models increasingly incorporated text representation and deep learning techniques such as CNNs, BiLSTM and
ERT (Dowlagar and Mamidi, 2021). Dowlagar and Mamidi (2021) also proposed BERT- and multilingual-BERT (mBERT)-based
odels to detect hate speech and offensive content in English, German, and Hindi. In addition, Dowlagar and Mamidi (2021) used
LMO (Embeddings from Language Models) to find contextual word embeddings that captured the meaning of the words in their
ontext as proposed by Sarzynska-Wawer et al. (2021). These models were compared with SVM and exhibited better results during
lassification. Liu et al. (2019a) investigated the following classifiers: a linear model with features derived from word unigrams,
ord2vec, and Hate-base; a word-based LSTM; and a fine-tuned BERT. This study used the OLID (Zampieri et al., 2019) data set
athered via the Twitter API by searching a specific set of terms and identified that BERT outperforms the other models. On the
asis of current pre-trained language bidirectional encoder representation models, a study by Mozafari et al. (2019) presented BERT
s a transfer learning approach. New fine-tuning strategies based on transfer learning have been used to evaluate BERT’s ability to
apture hateful and offensive content in social media using two publicly available data sets annotated for racism, sexism, hate, or
ffensive content.

While BERT (Devlin et al., 2018) and other models demonstrate success in monolingual NLP tasks, researchers have also
eveloped several monolingual models for NLP in a variety of languages in addition to English. Furthermore, the multilingual model
s another alternate strategy that has received scarce attention. XLM (Lample and Conneau, 2019) is a cross-language pre-training
odel that successfully extends the Masked Language Model (MLM), the full-length and training approach described in BERT, to

everal languages. In comparison to BERT, RoBERTa (Lan et al., 2019), a variant of BERT, makes use of a greater number of model
arameters, a larger batch size, and a greater amount of training data. It is based on the BERT language masking strategy, which
djusts important hyperparameters in BERT, including the deletion of BERT’s next sentence prediction task, allowing RoBERTa to
e more extensible to downstream tasks when compared to BERT.

A study by Vasantharajan and Thayasivam (2022) presented extensive experiments using multiple deep learning and transfer
earning models to detect offensive content on YouTube and proposed fine-tuning and ensembling multilingual transformer networks
uch as BERT, DistilBERT, and XLM-RoBERTa; Universal Language Model Fine-tuning for Text Classification (ULMFit); mBERT-
iLSTM; and deep learning models such as CNN-BiLSTM. These models classified offensive language from a Tamil code-mixed data
et of comments and posts collected from YouTube (Chakravarthi et al., 2021). The experimental results showed that ULMFiT and
BERT-BiLSTM performed well for this Tamil code-mix data set. Benhur and Sivanraju (2021), created and tested two models

ased on mBERT and MuRIL on the shared task for identifying the offensive texts released by Chakravarthi et al. (2021). These two
odels pooled the last layers of pre-trained transformers, and both gave comparatively better performance. Xu et al. (2020) focused

n detecting multilingual hate speech written in English and German by fine-tuning the XLM-RoBERTa for sentence embedding and
xtracting the layer with the best performance for slicing and splicing. This study used the task shared by Chakravarthi et al. (2020a).
he performance of these models was compared with that of other models such as SVM, LR, BiLSTM, and fine-tuned XLMRoBERTa
as found to possess the highest accuracy.

Hande et al. (2021) used a few transformer-based models such as IndicBERT, DistilBERT, ULmFiT, MuRIL, and XLMRoBERTa to
lassify code-mixed social media comments/posts in the Dravidian languages of Tamil, Kannada, and Malayalam. They created a
ustom data set by transliterating code-mixed texts into the respective Dravidian language, either Kannada, Malayalam, or Tamil, and
5

bserved that fine-tuning ULMFiT on the custom data set yielded the best results on the code-mixed test sets of all three languages.



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

I
p
t
(
i
m
t
f
l
t
m
a
m
b
a
t
S
a
l
t
n
s
a
o
c

e
a
t

i
t
t

c
c
u
b
m
d

a
w

3

3

r
g
c
I
o
i
c
T
s
w
s

Recently, in addition to fine-tuning transformer models, adapter-based tuning has emerged as a viable alternative to fine-tuning.
t works by incorporating lightweight adapter modules into a pre-trained language model and modifying the adapter modules’
arameters only when learning on a downstream job. As such, it introduces only a few additional trainable parameters per new
ask, allowing for a high degree of parameter sharing. A brief overview of adapter-based models is presented here. Rücklé et al.
2020) evaluated the computation efficiency of adapters and removed adapters from lower transformer layers during training and
nference. They demonstrated that this approach dynamically reduced the computational overhead associated with inference across
ultiple tasks while preserving task performance. Additionally, the adapters from AdapterFusion (Pfeiffer et al., 2020a) were pruned

o increase inference efficiency while maintaining task performance. Various adapter models that have been shown to work well
or machine translation were also presented in Pfeiffer et al. (2020a). Further, Artetxe et al. (2019) and Pfeiffer et al. (2020c)
everaged the modular architecture of adapters for parameter-efficient transfer to new languages or tasks. Artetxe et al. (2019)
rained a transformer-based masked language model on one language and then transferred it to another using a new embedding
atrix. This model was found to be comparable with mBERT. Pfeiffer et al. (2020c) introduced MAD-X, a framework based on

dapters that provides great portability and parameter-efficient transfer to arbitrary tasks and languages through the acquisition of
odular language and task representations. Additionally, this study proposed a novel invertible adapter architecture and a robust

aseline technique for converting a multilingual model that has been previously trained to a new language. Artetxe et al. (2019)
nd Pfeiffer et al. (2020c) showed that a monolingual model trained in one language learns semantic concepts that are generalizable
o other languages. He et al. (2021) identified that current adapter-based models focus on parameter efficiency but lack effectiveness.
ince adapter-based fine-tuning yields representations with less deviation from those generated by the current adapter-based models,
dapter-based tuning better mitigates forgetting issues than fine-tuning alone. So, adapter-based tuning outperforms fine-tuning on
ow-resource and cross-lingual tasks. This study proposed and ran two models based on RoBERTa using low- and high-resource
asks and demonstrated that adapter-based tuning gives better performance. A comparison between linear classifiers and neural
etworks yielded inconsistent results across data sets and architectures, with linear classifiers proving to be very competitive, if not
uperior. Systems based on pre-trained language models, on the other hand, have been proven to have the best performance in this
rea, achieving new state-of-the-art results. However, one limitation in the case of these pre-trained models is that they are suited
nly for general-purpose language comprehension tasks because of their training language variety. So, to support low-resource and
ross-lingual tasks, adapter-based transformer models have also been introduced.

From this review of state-of-the-art research studies, it can be seen that some of the machine learning models also performed
qually well by using hybrid approaches for feature selection/extraction from texts rather than single feature selection/extraction
lgorithms. In comparison to utilizing a transformer, the advantage of employing machine learning models with feature selection
echniques is that the model remains simple for easier interpretation; hence, it forms the basis of the study we describe in this paper.

It was also observed that, in many attempts by researchers, transformer-based models excelled in classifying the offensive texts
n monolingual and code-mixed data. Fine-tuning a transformer model for a new task, however, would consume a huge amount of
ime; hence, adapter modules were recommended. However, we could not find any study that used adapter models for offensive
ext classification in Tamil.

Based on the no free lunch theorem Ho and Pepyne (2002) and our review of current works dealing with data set disparity, we
oncluded that a method that works well for one data set may not be suitable for another. This means that there might not be a single
lassifier that performs well on all kinds of data sets. We found that a few pre-trained transformer models have been developed for
nder-resource languages such as Tamil. To the best of our knowledge, no study on adapter-based tuning of transformer models has
een undertaken yet; hence, the present study aims to develop such models. In addition, we also attempt to adapt the developed
odels for cross-domain tasks to verify their effectiveness. The term ‘‘cross-domain’’ refers to the transfer of learning from the
eveloped models to a different data set published by different studies but not necessarily in different hatred domains.

To this end, we demonstrated the performance of four different machine learning algorithms in the classification of Tamil texts
s Offensive or Not Offensive. Furthermore, we developed five transformer models for classifying the data set. These five models
ere employed as fine-tuning and adapter-based transformer models. The details of the models are presented in Section 4.

. Pre-processing

.1. Task description

This study identified offensive texts based on the common definition for offensive language often expressed as ‘flames’, which
efers to ‘‘offensive messages or remarks that in some circumstances are inappropriate, exhibit a lack of respect towards certain
roups of people or are just rude in general’’ (Razavi et al., 2010). The data set used to identify offensive language content
onsisted of code-mixed data of Tamil comments collected from YouTube, made available through the HASOC-Offensive Language
dentification track in Dravidian Code-Mix FIRE 2021.4 The data set includes comments in Tamil, English, and Malayalam, but none
f the comments is entirely in English or Malayalam; these languages are mixed with Tamil (Kumaresan et al., 2021). The comments
n the data set contain more than one sentence, but the corpora’s average sentence length is one (Chakravarthi et al., 2021). Each
omment in the data set was annotated either as Offensive (OFF), Not Offensive (NOT), or Not Tamil. The data set contained 5880
amil texts for training and 654 Tamil texts for testing, with class labels as Offensive, Not Offensive, and Not Tamil. The training
et had 1153 texts classified as Offensive and 4724 as Not Offensive texts. Three texts mixed with Tamil and English/Malayalam
ere omitted. The distribution of classes in the data set is shown in Fig. 1. Sample Offensive and Not Offensive texts from the data

et are presented in Fig. 2.

4 https://competitions.codalab.org/competitions/27654.
6

https://competitions.codalab.org/competitions/27654


Computer Speech & Language 76 (2022) 101404M. Subramanian et al.
Fig. 1. Distribution of classes.

Fig. 2. Sample training texts from the data set.

3.2. Pre-processing

In real-world situations, data is frequently incomplete, inconsistent, and/or deficient in specific behaviors or trends, and it is likely
to contain a significant number of errors. Pre-processing of such data constitutes a significant part of NLP. Clean data is essential
for classifying any text with high accuracy. As a result, preparing data is the first step in NLP before analyzing or categorizing it. It
is necessary to convert raw data into a format that the NLP models can understand. Since the corpus included emojis, punctuation
characters, and words that were not in Tamil, these characters had to be deleted before the rest of the data could be processed
properly. The following steps were performed for pre-processing.

