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Abstract
This paper is concerned with the problem of fault detection filter design for a class
of nonlinear Markovian jump systems with incomplete measurements and distributed
delay. A unified model is proposed to address the phenomena such as packet losses,
signal quantization and sensor saturation. The objective is to design a finite-time
dissipative-based fault detection filter such that for all unknown disturbances, the
estimation error between the residual signal and the fault isminimized and also to guar-
antee the stochastic finite-time boundedness of the augmented filtering error system
with a prespecified dissipative performance level. By using Lyapunov stability theory
along with stochastic analysis techniques, a set of sufficient criterion is established
for the existence of desired fault detection filter. Further, the filter gain parameters
are obtained by solving the linear matrix inequality-based constraints. Two numer-
ical examples including an inverted pendulum model are presented to illustrate the
effectiveness of the proposed filter design algorithm.
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1 Introduction

The actual operation process of many physical systems may be subject to abrupt
changes in the structure or parameters of the system due to unexpected variations in
the environment, component failures, random delays and sudden changes in subsys-
tem interconnections.Markovian jump systems (MJSs) provide an efficient framework
for the analysis and synthesis of such a class of dynamic systems and have received
considerable research attention. Over the past decades, many significant issues have
been deeply investigated for MJSs and number of important results have been pro-
posed [2,7,8,13,20,28]. For instance, in [13] an observer-based fault detection filter
is constructed for a class of nonlinear Markovian jump systems subject to unreliable
communication channels. The authors in [28] designed a robust fault detection filter
for Markovian jump linear systems by considering the effects of missing measure-
ments and signal quantization. A fault detection filtering problem for Markovian jump
systems subject to randomly varying nonlinearities and sensor saturations is addressed
in [7], wherein the transition probabilities are assumed to be partly known.

The fuzzy model-based filtering technique has attracted prominent attention from
the researchers since it has been regarded as a powerful and conceptually simple tool to
deal with complex nonlinear systems. It should be mentioned that the Takagi–Sugeno
(T–S) fuzzy model is characterized by a set of fuzzy IF-THEN rules which represent
the local input-output relations of the nonlinear system. In general, the comprehensive
model is obtained by combining the linear models via nonlinear fuzzy membership
functions. In recent years many fruitful results have been developed for T–S fuzzy
systems [1,4,5,11,25,30]. For example, In [1], a sufficient condition through a novel
Lyapunov function that depends on the hidden mode and the observed mode with the
elapsed time is developed in terms of LMIs to ensure the stability and H∞ performance
of the closed-loop system via T–S fuzzy model. The authors in [5] studied the fault
estimation problem for T–S fuzzy systems with a finite frequency H∞ performance
index. In [4], a fault detection filter is developed for discrete-time T–S fuzzy systems
in finite frequency domain. An asynchronous l2 − l∞ filtering problem for fuzzy
Markovian jump systems in the presence of sensor nonlinearity and packet dropouts
is investigated in [25].

Due to the increased demands of higher performance, reliability and safety on
the complex systems, the fault detection filtering techniques have been investigated
extensively. The main purpose of fault detection is to accurately detect the fault signal
whenever it appears. In order to achieve this, a residual signal is generated to indicate
the inconsistency between the nominal and faulty system operation. The generated
residual signal is then compared with a pre-defined threshold. If the residual exceeds
the threshold, then it can be concluded that the fault has occurred. Based on this
technique, great number of important results have been proposed in the literature
regarding fault detection filtering for T–S fuzzy systems [3,14–16,29]. On another
research front, the distributed fault detection has been an active research field since in
a spatially distributed system, the information of an individual node is not only from
its own measurement but also from its neighboring nodes measurements according to
the given topology (see [9,10,33] and references therein).
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The existence of time delay is inevitable in most of the physical processes such
as communication systems, biological systems, flight control systems, chemical pro-
cesses. Further, the presence of delay significantly deteriorates the systemperformance
or instantaneously leads to instability. When the number of summands in a system
equation is increased and the differences between neighboring argument values are
decreased, then systems with distributed delays will arise. Therefore, distributed delay
systems have received much attention in the past years. It should be mentioned that
distributed delay has gained remarkable research interest since signal transmission is
distributed among parallel transmission lines [6,12,17,21,27,31]. However, insertion
of communication networks introduces some unavoidable technological imperfections
such as sensor saturations, quantization effects, packet losses due to the unreliability
of communication channels. It should be mentioned that sensors cannot always pro-
vide unlimited signals due to physical and technological constraints which results in
sensor saturations. The saturation in sensors instantaneously brings unexpected varia-
tions that result in nonlinear characteristics of sensors or even instability of the overall
system [19,22,34].

It is worth mentioning that dissipative theory plays an important role in the study
of system stability. Moreover, compared with H∞ and passivity performances, dis-
sipativity is a more general criterion. Also, it provides a less conservative and more
flexible filter design since it manages a better trade-off between the gain and phase
performances. However, there are only few results that have been proposed regarding
the dissipative-based fault detection filtering [23,26,32]. Most of the existing results in
the literature regarding fault detection filters focus on the Lyapunov asymptotic stabil-
ity defined over an infinite time interval. However, in practical applications, analyzing
the behavior within a finite time is significant and meaningful. Finite-time stability
and boundedness admit that the states of the system do not exceed a certain bound
during a finite-time interval. In recent years, many results on finite-time stability or
boundedness are obtained [18,24].

From the practical point of view, the fault detection technique is a powerful tool to
detect the fault signal which is common in nature and often reduces the performance
of the system. In practical engineering, due to communication channel inconstancy,
some inevitable technological defect, namely incomplete measurement, may occur
and critically affect the measurement of the system information. Moreover, infinite
distributed delays cannot be ignored since they may do serious harm to the stability
of practical systems. On the other hand, in practical applications, it is significant and
interesting to analyze the behavior of systems within a finite period. Therefore, it is
sensible and noteworthy to design a finite-time distributed fault detection filtering for
nonlinear Markovian jump systems subject to distributed delays, packet losses, signal
quantization and sensor saturation.

Based on the above discussions, this paper concerns the fault detection filtering
problem for nonlinear Markovian jump systems with incomplete measurements and
distributed delays. The main concerns of this paper are as follows:

1. A dissipative-based distributed fault detection filtering problem is investigated for
a class of nonlinear Markovian jump systems with incomplete measurements and
distributed delays.
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2. A unified system model is proposed to describe the phenomena of incomplete
measurements, namely packet losses, signal quantization and sensor saturation.

3. By using Lyapunov stability theory together with stochastic system analysis, a new
set of sufficient conditions is established for the existence of desired fault detection
filter.

Finally, the feasibility and effectiveness of the developed distributed fault detection
filter design methodology are illustrated by using numerical examples including an
inverted pendulum model.

Notations:Rn andRn×n denote the n−dimensional Euclidean space and set of all n×n
real-valued matrices, respectively; a positive definite matrixP is denotedP > 0; the
superscripts T and (−1) stand formatrix transposition andmatrix inverse, respectively.
In symmetric block matrix expressions, we use an asterisk ∗ to represent the term
induced by symmetry; diag{·} indicates a block diagonal matrix; l2[0,∞) refers to
space that are square summable sequence; the symbol Qi (·) denoted the quantization
effects of the i th sensor; E{·} represents the mathematical expectation operator.

2 Problem Formulation and Preliminaries

It is assumed that the sensor network considered in this paper has n number of sensor
nodes that are distributed according to a specific interconnection topology described
by a directed graph G = (V, E,A), where V = {1, 2, . . . , n} is the set of sensors; E is
the set of edges contained in sensors mapping set; and A = (ai j )n×n is the nonnegative
adjacency matrix correlated with the edges of the directed graph, i.e., ai j > 0 implies
edge (i, j) ∈ E, which means the j th sensor node transfers the information to the i th
sensor node and also j th node is called as neighbor of i th node. Furthermore, it is
assumed that the sensors are self-connected, i.e., aii = 1 for all i ∈ V. Finally, for
all j ∈ V, Ni = {i ∈ V : (i, j) ∈ E} means that the sensor node i can receive the
information from its neighboring sensor node j according to the prescribed network
topology.