1. Removal of emojis: Text messages can contain emojis, which are pictorial representations of an idea or emotion. It is possible
to deal with them in one of two ways: Either a textual term can be used to substitute an emoji, or they can simply be removed
altogether. In this study, we chose to remove the emojis and emoticons from the text because they generally do not convey
any semantic value.

2. Removal of punctuation characters, digits, and texts that are not in Tamil: In addition to the removal of emojis, we
also removed various punctuation characters, such as !, ?, etc., and digits. Even though these characters improve readability,
they do not serve the classification goal.
7



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

c
c
T
i
f

T
m

w

u

4

t
2
a
o
w

4

v
s
f
T
t

p
t

T
d
s
a
d

o
u
i
t
H

3.3. Feature selection

In machine learning, feature selection is the process of selecting a subset of relevant features from a data set to use in the
reation of a model. There are numerous features that must be considered while developing a machine learning model for text
lassification. Since features are derived from words, the corpus’s context is broader, resulting in a higher dimensionality for features.
he completion of these features require a significant amount of time and processing power. Word embeddings or word vectorization

s a technique used in NLP to map words or phrases from vocabulary to a vector of real numbers. Word embeddings help in the
ollowing use cases:

• Computation of similar words
• Text classifications
• Document clustering/grouping
• Feature extraction for text classifications
• Natural language processing

erm Frequency — Inverse Document Frequency (TF-IDF) vectorization is a popular vectorization technique. TF-IDF is a statistical
easure that evaluates how relevant a word is to a document in a collection of documents and is given as

𝑇𝐹 − 𝐼𝐷𝐹 = 𝑇 𝑒𝑟𝑚𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑇𝐹 ) ∗ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐼𝐷𝐹 ), (1)

here TF is the measure of the frequency of a word in a document and is expressed as

𝑇𝐹 = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡)∕(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡) (2)

IDF is the inverse of document frequency which measures the informativeness of a word in the document and is calculated as

𝐼𝐷𝐹 = 𝑙𝑜𝑔((𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)∕(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑)) (3)

After pre-processing, the texts in both the training and test data sets were tokenized into words and converted into feature vectors
sing TF-IDF vectorization. From these feature vectors, important features were chosen and fed into the classifiers for training.

. Proposed classifiers

The pre-processed data set is sent to the feature engineering module to obtain feature vectors. While training vectors are used to
rain classifiers, development/test vectors are used to evaluate the models. According to the no free lunch theorem (Ho and Pepyne,
002), there is no single classifier that can achieve best performance on all kinds of data sets. Therefore, it is recommended to
pply several different classifiers on feature vectors to identify the one that exhibits better results. Hence, we selected two kinds
f models, namely machine learning models and pre-trained multilingual transformer models. The scikit-learn libraries in Python
ere used to implement the proposed models. The rationale behind the use of these models is presented in the following sections.

.1. Machine learning models

Machine learning has matured significantly during the last few years and has the potential to fundamentally alter how people
iew important applications such as image identification, data mining, expert systems, and NLP. Machine learning can provide
olutions in all of these areas and is capable of generating the kind of innovation on which humankind will rely heavily in the
uture. Numerous strategies have been developed in many research attempts to address the challenge of detecting offensive texts.
hese solutions have been built using a variety of machine learning and deep learning methods as well as transformer models. In
his section, we describe the four machine learning models that were used for text classification in the present study.

NB is an efficient method that is used to analyze text input and solve problems involving binary and multiple classes. BNB is a
robabilistic model and a variant of the NB method that is most frequently employed in NLP (Singh et al., 2019). BNB determines
he probability of each tag in a given sample and outputs the tag with the highest probability.

SVMs are supervised classification algorithms that use training data to generate an optimal hyperplane for classifying new data.
he support vectors produce a hyperplane that splits the examples into two non-overlapping classes in binary classification. SVM
etermines the maximum separation margin between hyperplanes. Typically, if a data set is linearly separable, there are infinite
eparating hyperplanes. SVM classifiers perform admirably in text classification tasks (Kotsiantis et al., 2007) and can be used to
ddress problems involving classification and regression. One interesting attribute of SVM is that its learning performance is not
ependent on the dimension of the feature space (Joachims, 1998).

LR is a machine learning method that is used to solve classification problems. It is a predictive analytic approach that is based
n the concept of probability. LR is frequently utilized in a variety of data mining and machine learning use cases, where it is
sed to define response variables using one or more predictor variables (Hosmer and Lemeshow, 2000; Ginting et al., 2019). LR
s used to forecast a discrete result using discrete, continuous, or mixed data. Thus, LR is a frequently employed technique when
he dependent variable comprises two or more distinct outcomes. The outcome could be in the form of Yes/No, 1/0, True/False, or
8

igh/Low, given a set of independent variables. In this attempt, we employed L2 regularization to deal with data that contained a



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

u
a
t
a
a

4

r
F
c
u
d
m
e
t

M
d
p
d
w
p
e

4

2
l
m
t
w
s
e
q
m
t
y
B
L
s

4

2
f
w
I
e

4

t
t
e
(
t
e

binary dependent variable, such as Offensive or Not-offensive. It calculates the probability of output by combining the independent
or prediction variables in a linear fashion.

KNN is a straightforward text classification method that classifies new data by comparing it to all previously classified data
sing a measure of similarity. While KNN is a straightforward technique that can be used for classification (Kovács et al., 2021)
nd regression tasks and makes no assumptions about the data, it is memory- and time-intensive due as it requires that all the
raining data be retained. The class of a text document is decided based on the classes of the K documents that are closest to it (Gao
nd Huang, 2017). KNN is a classification algorithm based on statistics, and it performs lazy learning. The testing step of the KNN
lgorithm is resource-intensive in terms of memory and time (Abro et al., 2020).

.2. Transformer models

Despite the fact that Recurrent Neural Networks (RNN) are meant to take a series of inputs with no predetermined size limit and
emember information learned from earlier input while generating output, they suffer from long-term dependency and poor training.
urthermore, they take the input sequentially, one by one, which does not make good use of GPUs as they are built for parallel
omputation. To overcome these constraints, a transformer with an attention mechanism has been suggested. A transformer is a
nique architecture developed by Vaswani et al. (2017) that tries to handle sequence-to-sequence tasks while handling long-range
ependencies with simplicity. It is the most recent cutting-edge approach in the field of NLP. A transformer is a deep learning
odel that uses the attention mechanism, differently weighting the significance of each element of the input data, and is typically

mployed in language translation, summarization, and text classification. A basic transformer consists of an encoder that reads the
ext input and a decoder that predicts a task.

The transformer is built with encoder–decoder modules. They are made up of modules with feed-forward and attention layers.
ultiple identical encoders and decoders are layered on top of each other to form the encoder and decoder blocks. The encoder and

ecoder stacks have the same number of units. The attention mechanism examines an input sequence and determines whether other
ortions of the sequence are essential at each stage. If the input data is a natural language sentence, for example, the transformer
oes not need to process the beginning of the sentence before the end. Rather, it determines the context that gives meaning to each
ord in the phrase. The encoder and the decoder stack work as follows: Initially, the word embeddings of the input sequence are
rovided to the first encoder. They are then converted and propagated to the next encoder, and finally, the output from the last
ncoder in the encoder-stack is passed to all the decoders in the decoder stack.

.2.1. Why transformers?
Many transformer-based NLP models have been developed particularly for transfer learning (Devlin et al., 2018; Raffel et al.,

019). Transfer learning is a strategy in which a model is first pre-trained on large unlabeled text corpora using self-supervised
earning before being used on labeled text corpora (Aßenmacher and Heumann, 2020). Once this is accomplished, it is only
inimally modified during fine-tuning on a given NLP downstream task (Devlin et al., 2018). A significant advantage of using

ransformers is that an existing pre-trained transformer model can be fine-tuned on a given data set, obtaining better outcomes
ith less work. Labeled data sets for specific NLP tasks are often small in size. When a model is newly trained on such a tiny data

et without prior training, the outcomes are lower than when the model is trained on a larger data set with prior training. But an
xisting pre-trained model can be used to fine-tune a variety of downstream NLP tasks, such as text classification, summarization,
uestion answering, and many more. Transformers have recently been the model of choice for NLP challenges, replacing RNN
odels such as LSTM and Gated Recurrent Unit (GRU). Training on bigger data sets is made possible by the use of additional

raining parallelization, which reduces training time. One of the most significant milestones in the development of NLP in recent
ears has been the introduction of Google’s BERT, which has been marked as the start of a new era in NLP. Consequently, pre-trained
ERT models such as mBERT, Robustly Optimized BERT Pre-training Approach (RoBERTa), Multilingual Representations for Indian
anguages (MuRIL), and many more have been developed. Three models that serve as the basis for the models proposed in this
tudy are described below.

.2.2. mBERT (BERT multilingual base model (cased))
mBERT is a self-supervised transformer model pre-trained on a large corpus of multilingual data (Devlin et al., 2018; Pires et al.,

019). It is trained entirely on raw texts, with no human labeling, and uses an automatic mechanism to generate inputs and labels
rom those texts. mBERT is a 12-layer transformer (Devlin et al., 2018), but instead of being trained on monolingual English data
ith an English-derived vocabulary, it is trained on Wikipedia articles from 104 languages with a shared word piece vocabulary.

t makes no use of a marker to indicate the input language, and there is no explicit mechanism in place to encourage translation
quivalent pairs to have similar representations.

.2.3. XLM-RoBERTa
XLM-RoBERTa is a multilingual variant of RoBERTa (Liu et al., 2019b). XLM-RoBERTa is a self-supervised transformer model

hat has been pre-trained on 2.5TB of filtered CommonCrawl data from 100 languages. This model does not require lang tensors
o understand which language is being used, and it should be able to determine the proper language based on the input IDs. It
mploys the same training approach as the RoBERTa model, which uses the MLM technique without the Next Sentence Prediction
NSP) technique. The training procedure entails sampling streams of text from various languages and masking some tokens so that
he model can anticipate the missing tokens. Since no linguistic embeddings are used, the model can deal with code-switching more
9

ffectively. XLM-RoBERTa has demonstrated outstanding performance in a variety of multilingual NLP tasks.



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

t
s

m

4

e
i
c
c
t
X

4

f
m

(
t
n
t
p
t
t
i

e
u
u
(
c
m
r
o

w
a
r
T
o
n
T
m

(
u
f

c

4.2.4. MuRIL
The primary goal of MuRIL is to increase the efficiency with which certain downstream NLP activities are performed. MuRIL is

he latest multilingual model to be introduced by Google, and it is intended to improve interoperability between languages. MuRIL
urpasses mBERT on all tasks in the challenging cross-lingual XTREME test (Hu et al., 2020).

In our review of extant literature, we found two methods for utilizing pre-trained transformer models: fine-tuning a transformer
odel and integrating an adapter into a transformer model. A quick overview of these methods are provided in 4.2.5 and 4.2.6.

.2.5. Fine-tuning a transformer model
Since training a transformer model such as BERT from scratch on a small data set would result in overfitting, it is preferable to

mploy a pre-trained model developed on a large data set. Then, the model can be refined by training it on a smaller data set; this
s referred to as model fine-tuning. There are several advantages to fine-tuning, including rapid model building, task tuning on a
onsiderably smaller data set, and attaining state-of-the-art results with minimal task-specific changes in a variety of tasks such as
lassification, summarization, etc. During fine-tuning, one or more dense layers of neurons and a classification layer are added on
op of pre-trained models. Then, the new model is trained on a new downstream classification task. The transformer models mBERT,
LM-RoBERTa (Base and Large), and MuRIL (Base and Large) were fine-tuned in this attempt.

.2.6. Adapters - parameter-efficient transfer learning
In the context of transformer-based NLP models, parameter inefficiency occurs when a completely new model must be trained

or each downstream task, resulting in an overly large number of parameters. Additionally, these enormous amounts of weights
ust be stored for inference. To address these issues, adapter modules have been introduced.

Adopting adapters, as presented by Houlsby et al. has been shown to be a viable alternative to the full fine-tuning of most tasks
Houlsby et al., 2019; Peters et al., 2019). Recently, adapters have exhibited remarkable performance in multi-task and cross-lingual
ransfer learning (Pfeiffer et al., 2020a). Adapter modules result in a compact and extensible model since they are a tiny collection of
ewly initialized weights added to each layer of the transformer. These weights are subsequently trained during fine-tuning, while
he pre-trained parameters are frozen. As the original network’s parameters remain constant, the adapters result in a high degree of
arameter sharing. Only a few trainable parameters are required for each task; these additional task-specific parameters are referred
o as adapters. Training of a large number of task-specific and language-specific adapters enables effective parameter sharing across
asks. Transfer learning becomes extremely efficient when adapter modules are used. The main component, the pre-trained model,
s shared by all downstream tasks.

Recently, adapter-based models have been used by Houlsby et al. (2019), Peters et al. (2019) Pfeiffer et al. (2020b), Kim
t al. (2021a) to fine-tune pre-trained transformer models. The attempts by Houlsby et al. (2019) and Pfeiffer et al. (2020b)
sed a benchmark data set called General Language Understanding Evaluation (GLUE) containing English sentences for evaluating
nderstanding levels such as question answering, sentiment analysis, textual entailment, etc. Peters et al. (2019) and Kim et al.
2021a) used a diverse set of target tasks such as sentiment analysis, natural language inference, sentence pair tasks, relationship
lassification, review sentiment, and many more, containing only English sentences. We found that the state-of-the-art adapter
odels have not been applied and evaluated against the performance for low-resource languages such as Tamil. In the present

esearch study, we adapt the adapter model proposed by Houlsby et al. (2019) to classify offensive texts in Tamil. The architecture
f the proposed adapter module and its integration with the transformer layer is depicted in Fig. 3.

The transformer’s layers are divided into two basic sub-layers: an attention layer and a feedforward layer. The attention layer
eights the significant part of the input text differently and gives context for every place in the input sequence. In NLP, this layer
ids in the memory of long source texts. Based on the information from the attention layer, the feedforward layer generates a new
epresentation. After the attention and the two feedforward levels, an adapter module is inserted twice into each transformer layer.
he adapter is made up of a bottleneck layer with fewer parameters in comparison to the attention and feedforward layers in the
riginal model. The blue layers are trained on the chosen data set task during adapter tuning, which includes the adapter and
ormalization layer parameters. As can be seen, an adapter module is a simple two-layer feedforward network with non-linearity.
he network’s hidden dimensionality is low, implying that the total number of parameters in the adapter is also less. This is what
akes adapters so effective.

In the proposed study, the above architecture is integrated into pre-trained transformer models such as mBERT, XLM-RoBERTa
Base and Large), and MuRIL (Base and Large) for identifying offensive texts. The reason behind utilizing these models is that they
se cross-lingual model transfer, which involves leveraging task-specific annotations in one language/domain to fine-tune the model
or evaluation in another language/domain. The training and testing process for transformer-based models is depicted in Fig. 4.

Furthermore, this study attempts to transfer the knowledge learned by the developed classifiers to a cross-domain data set. The
ross-domain data set is obtained from Shared Task on Abusive Comment Detection in Tamil from DravidianLangTech@ACL 2022.5

Instances in this data set have been classified into seven types of abusive comments, namely Misogyny, Misandry, Homophobia,
Transphobia, Xenophobia, Counter Speech, and Hope Speech, with an additional category named None (Chakravarthi, 2020;
Chakravarthi and Muralidaran, 2021a; Priyadharshini et al., 2022). From these instances, we selected those under Misogyny and
None to create a data set. Since there were more number of samples classified as Misogyny, we extracted those instances. The number
of instances in the Misogyny class was 1642, while 149 instances were not offensive. We examined the generalization capability of
the models for cross-domain data set, the results of which are presented in Section 6.

5 https://competitions.codalab.org/competitions/36403.
10

https://competitions.codalab.org/competitions/36403


Computer Speech & Language 76 (2022) 101404M. Subramanian et al.
Fig. 3. Adapter Module integrated into Transformer.

Fig. 4. Training and testing process for transformer models.
11



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

h
a
e

5

J
t
a

5

f
e
T
r
s
t
c
b
i

p
i

5

B
a
w

Table 1
Experimental platform.
Item name Specifications

GPU GPU DELL EMC 740
RAM 128 GB
GPU RAM 16 GB
OS Ubuntu
Language Python
IDE Jupyter notebook

Table 2
Hyper-parameters and their search space.
ML models Parameter Search space

Bernoulli NB Alpha [0.5,0.6, 0.2, 0.3, 0.4, 0.7, 0.1, 0.8, 0.9, 1.0]
fit_prior [True, False]

Logistic Regression solvers [’lbfgs’, ’liblinear’]
penalty [’l2’]
c_values [100, 10, 1.0, 0.1, 0.01]

SVM C [0.05,0.1,0.2,0.3,0.25,0.4,0.5,0.6,0.7,0.8,0.9,1]
gamma [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
kernel [’rbf’,’linear’]

KNN n_neighbors [15,20,25,30,35,40,45,50],
weights [’uniform’,’distance’],
metric [’minkowski’,’euclidean’,’manhattan’]

5. Experimental setup

This section describes the implementation details of the training process for all experiments, including the selection of
yperparameters, the hardware used, and the evaluation metrics used to compare the performance of each model. In order to
nalyze the performance of the ML models and adapter transformer models, a set of experiments were conducted. The details of the
xperiments are presented below.

.1. Experimental platform

Python programming on Jupyter notebook and Colab notebook environment was used to train and test the proposed models. The
upyter notebook environment does not require any setup. The required model architectures were imported from sklearn. We ran
he proposed models on Graphical Processing Unit (GPU) because they may consume a lot of power due to parameter optimization
nd require high-performance hardware to operate well. Table 1 lists the hardware and software configurations used.

.2. Tuning of hyper-parameters for ML models

Hyper-parameters are variables that define the network structure, such as the number of hidden units, dropout, activation
unction, and weight initialization, as well as how the network is trained, including the learning rate, momentum, batch size, and
pochs. Hyper-parameter tuning is the process of determining optimum values for hyper-parameters used in a learning algorithm.
he goal of hyper-parameter tuning is to find optimal values for hyper-parameters to minimize a loss function and provide better
esults. Manual search, random search, grid search, and Bayesian optimization are some of the optimization techniques. The present
tudy used grid search optimization. In grid search, each combination of hyper-parameters is attempted. Grid search is used to find
he optimal hyper-parameters of a model, which results in the most ‘accurate’ predictions. Even though it increases the time and
omputing power, it is the most effective, as the optimal solution is least likely to be missed. A different set of hyper-parameters has
een used based on the models being developed. The hyper-parameters tuned in this study and their search spaces are summarized
n Table 2.

Grid search optimization was run to find an appropriate set of hyper-parameters for each of the models. The accuracy of all the
ossible values of hyper-parameters was observed, and the set of hyper-parameters that led to the highest accuracy is highlighted
n Table 2.

.3. Training the transformer models: Fine-tuning and integrating adapters

Five different versions of transformers were considered in this study: mBERT, MuRIL - Base, MuRIL - Large, XLM-RoBERTa -
ase, and XLM-RoBERTa - Large. These transformers were used in two modes: fine-tuning the entire weights and training only
dapter modules. For fine-tuning, a classification layer was added on top of the pre-trained models. The entire pre-trained models
12

ere then retrained on training data set, and the output was fed to the softmax classification layer. While training the models, the



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

r
A
i

i
d
i

error was propagated backward through the entire architecture, and the model’s pre-trained weights were adjusted in accordance
with the training data set. The classification layer had two neurons as the data set contained two labels, namely Offensive and Not
Offensive. In the second approach, adapters were trained in the same way as the model was fine-tuned to its maximum potential. The
pre-trained weights of the transformer layers were fixed, with just the adapter weights being trained, in contrast to full fine-tuning.
Since the pre-trained weights were fixed, adapter weights were encapsulated within transformer weights, requiring them to acquire
compatible representations across tasks. Furthermore, a task-specific classification head was added on top of the transformer model’s
final layer to map the final hidden state to one of two classifications: Offensive or Not Offensive. The training procedure is detailed
below:

1. Add a new adapter to each of the transformer models.
2. Add a binary classification head to the top of the last layer.
3. Configure the training process using appropriate training arguments.
4. Train the adapters as follows:

i. Freeze all the weights of the pre-trained model so that only the adapter weights are updated during training.
ii. Activate the adapter and the prediction head such that both are used in every forward pass.