Let {ν(k), k ∈ Z +} is a Markov chain taking the values in a state-space S =
{1, 2, . . . ,M }with transition probabilities defined as χ = φmn(k), m, n ∈ S , where
Pr{ν(k + 1) = n|ν(k) = m} = φmn be the transition probabilities from mode m to n

at time k and k + 1, respectively, and φmn(k) ≥ 0,
M∑

n=1
φmn(k) = 1 should be satisfied

and for notational convenience let us denote ν(k) = m.
The plant is a nonlinear system with Markovian jumping parameters, which can be

approximated by the following fuzzy rule:

Plant Rule s: IF φ1(k) is Ms1 and φ2(k) is Ms2 · · · and φg(k) is Msg , THEN

x(k + 1) =Am
s x(k)+ Am

τ s

h∑

b=1

x(k − τb(k))+ Bm
s w(k)+ Em

s f (k),

s =1, 2, . . . , l, (1)
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where x(k) ∈ R
n1 is the state of the plant; w(k) ∈ R

n2 is the disturbance vector
belonging to l2[0,∞) ; f (k) ∈ R

n f is the fault signal. Am
s , A

m
τ s , B

m
s and Em

s are known
constant matrices with appropriate dimensions. The distributed time-varying delay is

denoted as
h∑

b=1
x(k − τb(k)) in which τb(k), b = 1, 2, . . . , h are the communication

time-varying delays satisfying the condition τ1 ≤ τb(k) ≤ τ2, where τ1 and τ2 are
the positive scalars representing the minimum and maximum delays, respectively. Let
φ(k) = [φ1(k), φ2(k), . . . , φg(k)] be the premise variable vector;Mst is the fuzzy set;
l is the number of IF-THEN rules. The fuzzy basis function is given by

hs(φ) = �
q
t=1Mst (φt )

∑l
s=1�

q
t=1Mst (φt )

, (2)

where Mst (φs) represents the grade of membership of φs in Mst . Therefore, for all k
we have hs(φ) ≥ 0, s = 1, 2, . . . , l and

∑l
s=1 hs(φ) = 1. Then, by fuzzy blending

system (1) can be rewritten as follows:

x(k + 1) =
l∑

s=1

hs(φ)[Am
s x(k)+ Am

τ s

h∑

b=1

x(k − τb(k))+ Bm
s w(k)+ Em

s f (k)].
(3)

For the purpose of estimation, the local measurement of i th sensor node is described
as follows

yi (k) = Cis x(k), (4)

where yi (k) ∈ R
n4i is the i th sensor measurement and Cis be the known constant

matrix.
The sensor saturation phenomenon frequently appears in practical systems due

to some physical limitations of the sensor nodes. The estimation performance is
extremely distressed since the sensor saturation eventually results in nonlinear charac-
teristics of sensors. Here, we have considered the sensor saturation for the distributed
filtering system. Wefirst assume that the sensor saturation function θi (·)which belongs
to [S1,S2]. LetS1 ∈ R

n4i×n4i andS2 ∈ R
n4i×n4i be any known diagonal matrices,

where S1, S2 ≥ 0 and S2 > S1. The sensor saturation function θi (·) satisfies the
inequality:

[θi (yi (k))− S1yi (k)]T [θi (yi (k))− S2yi (k)] ≤ 0, ∀ yi (k) ∈ R
n4i . (5)

By (5), the sensor saturation function θi (yi (k)) can be separated into a linear and
nonlinear part as

θi (yi (k)) = θ̄i (yi (k))+ S1yi (k), (6)
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where θ̄i (yi (k)) is a nonlinear function belonging to� = {
θ̄ : θ̄i (yi (k))T (θ̄i (yi (k))−

V yi (k)) ≤ 0
}
, S = S2 − S1 > 0.

Further, a logarithmic quantizer is utilized for the purpose of packet size reduction.
The quantizer is static and it is assumed to be symmetric, i.e.,Qi (−vi ) = −Q

i (−vi ).
The quantization level set can be described as

Ui = ±κ iι , κ iι = φiι κ
i
0, ι = 0,±1,±2, . . . , c ∪ {±κ i0} ∪ 0, 0 < φi < 1, κ i0 > 0.