The training arguments used for training the proposed transformer models were learning rate, number of training epochs, the batch
size for training, the batch size for evaluation, and logging steps. The learning rate was set to 0.0001 for both the cases. The batch
size for training and evaluation were 8 for the fine-tuning approach and 32 for adapter-based tuning. The number of training epochs
was 3 for fine-tuning and 50 for adapter-based tuning. When compared to adapter-based tuning, the values of the training arguments
for the fine-tuning strategy were set to be considerably small. This is because fine-tuning requires a significant amount of time to
train as it retrains all layers of the model.

5.4. Performance metrics

The performance of the different models used for the classification was evaluated using the following metrics: accuracy, precision,
ecall, and F1 score ((Ayo et al., 2020). These metrics are commonly used for the evaluation of classifiers and are defined as follows.
ccuracy is defined as the number of texts correctly classified as belonging to a specific class divided by the total number of texts

n that class, as represented in Eq. (4).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(4)

where, TP is true positive (the number of correctly classified texts for each class), TN is true negative (the number of texts
correctly classified in other classes except the correct class), FP is false positive (number of texts misclassified in other classes
except the right class), and FN is false negative (the number of texts misclassified in the relevant class).

The number of texts correctly categorized as a certain class out of the total number of actual texts in that class is defined as
recall (also known as sensitivity or true positive rate) and is computed using Eq. (5).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

Precision (positive predictive value) is defined as the number of texts accurately categorized as a specific class out of the total
number of texts categorized as that class and is given by Eq. (6).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)

F1-score is defined as the harmonic average of precision and recall; that is, it is the weighted average of precision and recall. It
is calculated as in Eq. (7).

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(7)

Macro Average: The macro average is calculated as the unweighted average of the class-wise scores. Macro average gives equal
weight to each of the two classes in the data set to find the final averaged metric. For instance, macro average precision is calculated
as

𝑀𝑎𝑐𝑟𝑜 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑜𝑡−𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑂𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒)∕2 (8)

Weighted Average : The weighted average is obtained by taking the weighted average of class-wise scores, where the weights are
proportional to the number of instances of each of the classes; that is, each class’s contribution to the average is weighted by its
size. It is calculated as follows:

𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑜𝑡−𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒 ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑜𝑡 − 𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

+ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑂𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒 ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑓𝑓𝑒𝑛𝑠𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
(9)

Fig. 1 shows that the number of instances of the two classes is unequally distributed, indicating that the weighted average, which
s biased in favor of frequent classes, may underestimate the error in less frequent classes. The macro-average score mitigates this
isadvantage by treating each class equally, and thus it can provide a more accurate representation of the model’s performance on
13

nfrequent cases.



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

2
m

6

p
v
a
e
b
s
F

w
m
c

Table 3
Performance of ML models for varied number of features.
ML models Testing accuracy (%) for top ‘N’ features

900 1000 1050 1100 1200 1500

BNB 79.951 80.336 80.428 80.429 80.416 80.425
SVM 79.152 79.318 79.663 79.666 79.641 79.664
LR 80.864 80.928 81.345 81.341 81.631 81.041
KNN 80.418 79.921 81.651 81.172 81.521 81.712

Table 4
Precision, recall, and F score for ML models.

Classifiers Class labels/
Macro or
Weighted avg

Testing acc (%) Precision (%) Recall (%) F1-Score (%)

BNB Not-Offensive 80.428 85.664 91.418 88.448
Offensive 43.902 30.508 36.000
Macro Average – 64.783 60.963 62.224
Weighted Average – 78.129 80.428 78.985

SVM Not-Offensive 79.663 89.587 85.075 87.273
Offensive 44.828 55.085 49.430
Macro Average – 67.208 70.080 68.351
Weighted Average – 81.511 79.664 80.445

KNN Not-Offensive 81.651 83.016 97.575 89.708
Offensive 45.833 09.322 15.493
Macro Average – 64.425 53.448 52.601
Weighted Average – 76.307 81.651 76.318

LR Not-Offensive 81.345 88.993 88.333 88.662
Offensive 46.610 48.246 47.414
Macro Average – 67.801 68.289 68.038
Weighted Average – 81.605 81.346 81.472

6. Experimental results

This section delineates the results of the models built for classifying texts in the data set obtained from Dravidian Code-Mix FIRE
021 into Offensive and Not Offensive. We trained each classifier using the features extracted from the training set and tested the
odels using the test data set provided.

.1. Results of ML models

The experiments to assess the performance of the proposed machine learning models were carried out using the tuned hyper-
arameters highlighted in Table 2, and these values produced the best results during training. For training the models, the feature
ectors obtained from TF-IDF vectorization were used. TF-IDF produces a vocabulary of words learned from the training data,
nd the top 1050 features were chosen. These top 1050 important features as calculated by TF-IDF were chosen through rigorous
xperiments. We ran the models by taking the top 900, 1000, 1050, 1100, 1200, and 1500 features. The testing accuracy produced
y machine learning models for varying number of features is listed in Table 3. It can be observed from Table 3 that there is no
ignificant improvement in accuracy beyond 1050 features. Table 4 shows the overall testing accuracy with precision, recall, and
1 score for both the classes, namely Offensive and Not Offensive for each of the models.

Based on indices such as TP, TN, FP, and FN, confusion matrices were obtained. A confusion matrix compares the actual labels
ith those predicted by a machine learning model that helps to perform an error analysis of the proposed models. The confusion
atrices for the proposed machine learning models are shown in Fig. 5. The diagonal elements of the confusion matrix represent

orrect classifications. The predicted classes are represented by the 𝑦-axis, and the actual classes are represented by the 𝑥-axis. For
instance, Fig. 5 shows that the BNB model classified 36 offensive texts correctly as offensive and 82 non-offensive texts incorrectly
as offensive.

6.2. Results of fine-tuning transformer models

For fine-tuning, a classification layer was added on the top of the pre-trained models, and the entire pre-trained models were
retrained on the training data set. The prediction results of the fine-tuned models on the test data set are presented in Table 5.
The confusion matrices for the fine-tuned transformer models are shown in Fig. 6. Among all the models, MuRIL (large) gave the
highest accuracy. Since we fine-tuned the models in entirety, the training of these models was a time-intensive process. The adapter
transformer models proposed in this work were tested for their performance using the test data set. The values of the performance
metrics for the testing data set of all the adapter transformer models are presented in Table 6. It is evident from Table 6 that
XLM-RoBERTa (large) gave the highest accuracy when compared to all the other adapter models. The confusion matrices for the
adapter transformer models are shown in Fig. 7.
14



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.
Fig. 5. Confusion matrix for Bernoulli NB, SVM, KNN, LR.

Table 5
Performance of fine-tuned transformer models.

Classifiers Class labels Testing accuracy (%) Precision (%) Recall (%) F1-Score (%)

mBERT Not Offensive 80.428 81.530 93.777 87.226
Offensive 75.424 47.340 58.170
Macro Average – 78.477 70.559 72.698
Weighted Average – 79.775 80.428 78.873

XLM-RoBERTa - Base Not Offensive 76.911 74.813 96.163 84.155
Offensive 86.441 43.038 57.465
Macro Average – 80.627 69.601 70.810
Weighted Average – 79.027 76.911 74.483

XLM-RoBERTa - Large Not Offensive 81.957 81.957 100.00 90.084
Offensive 0.000 0.000 0.000
Macro Average – 40.979 50.000 45.042
Weighted Average – 67.170 81.957 73.830

MuRIL - Base Not Offensive 68.960 63.806 97.436 77.114
Offensive 92.373 35.974 51.781
Macro Average – 78.089 66.705 64.448
Weighted Average – 77.041 68.960 65.377

MuRIL - Large Not Offensive 88.226 94.030 91.803 92.903
Offensive 61.864 69.524 65.471
Macro Average – 77.947 80.664 79.187
Weighted Average – 88.866 88.226 88.499

6.2.1. Parameter efficiency of adapter models
Parameter inefficiency, in the context of transfer learning for NLP, arises when a model needs to be trained in entirety for every

downstream task, and the number of parameters grows too large. Houlsby et al. (2019) proposed adapter modules that provide
parameter efficiency by only adding a few trainable parameters per task and do not require that previous tasks be revisited as new
tasks are added. The main idea of this attempt is to enable transfer learning for NLP on an incoming stream of tasks without
training a new model for every new task. A standard fine-tuning model copies weights from a pre-trained network and tunes
them on a downstream task, which requires a new set of weights for each task. In other words, fine-tuning involves adjusting
15



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

o
n
o
b
n
f

p
m

h
t
m
m
i

6

d
w
f
d
t
c
t

Table 6
Performance of adapter transformer models.

Classifiers Class labels Testing accuracy (%) Precision (%) Recall (%) F1-Score (%)

mBERT Not Offensive 85.015 94.963 87.759 91.291
Offensive 39.831 63.514 48.958
Macro Average – 67.397 75.636 70.088
Weighted Average – 88.724 85.015 86.437

XLM-RoBERTa - Base Not Offensive 84.862 91.064 90.092 90.842
Offensive 54.237 58.716 56.388
Macro Average – 72.921 74.404 73.615
Weighted Average – 85.377 84.862 85.099

XLM-RoBERTa - Large Not Offensive 88.532 93.097 92.924 93.010
Offensive 67.797 68.376 68.085
Macro Average – 80.447 80.650 80.548
Weighted Average – 88.571 88.532 88.551

MuRIL - Base Not Offensive 84.862 91.045 90.538 90.791
Offensive 56.780 58.261 57.511
Macro Average – 73.912 74.399 74.151
Weighted Average – 85.020 84.862 84.939

MuRIL - Large Not Offensive 87.920 92.910 92.393 92.651
Offensive 65.254 66.957 66.094
Macro Average – 79.082 79.675 79.373
Weighted Average – 88.047 87.920 87.981

Table 7
Number of trainable parameters in fine tuning and adapter transformer model.
Classifiers Number of trainable parameters

Fine-tuned transformer model Adapter transformer model

M-BERT 177,854,978 4,223,490
MuRIL (Base) 237,557,762 1,486,658
MuRIL (Large) 505,909,250 1,486,658
XLM-RoBERTa (Base) 278,045,186 1,486,658
XLM-RoBERTa (Large) 559,892,482 1,486,658

the original parameters of each layer for each new task, thus limiting compactness. Fine-tuning is advantageous in that it could
be more parameter-efficient if the lower layers of the network are shared between tasks. Fine-tuning large pre-trained models for
transfer learning in NLP is effective but parameter-inefficient. For a total of N tasks, full fine-tuning requires 𝑁 times the number
f parameters of the pre-trained models. But in the proposed adapter models, we add new modules between layers of a pre-trained
etwork called adapters. This means that parameters are copied over from pre-trained models (meaning that they remain fixed), and
nly a few additional task-specific parameters are added for each new task, all without affecting previous ones. Only the adapter
locks and layer normalization weights are modified when adapters are integrated into transformers. These layers have a small
umber of parameters. Surprisingly, the transition from fine-tuning the entire model to fine-tuning with orders of magnitude with
ewer parameters has almost no negative effect on accuracy.

Table 7 shows the number of trainable parameters for the fine-tuned and adapter-based transformer models. Only 3(%) of the
arameters or fewer are needed to be trained for adapter-based models, which almost matches or exceeds that of fully trained
odels. As a result, compared to fine-tuning, adapters are far more time- and storage-efficient.

In summary, adapter-based tuning demonstrates comparable performance to full fine-tuning while simultaneously maintaining
igh parameter efficiency. A comparison between machine learning and transformer models was performed, and the accuracy of all
he models is presented in Table 8. In our experiments, we identified that XLM-RoBERTa (Large), a transfer learning-based adapter
odel, performed better for the data set under consideration. The experimental results demonstrate that typical machine learning
odels are unable to comprehend the context of the message and, as a result, may not be a good choice for sentiment analysis tasks

n general.

.3. Cross-domain transfer between data sets

Cross-domain transfer refers to the generalization of an offensive speech detection model trained on a given data set to other
ata sets with the same or similar class labels. In order to evaluate the cross-applicability between data sets, the pre-trained models
ere tested on a different data set, as already explained in Section 4.2.6. The results of adaptability of the pre-trained models

or cross-domain data set are depicted in Table 9. The confusion matrices for the adapter transformer models on cross-domain
ata set are shown in Fig. 8. It is evident from Table 9 that mBERT achieved the highest accuracy among all the models. From
he results presented above, it appears that the task of detecting abusive language on social media is a difficult one because the
ontent is extremely unstructured and subjective. However, our models have still been able to provide appreciable results. In order
o demonstrate the relevance of our research and set it apart from similar studies, we examined the performance of other models
16



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.
Fig. 6. Confusion matrices for fine-tuned M-BERT, XLMRoberta base, XLMRoberta large, MuRIL - base, and MuRIL - large.

that use the Dravidian Code-Mix FIRE 2021 data set to detect offensive texts. The study by Jada et al. (2021) gave an accuracy
of 81.2%, a precision of 80.7%, a recall of 81%, and an accuracy of 80.7% for this data set. But all the proposed adapter-based
models gave higher values for all the aforementioned metrics. An attempt by Kumaresan et al. (2021) summarized and ranked the
results of all the methodologies submitted for the HASOC-Offensive Language Identification track in Dravidian Code-Mix FIRE 2021.
Surprisingly, the weighted average of accuracy, recall, and F1 score for the XLM-RoBERTA (Large) and MuRIL (Large) models was
found to be greater than that of the models summarized by Kumaresan et al. (2021). Detecting abusive content is difficult due to a
scarcity of benchmark data sets. Researchers gather data sets from several social media platforms and create algorithms to classify
these data sets, so there is no uniformity among the data sets.

6.4. Findings and discussion

Various machine learning models have been used to tackle the problem of offensive speech detection, as detailed in the literature
review. Based on the research conducted, BNB, SVM, LR, and KNN models were implemented in the present study. Analysis of the
17



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.
Fig. 7. Confusion matrix for adapter-based M-BERT, XLMRoberta base, XLMRoberta large, MuRIL - base, and MuRIL - large.

confusion matrices illustrates that classifiers have been successful in identifying Not Offensive comments due to the higher number
of samples in this category in the given data set. Training accuracy was also calculated to get an idea about the scoring loss between
training and testing data sets. This gives information about the overfitting of the models. As shown in Table 4, the training and
testing accuracy of the proposed models is very close, which indicates that the models were not over-fit. Of all the models, SVM
showed better accuracy for the training data set. Since SVM is designed to be more effective in high-dimensional spaces and works
well when there is a clear margin between classes, it produced good results. Another reason for the good results is that the number
of features extracted is greater than the number of samples. But with regard to testing data, all the models presented more or less
similar accuracy, of which the accuracy of KNN was the highest. Since KNN performed better, it is clear that the test data set is not
easily separable using hyper-planes. So, SVM does not perform equally well on test data set.

Since long-range dependencies play a significant role in sequence-to-sequence tasks, transformer models have been introduced
in recent times. For offensive language detection in texts, finding the long-range dependencies is important. Hence, a few top-
performing transformers models were also attempted in this study. Of all the transformer models proposed, XLM-RoBERTa (Large)
showed an accuracy of 88.532%. As this model had been trained on more than 100 languages, including Tamil, it was able to give
18



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

c
a
n
T
m
t
O
t
A
p

Table 8
Transformer models vs machine learning models.
Classifiers Testing accuracy (%)

Machine learning models

Bernoulli NB 80.428
SVM 79.663
LR 81.345
KNN 81.651

Transformer models

mBERT 80.428
XLM-RoBERTa - Base 76.911
XLM-RoBERTa - Large 81.957
MuRIL - Base 68.960
MuRIL - large 88.226

Adapter-based transformer models

mBERT 85.015
XLM-RoBERTa - Base 84.862
XLM-RoBERTa - Large 88.532
MuRIL - Base 84.862
MuRIL - large 87.920

Table 9
Performance of adapter transformer models for cross-domain data set.

Classifiers Class labels Testing accuracy (%) Precision (%) Recall (%) F1-Score (%)

mBERT Not Offensive 81.575 84.896 94.444 89.416
Offensive 44.966 21.270 28.879
Macro Average – 64.931 57.857 59.148
Weighted Average – 77.874 81.575 78.769

XLM-RoBERTa - Base Not Offensive 78.671 81.303 94.681 87.484
Offensive 49.664 19.423 27.925
Macro Average – 65.484 57.052 57.704
Weighted Average – 74.573 78.671 74.814

XLM-RoBERTa - Large Not Offensive 72.864 73.873 95.512 83.310
Offensive 61.745 17.658 27.463
Macro Average – 67.809 56.585 55.387
Weighted Average – 70.345 72.864 67.064

MuRIL - Base Not Offensive 75.321 77.040 95.113 85.128
Offensive 56.376 18.221 27.541
Macro Average – 66.708 56.667 56.334
Weighted Average – 71.721 75.321 70.305

MuRIL - Large Not Offensive 72.920 74.056 95.373 83.373
Offensive 60.403 17.442 27.068
Macro Average – 67.229 56.407 55.220
Weighted Average – 70.122 72.920 67.151

better accuracy for the test data set under consideration. Another reason is that this model was specially trained on 12.2 GB of
monolingual Tamil in addition to 300.8 GB of English corpus (Conneau et al., 2019). This allowed effective cross-lingual transfer
learning by the model. As the data set was in Tamil, the model was found to be effective. The XLM-RoBERTa model combines
the advantages of XLM and RoBERTa. It is integrated with an adapter and uses multitask training to improve the performance of
prediction. This enables XLM-RoBERTa to achieve good accuracy while classifying offensive texts. Further, an ablation study was
performed on whether the performance of the fine-tuned models could be further improved by changing the architecture of these
models. For this, we used the concept of adapters and added the adapter layers into the transformer models, as shown in Figure .

The innovation of this study is in the strategy that is used to design the adapter module to achieve parameter efficiency without
ompromising performance. The parameter efficiency of adapter transformer models are presented in Table 7. For instance, mBERT
dapter transformer model is compared with a fully fine-tuned mBERT model on the chosen data set. The findings show that the
umber of task-specific parameters to be trained for fine-tuned models is 42 times that of the adapter-based transformer model.
his is similar for other models too and proves the efficiency of the adapter models. A comparison of the accuracy of all the
odels developed in this study is presented in Table 8. It is evident from this table that adapter-based models perform better

han transformer-based models. As an example, the adapter-based mBERT model outperforms the transformer-based one by 5.7%.
ut of all the adapter-based models, XLM-Roberta (Base) provides the highest increase in performance (a gain of 23.06%). Owing

o their ability to encode task-specific representations in intermediary layers, adapters outperform their pre-trained counterparts.
n analysis of the adapter models using the cross-domain data set reveals that their performance has slightly degraded. mBERT’s
erformance is reduced by around 4%, and XLM-Roberta Large recorded the highest reduction in performance of around 17%. This
19



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.
Fig. 8. Confusion Matrices for Adapter based M-BERT, XLMRoberta base, XLMRoberta large, MuRIL - base, MuRIL - large for Cross-domain data set.

demonstrates the need for developing a context-free model of language that can be used across domains and can extract similar
features from various domains.