(7)

The output of the quantizer is given by

Q
i (vi ) =

⎧
⎨

⎩

κ iι , if 1
1+�iκ iι < vi <

1
1−�iκ iι , vi > 0,

0, if vi = 0,
−Q

i (−vi ), if vi < 0,

where ςi = 1−
i
1+
i

< 1 with 0 < 
i < 1 is the quantization density and it is taken as
Q(vi ) = (I +Δi )vi , where ‖Δi‖ ≤ ςi .

Due to communication constraints, the transmitted packet may be lost or delayed
and it is not crucial to find bounds of the time-varying delay. So, the communication
delay d(k) is assumed to satisfy d1 ≤ d(k) ≤ d2, where d1 and d2 are positive
scalars. The effectiveness of these network uncertainties quite included toward the
measurement model is as follows:

ỹi (k) =β1i (k)yi (k)+ β2i (k)θi (yi (k))+ β3i (k)Q(yi (k))+ β4i (k)yi (k − d(k))

+ Disw(k), (8)

where Dis is known constant; w(k) is the disturbance in communication channel;
and βzi (z = 1, 2, 3, 4) are stochastic variables satisfying the Bernoulli distribution:
βzi (k) ∈ [0, 1], E{βzi (k) = 1} = β̄zi and E{βzi (k) = 0} = 1 − β̄zi . To deter-
mine the distributed filter design problem it is assumed that the packet dropout rates,
quantization density and bounds of communication delay are granted to be known.

From local measurement (8), it is clear that the size of ỹi (k) is n4i . So, the trans-
mission takes place in multiple packet mechanism which is essential to propose the
result. A matrix operator is considered in this paper for scheduling the transmission.
In the view of above analysis, the final measurement is expressed as

ȳi (k) = �ρi (k) ỹi (k), (9)

where ȳi (k) is the measurement;�ρi (k) is the structured matrix. Here, we choose only
one element for transmission which is the most energy efficient case. Then ρi (k) is the
switching signal which belongs to χi = {1, 2, . . . , n4i }. By defining a mapping from
ρi (k) to ρ(k), only one switching signal can be used to describe all the cases and for
all the sensors.

It should be noticed that in the distributed filter design for sensor networks, the
sensor node i will blend the available information from both self-node and the neigh-
boring nodes. In this paper, we take the premise variables of the filter are as same as
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that of the plant. The following distributed fuzzy-dependent filter is proposed for fault
detection purpose as

Filter rule t: IF φ1(k) is Mt2 and φ2(k) is Mt2 . . . and φg(k) is Mtl , THEN

x̄i (k + 1) =
l∑

t=1

ht (φ)

[ ∑

j∈Ni

ai jK
m
i jt x̄ j (k)+

∑

j∈Ni

ai jH
m
i jt ȳ j (k)

]

,

ϑ(k) =
l∑

t=1

ht (φ)L
m
iit x̄i (k), (10)

where ai j is the adjacency scalar, x̄ j (k) ∈ Rnx is the filter state vector; ϑ(k) ∈
Rnϑ are the residual signal; K m

i jt ∈ Rnx×nx , H m
i jt ∈ Rnx×ny , L m

iitR
nϑ×nx are

the filter gain parameters to be determined for sensor node i . Further, for the sensor
node i ∈ {1, 2, . . . , n}, the initial condition is taken as x̂i (0) = 0nx×1. Let us define
x̃i (k) = x(k)− x̄i (k), then we have,

x̃i (k + 1) =
l∑

s=1

hs(φ)
l∑

t=1

ht (φ)

{(

Am
s −

∑

j∈Ni

ai jK
m
i jt −

∑

j∈Ni

ai jH
m
i jt�ρi (k)

β1 j (k)C
m
jt

−
∑

j∈Ni

ai jH
m
i jt�ρi (k)β3 j (k)C

m
jt −

∑

j∈Ni

ai jH
m
i jt�ρi (k)β3 j (k)Δ(k)C

m
jt

−
∑

j∈Ni

ai jH
m
i jt�ρi (k)β2 j (k)S1C

m
jt

)

x(k)−
∑

j∈Ni

ai jK
m
i jt x̃i (k)