In all the models, values of the performance metrics were found to be low for the Offensive class when compared to the Not
Offensive class. This is because the number of samples for the Offensive class was low. Data augmentation techniques such as
SMOTE may be applied, but upon trial, it was found that this method could be applied only for numerical features. There are a few
text augmentation techniques such as lexical substitution, word-embeddings substitution, Thesaurus-based substitution, etc. which
may be attempted in the future. When compared to all the adapter models, the performance of machine learning algorithms is not
appreciable. It is because transformer models have great advantages over traditional machine learning methods in text classification.
It is not easy for traditional machine learning methods to extract text features. Moreover, these features cannot adequately represent
the semantics of the text, and a large part of useful information may be lost. But in transformer models, the features are automatically
extracted from the data set. An exhaustive set of experiments have been conducted to investigate various machine learning and
adapter transformer models, and the findings show the discriminating capability of the adapter transformer models to deal with the
text classification in the offensive language detection field. As we can observe from the results reported in Table 9, the pre-trained
20



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.
Fig. 9. Error analysis – A few cases.

models transfer notably well to any other data set. These results indicate that linguistic offensive speech indicators are well retained
across different data sets. This may be due to the presence of common words between the data sets. Cross-domain transfer indicates
that the developed models can be generalized across domains regardless of the source and target domains.

7. Error analysis

We conducted an additional study of the errors caused by our models to better grasp the challenges of this undertaking. The
practice of evaluating the test set examples that the models misclassified in order to uncover the underlying reasons for the errors
is referred to as error analysis. The outcomes of a classification model on new data can be categorized into one of four categories,
namely true positives, false positives, true negatives, and false negatives. The terms true and false refer to whether the predicted
class matches the actual class in all four cases, and positive and negative refer to the classification the model gives to an observation.
For example, in the confusion matrix for the adapter-based mBERT model, we can see that the true positive value is 509. This means
that out of 536 non-offensive test occurrences, 509 were correctly classified as non-offensive, while 27 were incorrectly classified
as offensive. Similarly, only 47 instances of the Offensive class were accurately identified as offensive, while 71 examples were
incorrectly classed as non-offensive. A few examples are provided in Fig. 9. Consider the observation in Fig. 9(a): The actual tag
for this comment was Offensive, but this comment was predicted as Not Offensive by all the pre-trained transformer models. An
analysis of the comment revealed no offensive or abusive words. It is not clear why this comment was tagged as offensive. This
could confuse the classifiers and cause their performance to be degraded. Similarly, another comment listed in Fig. 9(b) was actually
classified as Not Offensive, while mBERT predicted it as Offensive. The same comment was present multiple times in the train data
and was classified as Not Offensive. Irrespective of its repeated presence and it being tagged as Not Offensive, mBERT predicted it as
Offensive. Class imbalance may be one of the reasons for misclassification, and it highly affects the result of classification. Instances
in under-sampled classes are more prone to misclassification. Interestingly, the same comment appeared again in the data set, and
mBERT correctly predicted it as Not Offensive. We also found that even humans would find it difficult to classify certain tweets as
offensive or not without being provided with the full context. The classifier misclassified nearly 5% of the tweets that did not have
offensive terms.

We also performed further analysis to understand the cases in which the classifiers misclassified Offensive text as Not Offensive.
The comment in Fig. 9(c), which has no offensive terms, was actually tagged as Offensive. Such tagging confused the classifiers,
causing their performance to be degraded. Hence, mBERT misclassified 60% of the tweets that were tagged as offensive. On the other
hand, the misclassification rate of XLM-RoBERTa (Large) was significantly reduced compared to the other models. This classifier
misclassified 32% of tweets as Not Offensive that were actually tagged as Offensive. This rate is low among all the proposed models.
XLM-RoBERTa combines the benefits of XLM and RoBERTa; hence, it is integrated with the adapter and takes advantage of the
multitask training to increase thee prediction performance. This enables XLM-RoBERTa to classify offensive texts with high accuracy.

8. Conclusion and future work

With the ever-increasing usage of social media, it has become increasingly common for people to hide behind a mask and post
offensive comments. Detection of offensive tweets and comments in social media posts present to be a significant task. In the present
study, we have described and analyzed various machine learning techniques and neural network models to detect offensive texts in
YouTube comments. To start with, machine learning approaches, namely BNB, SVM, LR, and KNN, were used for creating models
for detecting offensive contents. Of these models, KNN was found to give the highest accuracy of 81.651%. Since machine learning
models require feature extraction to be done explicitly, TF-IDF was used for extracting features from the preprocessed data set.
With an attention mechanism, transformers process an input sequence of words all at once and use contextual relations between
words in a text for NLP tasks. A few pre-trained transformer- and BERT-based models that do not require explicit feature extraction
were also created. These models were used in two modes: fine-tuning, wherein the models were re-trained in entirety, and adapters,
wherein small, learned bottleneck layers were inserted within each layer of a pre-trained model, thus avoiding full fine-tuning of
the entire model. Such adapter models require a smaller number of parameters to be trained when compared to fine-tuning models.
Among the different models, XLM-RoBERTa (Large) gave the highest accuracy of 88.532%. Since this model has more layers, the
number of trainable parameters is nearly three times more than that of other adapters. Further, the performance of the adapter-based
21



Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

l
o
a
w
o

C

–
B
W

C
e

D

t

R

A

A
A

A

A

A
A
A

B

B

B

B
C

C

C

C

C

C

C

C

transformer models was also tested for a cross-domain data set. For this new data set, these models gave a very appreciable accuracy,
which shows the adaptability of the models for a new domain.

According to the results of the proposed models, transformer models, notably pre-trained adapter models, outperform machine
earning models. In future, we plan to address the data set imbalance issues using techniques such as text augmentations and
versampling the minority class. We also plan to investigate how adapters can be utilized for further studies, such as migrating an
dapter to another downstream task, stacking several adapters, and integrating the information from multiple adapters. Additionally,
e intend to explore other transformers models. We believe that a suitable framework has been provided for the NLP community
n the usage of adapter model NLP tasks.

RediT authorship contribution statement

Malliga Subramanian: Conceptualization, Investigation, Methodology, Software, Visualization, Writing – original draft, Writing
review & editing. Rahul Ponnusamy: Methodology, Visualization, Software, Writing – original draft, Writing – editing. Sean
enhur: Methodology, Software. Kogilavani Shanmugavadivel: Investigation, Methodology, Software, Writing – original draft,
riting – review & editing. Adhithiya Ganesan: Methodology, Software. Deepti Ravi: Methodology, Software. Gowtham Kr-

ishnan Shanmugasundaram: Methodology, Software. Ruba Priyadharshini: Data curation, Writing- reviewing. Bharathi Raja
hakravarthi: Conceptualization, Investigation, Methodology, Supervision, Data curation, Writing- origianal draft, reviewing &
diting.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

bro, S., Sarang Shaikh, Z.A., Khan, S., Mujtaba, G., Khand, Z.H., 2020. Automatic hate speech detection using machine learning: A comparative study. Mach.
Learn. 10 (6).

lkiviadou, N., 2019. Hate speech on social media networks: towards a regulatory framework? Inf. Commun. Technol. Law 28 (1), 19–35.
ndrew, J.J., 2021. Judithjeyafreedaandrew @ dravidianlangtech-eacl2021: offensive language detection for dravidian code-mixed youtube comments. In:

Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages, pp. 169–174.
nita, R., Subalalitha, C., 2019a. Building discourse parser for Thirukkural. In: Proceedings of the 16th International Conference on Natural Language Processing,

pp. 18–25.
nita, R., Subalalitha, C., 2019b. An approach to cluster Tamil literatures using discourse connectives. In: 2019 IEEE 1st International Conference on Energy,

Systems and Information Processing (ICESIP). IEEE, pp. 1–4.
rtetxe, M., Ruder, S., Yogatama, D., 2019. On the cross-lingual transferability of monolingual representations. arXiv preprint arXiv:1910.11856.
ßenmacher, M., Heumann, C., 2020. On the comparability of pre-trained language models. arXiv preprint arXiv:2001.00781.
yo, F.E., Folorunso, O., Ibharalu, F.T., Osinuga, I.A., 2020. Machine learning techniques for hate speech classification of twitter data: State-of-the-art, future

challenges and research directions. Comput. Sci. Rev. 38, 100311.
enhur, S., Sivanraju, K., 2021. Psg@ dravidian-codemix-hasoc2021: Pretrained transformers for offensive language identification in tanglish. arXiv preprint

arXiv:2110.02852.
harathi, B., Chakravarthi, B.R., Chinnaudayar Navaneethakrishnan, S., Sripriya, N., Pandian, A., Valli, S., 2022. Findings of the shared task on speech recognition

for vulnerable individuals in tamil. In: Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion. Association for
Computational Linguistics.

harathi, B., et al., 2021. Ssncse_nlp@ dravidianlangtech-eacl2021: offensive language identification on multilingual code mixing text. In: Proceedings of the
First Workshop on Speech and Language Technologies for Dravidian Languages, pp. 313–318.

lair, J., 2003. New breed of bullies torment their peers on the internet. Educ. Week 22 (21), 6.
hakravarthi, B.R., 2020. HopeEDI: A multilingual hope speech detection dataset for equality, diversity, and inclusion. In: Proceedings of the Third Workshop

on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media. Association for Computational Linguistics, Barcelona, Spain
(Online), pp. 41–53, URL https://aclanthology.org/2020.peoples-1.5.

hakravarthi, B.R., M, A.K., McCrae, J.P., Premjith, B., Soman, K., Mandl, T., 2020a. Overview of the track on HASOC-offensive language
identification-DravidianCodeMix. In: FIRE (Working Notes). pp. 112–120.

hakravarthi, B.R., Muralidaran, V., 2021a. Findings of the shared task on hope speech detection for equality, diversity, and inclusion. In: Proceedings
of the First Workshop on Language Technology for Equality, Diversity and Inclusion. Association for Computational Linguistics, Kyiv, pp. 61–72, URL
https://aclanthology.org/2021.ltedi-1.8.

hakravarthi, B.R., Muralidaran, V., Priyadharshini, R., McCrae, J.P., 2020b. Corpus creation for sentiment analysis in code-mixed tamil-english text. In:
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for under-Resourced Languages (SLTU) and Collaboration and Computing for
under-Resourced Languages (CCURL). European Language Resources association, Marseille, France, ISBN: 979-10-95546-35-1, pp. 202–210, URL https:
//aclanthology.org/2020.sltu-1.28.

hakravarthi, B.R., Priyadharshini, R., Durairaj, T., McCrae, J.P., Buitaleer, P., Kumaresan, P.K., Ponnusamy, R., 2022a. Findings of the shared task on homophobia
transphobia detection in social media comments. In: Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion.
Association for Computational Linguistics.