+ Am
τ s

h∑

b=1

x(k − τb(k))−
∑

j∈Ni

ai jH
m
i jt�ρi (k)β2 j (k)θ̄ j (C

m
jt x(k))

−
∑

j∈Ni

ai jH
m
i jt�ρi (k)β4 j (k)C

m
jt x(k − d(k))+ Em

s f (k)+ (
Bm
s

−
∑

j∈Ni

ai jH
m
i jt�ρi (k)D

m
jt

)
w(k)

}

. (11)

For notational simplicity, we denote

Ss =
l∑

s=1

hs(φ), Tt =
l∑

t=1

ht (φ), πzi = √
βzi (1 + 2βzi ), Âm

s = diag{Am
s , . . . , A

m
s },

Âm
τbs = diag{Aτbs, Aτbs, . . . , Aτbs} (b = 1, 2, . . . , h), B̂m

s = [Bm
s , . . . , B

m
s ]T ,

D̂m
s = [Dm

s , . . . , D
m
s ]T , F̂m

s = [Fm
s , . . . , F

m
s ]T , Ĉm

s = diag{Cm
1s, . . . ,C

m
ns},

�ρ̄ = diag{�ρ1k , . . . ,�ρnk }, �βz = diag{βz1 I , . . . , βzn I }(z = 1, 2, 3, 4),
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L̂m
s = diag{L̂m

s , . . . , L̂
m
s }, x̂(k) = [xT (k), . . . , xT (k)]T ,

σi = diag{0, . . . , 1, . . . , 0},
x̂(k) = [x̃ T1 (k), . . . , x̃ Ts (k)]T , ˆK m

t =
{
ai j Km

i j t i ∈ V, j ∈ Ni

0, i ∈ V, j /∈ Ni
and

Ĥ m
t =

{
ai j Hm

i jt i ∈ V, j ∈ Ni

0, i ∈ V, j /∈ Ni
.

Now, we can rewrite (11) in the following form:

x̆(k + 1) =
l∑

s=1

hs(φ)
l∑

t=1

ht (φ)

(

Âm
s − ˆK m

t − Ĥ m
t �ρ̄�β1Ĉ

m
t − Ĥ m

t �ρ̄�β3Ĉ
m
t

− Ĥ m
t �ρ̄�β3Δ(k)Ĉ

m
t − Ĥ m

t �ρi (k)�β2S1Ĉ
m
t

)

x̂(k)− ˆK m
t x̂(k)

+
h∑

b=1

Âm
τbs x̂(k − τb(k))− Ĥ m

t �ρ̄�β2 θ̄ j (Ĉ
m
t x(k))

− Ĥ m
t �ρ̄�β4Ĉ

m
t x̂(k − d(k))+ Êm

s f (k)+ (
B̂m
s − Ĥ m

t �ρ̄ D̂
m
t

)
w(k).
(12)

Then for each ρ(k) = r ∈ χ , the augmented fault detection filter system and the error
system are obtained in the following form:

�(k + 1) =SsTt

{
(
Âm
ρ̄,s + M̂m

ρ̄,sΔ(k)Ĉt
)
�(k)+ Êρ̄,sθ(Ĉt�(k))

+
h∑

b=1

Âm
τb,s Î�(k − τb(k))

+ Âdm
ρ̄,s Î�(k − d(k))+ B̂m

ρ̄,sw(k)+ F̂m
s f (k)+ Âm

1ρ̄,s�(k)

+ Âm
2ρ̄,s�(k)

+ (
Âm
3ρ̄,s + M̃m

ρ̄,sΔ(k)Ĉt
)
�(k)+ Âdm

4ρ̄,s Î�(k − d(k))

+ Ê1ρ̄,sθ(Ĉt�(k))

}

,

e(k) =L̂ t�(k)− f (k), (13)

where

�(k) = [̂x(k) x̂(k)]T , e(k) = ϑ(k)− f (k), β̂zi = βzi (k)− β̄zi (z = 1, 2, 3, 4),