hakravarthi, B.R., Priyadharshini, R., Jose, N., Mandl, T., Kumaresan, P.K., Ponnusamy, R., Hariharan, R., McCrae, J.P., Sherly, E., et al., 2021. Findings of
the shared task on offensive language identification in Tamil, Malayalam, and Kannada. In: Proceedings of the First Workshop on Speech and Language
Technologies for Dravidian Languages, pp. 133–145.

hakravarthi, B.R., Priyadharshini, R., Muralidaran, V., Jose, N., Suryawanshi, S., Sherly, E., McCrae, J.P., 2022b. Dravidiancodemix: Sentiment analysis and
offensive language identification dataset for dravidian languages in code-mixed text. Lang. Resour. Eval. 1–42.

ieri, C., Maxwell, M., Strassel, S., Tracey, J., 2016. Selection criteria for low resource language programs. In: Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), pp. 4543–4549.
22

http://refhub.elsevier.com/S0885-2308(22)00040-7/sb1
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb1
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb1
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb2
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb5
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb5
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb5
http://arxiv.org/abs/1910.11856
http://arxiv.org/abs/2001.00781
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb8
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb8
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb8
http://arxiv.org/abs/2110.02852
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb10
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb10
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb10
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb10
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb10
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb12
https://aclanthology.org/2020.peoples-1.5
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb14
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb14
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb14
https://aclanthology.org/2021.ltedi-1.8
https://aclanthology.org/2020.sltu-1.28
https://aclanthology.org/2020.sltu-1.28
https://aclanthology.org/2020.sltu-1.28
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb17
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb17
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb17
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb17
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb17
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb19
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb19
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb19


Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

D

D
D
D

D

D

D
G
G

G

H

H

H
H
H

H

J

J

K

K

K
K

L
L

L
L

L

M
M

M

M

N

N

O
P
P

P

P
P
P

P

R

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V., 2019. Unsupervised cross-lingual
representation learning at scale. arXiv preprint arXiv:1911.02116.

ave, B., Bhat, S., Majumder, P., 2021. Irnlp_daiict @ dravidianlangtech-eacl2021: offensive language identification in Dravidian languages using TF-IDF char
n-grams and MuRIL. In: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages, pp. 266–269.

avidson, T., Warmsley, D., Macy, M., Weber, I., 2017. Automated hate speech detection and the problem of offensive language. arXiv:1703.04009.
e Gibert, O., Perez, N., García-Pablos, A., Cuadros, M., 2018. Hate speech dataset from a white supremacy forum. arXiv preprint arXiv:1809.04444.
e Smedt, T., Jaki, S., Kotzé, E., Saoud, L., Gwóźdź, M., De Pauw, G., Daelemans, W., 2018. Multilingual cross-domain perspectives on online hate speech. arXiv

preprint arXiv:1809.03944.
el Vigna, F., Cimino, A., Dell’Orletta, F., Petrocchi, M., Tesconi, M., 2017. Hate me, hate me not: Hate speech detection on facebook. In: Proceedings of the

First Italian Conference on Cybersecurity (ITASEC17), pp. 86–95.
evlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.
owlagar, S., Mamidi, R., 2021. Hasocone@ fire-hasoc2020: Using BERT and multilingual BERT models for hate speech detection. arXiv preprint arXiv:2101.09007.
ao, L., Huang, R., 2017. Detecting online hate speech using context aware models. arXiv preprint arXiv:1710.07395.
aydhani, A., Doma, V., Kendre, S., Bhagwat, L., 2018. Detecting hate speech and offensive language on twitter using machine learning: An n-gram and tfidf

based approach. arXiv preprint arXiv:1809.08651.
inting, P.S.B., Irawan, B., Setianingsih, C., 2019. Hate speech detection on twitter using multinomial logistic regression classification method. In: 2019 IEEE

International Conference on Internet of Things and Intelligence System (IoTaIS). IEEE, pp. 105–111.
ande, A., Puranik, K., Yasaswini, K., Priyadharshini, R., Thavareesan, S., Sampath, A., Shanmugavadivel, K., Thenmozhi, D., Chakravarthi, B.R., 2021. Offensive

language identification in low-resourced code-mixed dravidian languages using pseudo-labeling. arXiv preprint arXiv:2108.12177.
e, R., Liu, L., Ye, H., Tan, Q., Ding, B., Cheng, L., Low, J.-W., Bing, L., Si, L., 2021. On the effectiveness of adapter-based tuning for pretrained language model

adaptation. arXiv preprint arXiv:2106.03164.
o, Y.-C., Pepyne, D.L., 2002. Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 115 (3), 549–570.
osmer, D., Lemeshow, S., 2000. Applied Logistic Regression. John Wiley & Sons Inc, New York, NY.
oulsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan, M., Gelly, S., 2019. Parameter-efficient transfer learning for

NLP. In: International Conference on Machine Learning. PMLR, pp. 2790–2799.
u, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., Johnson, M., 2020. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual

generalisation. In: International Conference on Machine Learning. PMLR, pp. 4411–4421.
ada, P.K., Yasaswini, K., Puranik, K., Sampath, A., Thangasamy, S., Thamburaj, K.P., 2021. ‘‘Pegasus@ dravidian-codemix-hasoc2021: Analyzing social media

content for detection of offensive text’’. arXiv preprint arXiv:2111.09836.
oachims, T., 1998. Text categorization with support vector machines: Learning with many relevant features. In: European Conference on Machine Learning.

Springer, pp. 137–142.
im, S., Shum, A., Susanj, N., Hilgart, J., 2021a. Revisiting pretraining with adapters. In: Proceedings of the 6th Workshop on Representation Learning for NLP

(RepL4NLP-2021), pp. 90–99.
otsiantis, S.B., Zaharakis, I., Pintelas, P., et al., 2007. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput.

Eng. 160 (1), 3–24.
ovács, G., Alonso, P., Saini, R., 2021. Challenges of hate speech detection in social media. SN Comput. Sci. 2 (2), 1–15.
umaresan, P.K., Sakuntharaj, R., Thavareesan, S., Navaneethakrishnan, S., Madasamy, A.K., Chakravarthi, B.R., McCrae, J.P., 2021. Findings of shared task on

offensive language identification in tamil and malayalam. In: Forum for Information Retrieval Evaluation. pp. 16–18.
ample, G., Conneau, A., 2019. Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
an, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R., 2019. Albert: A lite bert for self-supervised learning of language representations. arXiv

preprint arXiv:1909.11942.
ee, S.-H., Kim, H.-W., 2015. Why people post benevolent and malicious comments online. Commun. ACM 58 (11), 74–79.
iu, P., Li, W., Zou, L., 2019a. NULI at SemEval-2019 task 6: Transfer learning for offensive language detection using bidirectional transformers. In: SemEval@

NAACL-HLT. pp. 87–91.
iu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V., 2019b. Roberta: A robustly optimized bert pretraining

approach. arXiv preprint arXiv:1907.11692.
acAvaney, S., Yao, H.-R., Yang, E., Russell, K., Goharian, N., Frieder, O., 2019. Hate speech detection: Challenges and solutions. PLoS One 14 (8), e0221152.
ahabadi, R.K., Ruder, S., Dehghani, M., Henderson, J., 2021b. Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv

preprint arXiv:2106.04489.
ohapatra, S.K., Prasad, S., Bebarta, D.K., Das, T.K., Srinivasan, K., Hu, Y.-C., 2021. Automatic hate speech detection in english-odia code mixed social media

data using machine learning techniques. Appl. Sci. 11 (18), 8575.
ozafari, M., Farahbakhsh, R., Crespi, N., 2019. A BERT-based transfer learning approach for hate speech detection in online social media. In: International

Conference on Complex Networks and their Applications. Springer, pp. 928–940.
arasimhan, A., Anandan, A., Karky, M., Subalalitha, C., 2018. Porul: Option generation and selection and scoring algorithms for a tamil flash card game. Int.

J. Cogn. Lang. Sci. 12 (2), 225–228.
ayel, H.A., Shashirekha, H., 2019. Deep at HASOC2019: A machine learning framework for hate speech and offensive language detection. In: FIRE (Working

Notes). pp. 336–343.
badimu, A.M., 2020. Assessing the role of social media platforms in the propagation of toxicity. (Ph.D. thesis). University of Arkansas at Little Rock.
eters, M.E., Ruder, S., Smith, N.A., 2019. To tune or not to tune? adapting pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987.
feiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I., 2020a. Adapterfusion: Non-destructive task composition for transfer learning. arXiv preprint

arXiv:2005.00247.
feiffer, J., Rücklé, A., Poth, C., Kamath, A., Vulić, I., Ruder, S., Cho, K., Gurevych, I., 2020b. Adapterhub: A framework for adapting transformers. arXiv preprint

arXiv:2007.07779.
feiffer, J., Vulić, I., Gurevych, I., Ruder, S., 2020c. Mad-x: An adapter-based framework for multi-task cross-lingual transfer. arXiv preprint arXiv:2005.00052.
ires, T., Schlinger, E., Garrette, D., 2019. How multilingual is multilingual bert? arXiv preprint arXiv:1906.01502.
riyadharshini, R., Chakravarthi, B.R., Chinnaudayar Navaneethakrishnan, S., Durairaj, T., Subramanian, M., Shanmugavadivel, K., U Hegde, S., Kumaresan, P.K.,

2022. Findings of the shared task on abusive comment detection in tamil. In: Proceedings of the Second Workshop on Speech and Language Technologies
for Dravidian Languages. Association for Computational Linguistics.

utri, T., Sriadhi, S., Sari, R., Rahmadani, R., Hutahaean, H., 2020. A comparison of classification algorithms for hate speech detection. In: Iop Conference Series:
Materials Science and Engineering. Vol. 830, (3), IOP Publishing, 032006.

affel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J., 2019. Exploring the limits of transfer learning with a unified
23

text-to-text transformer. arXiv preprint arXiv:1910.10683.

http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1703.04009
http://arxiv.org/abs/1809.04444
http://arxiv.org/abs/1809.03944
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2101.09007
http://arxiv.org/abs/1710.07395
http://arxiv.org/abs/1809.08651
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb31
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb31
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb31
http://arxiv.org/abs/2108.12177
http://arxiv.org/abs/2106.03164
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb34
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb35
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb36
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb36
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb36
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb37
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb37
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb37
http://arxiv.org/abs/2111.09836
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb39
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb39
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb39
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb41
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb41
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb41
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb42
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb43
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb43
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb43
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1909.11942
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb46
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb47
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb47
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb47
http://arxiv.org/abs/1907.11692
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb49
http://arxiv.org/abs/2106.04489
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb51
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb51
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb51
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb52
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb52
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb52
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb53
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb53
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb53
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb54
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb54
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb54
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb55
http://arxiv.org/abs/1903.05987
http://arxiv.org/abs/2005.00247
http://arxiv.org/abs/2007.07779
http://arxiv.org/abs/2005.00052
http://arxiv.org/abs/1906.01502
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb61
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb61
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb61
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb61
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb61
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb62
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb62
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb62
http://arxiv.org/abs/1910.10683


Computer Speech & Language 76 (2022) 101404M. Subramanian et al.

R

R

S

S

S

S

S
S

S

S

S
S

S

S

S

Ravikiran, M., Chakravarthi, B.R., Madasamy, A.K., Sivanesan, S., Rajalakshmi, R., Thavareesan, S., Ponnusamy, R., Mahadevan, S., 2022. Findings of the shared
task on offensive span identification in code-mixed tamil-english comments. In: Proceedings of the Second Workshop on Speech and Language Technologies
for Dravidian Languages. Association for Computational Linguistics.

azavi, A.H., Inkpen, D., Uritsky, S., Matwin, S., 2010. Offensive language detection using multi-level classification. In: Canadian Conference on Artificial
Intelligence. Springer, pp. 16–27.

ücklé, A., Geigle, G., Glockner, M., Beck, T., Pfeiffer, J., Reimers, N., Gurevych, I., 2020. Adapterdrop: On the efficiency of adapters in transformers. arXiv
preprint arXiv:2010.11918.

akuntharaj, R., Mahesan, S., 2016. A novel hybrid approach to detect and correct spelling in tamil text. In: 2016 IEEE International Conference on Information
and Automation for Sustainability (ICIAfS). pp. 1–6. http://dx.doi.org/10.1109/ICIAFS.2016.7946522.

akuntharaj, R., Mahesan, S., 2017. Use of a novel hash-table for speeding-up suggestions for misspelt tamil words. In: 2017 IEEE International Conference on
Industrial and Information Systems (ICIIS). pp. 1–5. http://dx.doi.org/10.1109/ICIINFS.2017.8300346.

akuntharaj, R., Mahesan, S., 2021. Missing word detection and correction based on context of tamil sentences using N-grams. In: 2021 10th International
Conference on Information and Automation for Sustainability (ICIAfS). pp. 42–47. http://dx.doi.org/10.1109/ICIAfS52090.2021.9606025.

ampath, A., Durairaj, T., Chakravarthi, B.R., Priyadharshini, R., Chinnaudayar Navaneethakrishnan, S., Shanmugavadivel, K., Thavareesan, S., Thangasamy, S.,
Krishnamurthy, P., Hande, A., Benhur, S., Ponnusamy, K.K., Pandiyan, S., 2022. Findings of the shared task on emotion analysis in tamil. In: Proceedings of
the Second Workshop on Speech and Language Technologies for Dravidian Languages. Association for Computational Linguistics.

anh, V., Debut, L., Chaumond, J., Wolf, T., 2019. Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
aroj, A., Mundotiya, R.K., Pal, S., 2019. Irlab@ IITBHU at HASOC 2019: Traditional machine learning for hate speech and offensive content identification. In:

FIRE (Working Notes). pp. 308–314.
arzynska-Wawer, J., Wawer, A., Pawlak, A., Szymanowska, J., Stefaniak, I., Jarkiewicz, M., Okruszek, L., 2021. Detecting formal thought disorder by deep

contextualized word representations. Psychiatry Res. 304, 114135.
chmidt, A., Wiegand, M., 2019. A survey on hate speech detection using natural language processing. In: Proceedings of the Fifth International Workshop on

Natural Language Processing for Social Media, April 3, 2019, Valencia, Spain. Association for Computational Linguistics, pp. 1–10.
emnani, S., Sadagopan, K.R., Tlili, F., 2019. BERT-A: Finetuning BERT with Adapters and Data Augmentation. Standford University.
ilva, A., Roman, N., 2020. Hate speech detection in portuguese with naïve Bayes, SVM, MLP and logistic regression. In: Anais Do XVII Encontro Nacional de

Inteligência Artificial e Computacional. SBC, pp. 1–12.
ingh, G., Kumar, B., Gaur, L., Tyagi, A., 2019. Comparison between multinomial and Bernoulli naïve Bayes for text classification. In: 2019 International

Conference on Automation, Computational and Technology Management (ICACTM). IEEE, pp. 593–596.
rinivasan, R., Subalalitha, C., 2019. Automated named entity recognition from tamil documents. In: 2019 IEEE 1st International Conference on Energy, Systems

and Information Processing (ICESIP). IEEE, pp. 1–5.
ubalalitha, C.N., 2019. Information extraction framework for Kurunthogai. Sādhanā (ISSN: 0973-7677) 44 (7), 156. http://dx.doi.org/10.1007/s12046-019-

1140-y.
Subalalitha, C., Poovammal, E., 2018. Automatic bilingual dictionary construction for tirukural. Appl. Artif. Intell. 32 (6), 558–567.
Suryawanshi, S., Chakravarthi, B.R., 2021. Findings of the shared task on Troll Meme Classification in Tamil, in: Proceedings of the First Workshop on Speech

and Language Technologies for Dravidian Languages, pp. 126–132.
Suryawanshi, S., Chakravarthi, B.R., Arcan, M., Buitelaar, P., 2020. Multimodal meme dataset (multioff) for identifying offensive content in image and text. In:

Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, pp. 32–41.
Thavareesan, S., Mahesan, S., 2019. Sentiment analysis in tamil texts: A study on machine learning techniques and feature representation. In: 2019 14th Conference

on Industrial and Information Systems (ICIIS). pp. 320–325. http://dx.doi.org/10.1109/ICIIS47346.2019.9063341.
Thavareesan, S., Mahesan, S., 2020a. Sentiment lexicon expansion using word2vec and fasttext for sentiment prediction in tamil texts. In: 2020 Moratuwa

Engineering Research Conference (MERCon). pp. 272–276. http://dx.doi.org/10.1109/MERCon50084.2020.9185369.
Thavareesan, S., Mahesan, S., 2020b. Word embedding-based part of speech tagging in Tamil texts. In: 2020 IEEE 15th International Conference on Industrial

and Information Systems (ICIIS). pp. 478–482. http://dx.doi.org/10.1109/ICIIS51140.2020.9342640.
Thavareesan, S., Mahesan, S., 2021. Sentiment analysis in tamil texts using k-means and k-nearest neighbour. In: 2021 10th International Conference on

Information and Automation for Sustainability (ICIAfS). pp. 48–53. http://dx.doi.org/10.1109/ICIAfS52090.2021.9605839.
Tsvetkov, Y., 2017. Opportunities and challenges in working with low-resource languages. Slides Part-1.
Vandersmissen, B., 2012. Automated detection of offensive language behavior on social networking sites. IEEE Trans..
Vasantharajan, C., Thayasivam, U., 2022. Towards offensive language identification for tamil code-mixed YouTube comments and posts. SN Comput. Sci. 3 (1),

1–13.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process.

Syst. 30.
Xu, L., Xeng, J., Chen, S., 2020. Yasuo at HASOC2020: Fine-tune XML-roberta for hate speech identification. In: FIRE (Working Notes). pp. 311–318.
Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., Kumar, R., 2019. Semeval-2019 task 6: Identifying and categorizing offensive language in social

media (offenseval). arXiv preprint arXiv:1903.08983.
24

http://refhub.elsevier.com/S0885-2308(22)00040-7/sb64
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb64
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb64
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb64
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb64
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb65
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb65
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb65
http://arxiv.org/abs/2010.11918
http://dx.doi.org/10.1109/ICIAFS.2016.7946522
http://dx.doi.org/10.1109/ICIINFS.2017.8300346
http://dx.doi.org/10.1109/ICIAfS52090.2021.9606025
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb70
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb70
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb70
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb70
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb70
http://arxiv.org/abs/1910.01108
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb72
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb72
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb72
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb73
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb73
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb73
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb74
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb74
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb74
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb75
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb76
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb76
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb76
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb77
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb77
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb77
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb78
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb78
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb78
http://dx.doi.org/10.1007/s12046-019-1140-y
http://dx.doi.org/10.1007/s12046-019-1140-y
http://dx.doi.org/10.1007/s12046-019-1140-y
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb80
http://dx.doi.org/10.1109/ICIIS47346.2019.9063341
http://dx.doi.org/10.1109/MERCon50084.2020.9185369
http://dx.doi.org/10.1109/ICIIS51140.2020.9342640
http://dx.doi.org/10.1109/ICIAfS52090.2021.9605839
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb87
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb88
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb89
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb89
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb89
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb90
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb90
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb90
http://refhub.elsevier.com/S0885-2308(22)00040-7/sb91
http://arxiv.org/abs/1903.08983

	Offensive language detection in Tamil YouTube comments by adapters and cross-domain knowledge transfer 
	Introduction
	Literature survey
	Shared tasks
	Machine learning models
	Deep learning and transformer models

	Pre-processing
	Task description
	Pre-processing
	Feature selection

	Proposed classifiers
	Machine learning models
	Transformer models
	Why transformers?
	mBERT (BERT multilingual base model (cased))
	XLM-RoBERTa
	MuRIL
	Fine-tuning a transformer model
	Adapters - parameter-efficient transfer learning


	Experimental setup
	Experimental platform
	Tuning of hyper-parameters for ML models
	Training the transformer models: Fine-tuning and integrating adapters
	Performance metrics

	Experimental results 
	Results of ML models
	Results of fine-tuning transformer models
	Parameter efficiency of adapter models

	Cross-domain transfer between data sets 
	Findings and discussion

	Error analysis 
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References