Âm
1ρ̄,s =

q∑

i=1

β̂1i (k) Â
m1
1ρ̄,si , Âm

2ρ̄,s =
q∑

i=1

β̂2i (k) Â
m2
2ρ̄,si , Âm

3ρ̄,s =
q∑

i=1

β̂1i (k) Â
m1
1ρ̄,si ,
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Âm
4ρ̄,s =

q∑

i=1

β̂4i (k) Â
m4
3ρ̄,si , Ê1ρ̄,s =

q∑

i=1

β̂2i (k)Ê
m2
1ρ̄,si , M̃

m
ρ̄,s =

q∑

i=1

β̂3i (k)M̃
m3
ρ̄,si ,

Âm
ρ̄,s =

[
Âm
s 0
ω ˆK m

t

]

, M̂m3
ρ̄,si =

[
0

−Ĥ m
t �β3�ρ̄

]

, Êρ̄,s =
[

0
−Ĥ m

t �β2�ρ̄

]

,

Âm
τb,s =

[
Âm
τbs

Âm
τbs

]

, Âdm
ρ̄,s =

[
0

−Ĥ m
t �β4�ρ̄Ĉ

m
t

]

, B̂m
ρ̄,s =

[
B̂m
s

B̂m
s − Ĥ m

t �ρ̄ D̂
m
t

]

,

F̂m
s =

[
F̂m
s

F̂m
s

]

, Âm1
1ρ̄,si =

[
0 0

−Ĥ m
t σi�ρ̄Ĉ

m
t 0

]

, Âm2
2ρ̄,si =

[
0 0

−Ĥ m
t σi�ρ̄S1Ĉm

t 0

]

,

Âm4
3ρ̄,si =

[
0

−Ĥ m
t σi�ρ̄Ĉ

m
t

]

, M̃m3
ρ̄,si =

[
0

−Ĥ m
t σi�ρ̄

]

, Êm2
1ρ̄,si =

[
0

−Ĥ m
t σi�ρ̄

]

,

Ĉt = [Ĉm
t 0], L̂ t = [Lm

t − Lm
t ], Î = [0 1],

ω = Âm
s − ˆK m

t − Ĥ m
t (�β1 +�β3)�ρ̄Ĉm

t − Ĥ m
t �β2�ρ̄S1Ĉ

m
t .

The following assumption and definition will be useful to prove the required results.

Assumption 1 The disturbance input vector w(k) is time-varying and satisfies
N∑

k=0
wT (k)w(k) ≤ ε, where ε > 0.

Definition 1 [24] Considered system (1) subject to disturbance input w(k) satisfying
Assumption 1, is stochastically finite-time boundedwith respect to (C1,C2,Gm, N , ε),
where Gm is a positive definite matrix and 0 ≤ C1 < C2, if �T (0)Gm�(0) ≤ C1 
⇒
�T (k)Gm�(k) < C2 for all k = 1, 2, . . . , N .

3 Main Results

In this section, a set of sufficient conditions that guarantees the finite-time boundedness
of augmented fault detection filter system (13) with strictly (Q,S ,R)-β dissipative
index will be derived. Moreover, the desired distributed filter will be designed in the
form of (10) such that augmented fault detection filter system (13) in the presence of
distributed delays and incomplete measurements is stochastically finite-time bounded.

The following theorem proves the stochastic finite-time boundedness and strict
(Q,S ,R)-β dissipativity of considered system (3) when the filter gain parameters
are known.

Theorem 1 Let Assumption 1 holds. βzi , υ, C1, α be known scalars and Q ≤ 0,
S , R = RT , V be known matrices and Gm be the symmetric matrix. If there
exist positive definite matrices Pm

r , Qr , Rbr (b = 1, 2, . . . , h) and positive scalars

λP̃m , λ
P̃m
, λQ̃ , λR̃b

(b = 1, 2, . . . , h) such that the following inequalities hold for
all s, t = 1, 2, · · · , l :

[ϒss] < 0, s = t, (14)
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[ϒst ] + [ϒts] < 0, s �= t, (15)

υNα
N
τa (̃λC1 + εμW ) < C2λ

P̃m
(16)

λP̃
m
I ≤ P̃m ≤ λP̃m I , 0 ≤ Q̃ ≤ λQ̃ I , 0 ≤ R̃b ≤ λR̃b

I (17)

and the switching signal ρ(k) satisfies the average dwell time (ADT) condition

τa > τ
∗
a = I nα

I nC2λ
P̃m

r − I nμW ευN
, (18)

where

ϒst =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ϒ̄]6×6 ϒ1,2 ϒ1,3 ϒ1,4 ϒ̂1,3 ϒ1,5 L̂T
t

√−Q
∗ −(P̄m

r )
−1 0 0 0 0 0

∗ ∗ P̂m
r 0 0 0 0

∗ ∗ ∗ P̂m
r 0 0 0

∗ ∗ ∗ ∗ P̂m
r 0 0

∗ ∗ ∗ ∗ ∗ P̂m
r 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ϒ̄1,1 = −υP̄m
r + Qr + dQ + Rbr + τRbr , ϒ̄1,2 = ĈT

t VT , ϒ̄1,5 = −L̂T
t S ,

ϒ̄1,6 = L̂T
t R,

ϒ̄2,2 = −2I , ϒ̄3,3 = −υd2Qr , ϒ̄4,4 = −υτ2Rbr , ϒ̄5,5 = −I − S ,

ϒ̄6,6 = −R + γ I ,
ϒ1,2 = [ Âm

ρ̄,s + M̂m
ρ̄,sΔ(k)Ĉt Êρ̄,s Âdm

ρ̄,s Âm
τb,s F̂

m
ρ̄,s B̂m

ρ̄,s]T ,
ϒ1,3 = [π2

1i

(
Âm1
1ρ̄,si

)
0 · · · 0︸ ︷︷ ︸

5

]T ,

ϒ1,4 = [π3
2i

(
Âm2
2ρ̄,si

)
π2
2i

(
Êm2
1ρ̄,si

)
0 · · · 0︸ ︷︷ ︸

5

]T ,

ϒ̂1,3 = [π2
3i

(
Âm1
1ρ̄,si + M̃m3

ρ̄,siΔ(k)Ĉt
)

0 · · · 0︸ ︷︷ ︸
5

]T ,

ϒ1,5 = [0 · · · 0︸ ︷︷ ︸
5

π2
4i ( Â

m3
3ρ̄,si )]T , P̂m

r = diag{(P̄m
r )

−1, (P̄m
r )

−1, . . . ,

(P̄m
r )

−1} and

P̄m
r =

M∑

q=1

φmn(k)P
n
r ,

then augmented fault detection filter system (13) is stochastically finite-time bounded
and strictly (Q,S ,R)-β dissipative with respect to (C1,C2,G , N , ε).

Proof Let us first define the Lyapunov–Krasovskii functional to prove the required
results as follows:
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Vr (k) =
3∑

p=1

Vp(k), (19)

where

V1r (k) = �T (k)Pm
r �(k),

V2r (k) =
k−1∑

g=k−d(k)

υk−g−1�T (g)Qr�(g)+
−d1∑

g̃=−d2+1

k−1∑

ḡ=k+g̃

υk−g̃−1�T (ḡ)Qr�(ḡ),

V3r (k) =
h∑

b=1

k−1∑

c=k−τb(k)
υk−c−1�T (c)Rbr�(c)

+
h∑

b=1

−τ1∑

c̄=−τ2+1

k−1∑

c̃=k+c̄

υk−c̃−1�T (c̃)Rbr�(c̃).

Then, by calculating the differences of Vr (k) along the trajectories of augmented
system (13) and taking the mathematical expectation, we obtain

E{ΔV1r (k)− (υ − 1)V1r (k)} = E

{

�T (k + 1)(
M∑

q=1

φmn(k)P
n
r )�(k + 1)

− υ�T (k)Pm
r �(k)

}

,

≤ E

{

SsTt [( Âm
ρ̄,s + M̂m

ρ̄,sΔ(k)Ĉt )�(k)+ Êρ̄,sθ(Ĉ�(k))

+
h∑

b=1

Âm
τb,s I�(k − τb(k))+ Âdm

ρ̄,s I�(k − d(k))+ B̂m
ρ̄,s

× w(k)+ F̂m
ρ̄,s f (k)+ Âm

1ρ̄,s�(k)+ Âm
2ρ̄,s�(k)+ ( Âm

3ρ̄,s

+ M̃m
ρ̄,sΔ(k)Ĉt )�(k)+ Âdm

4ρ̄,s Î�(k − d(k))

+ Ê1ρ̄,sθ(Ĉt�(k))]T P̄m
r [( Âm

ρ̄,s + M̂m
ρ̄,sΔ(k)Ĉt )�(k)

+ Êρ̄,sθ(Ĉ�(k))+
h∑

b=1

Âm
τb,s I�(k − τb(k))+ Âdm

ρ̄,s I

×�(k − d(k))+ B̂m
ρ̄,sw(k)+ F̂m

ρ̄,s f (k)+ Âm
1ρ̄,s�(k)

+ Âm
2ρ̄,s�(k)+ ( Âm

3ρ̄,s + M̃m
ρ̄,sΔ(k)Ĉt )�(k)

+ Âdm
4ρ̄,s Î�(k − d(k))+ Ê1ρ̄,sθ(Ĉt�(k))]

− υ�T (k)Pm
r �(k)]

}

. (20)
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E{ΔV2r (k)− (υ − 1)V2r (k)} ≤ E

{

�T (k)Qr�(k)− υd2�T (k − d(k))Qr

�(k − d(k))

+ (d2 − d1)�
T (k)Qr�(k)

}

. (21)

E{ΔV3r (k)− (υ − 1)V3r (k)} ≤ E

{ h∑

b=1

[
�T (k)Rbr�(k)− υτ2�T (k − τb(k))Rbr

×�(k − τb(k))+ (τ2 − τ1)�T (k)Rbr
]
}

. (22)

From saturation nonlinearity we have

−2θ̄i (yi (k))
T θ̄i (yi (k))+ 2θ̄i (yi (k))

TV yi (k) ≥ 0,

which implies that

−2θ̄i (yi (k))
T θ̄i (yi (k))+ 2θ̄i (yi (k))

TVCis(k)�(k) ≥ 0. (23)

By combining from (20)–(23), we can get

E{ΔVr (k)− (υ − 1)Vr (k)} ≤ [( Âm
ρ̄,s + M̂m

ρ̄,sΔ(k)Ĉt )�(k)+ Êρ̄,sθ(Ĉ�(k))

+ Âdm
ρ̄,s�(k − d(k))+

h∑

b=1

Âm
τb,s�(k − τb(k))+ B̂m

ρ̄,sw(k)

+ F̂m
ρ̄,s f (k)]T P̄m

r [( Âm
ρ̄,s + M̂m

ρ̄,sΔ(k)Ĉt )�(k)+ Êρ̄,s

× θ(Ĉ�(k))+ Âdm
ρ̄,s�(k − d(k))+

h∑

b=1

Âm
τb,s�(k − τb(k))

+ B̂m
ρ̄,sw(k)+ F̂m

ρ̄,s f (k)] +
n∑

i=1

π2
1i [ Âmz

1ρ̄,s�(k)]T P̄m
r

× [ Âmz
1ρ̄,s�(k)] +

n∑

i=1

π2
2i [ Âmz

2ρ̄,s + Êmz
1ρ̄,sθ(Ĉt�(k))]T

× P̄m
r [ Âmz

2ρ̄,s + Êmz
1ρ̄,sθ(Ĉt�(k))] +

n∑

i=1

π2
3i [( Âmz

1ρ̄,s + M̃mz
ρ̄,s

×Δ(k)Ĉt )�(k)]T P̄m
r [( Âmz

3ρ̄,s + M̃mz
3ρ̄,sΔ(k)Ĉt )�(k)]

+
n∑

i=1

π2
4i [ Âmz

3ρ̄,s Î�(k − d(k))]T P̄m
r [ Âmz

3ρ̄,s Î�(k − d(k))]
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+
6∑

z=1

Hz . (24)

where

H1 = 2[ Â1ρ̄, s
m�(k)]T P̄m

r [ Âm
2ρ̄,s�(k)+ Ê1ρ̄,sθ(Ĉt�(k))],

H2 = 2[ Â1ρ̄, s
m�(k)]T P̄m

r [( Âm
3ρ̄,s + M̃m

ρ̄,sΔ(k)Ĉt )�(k)],
H3 = 2[ Â1ρ̄, s

m�(k)]T P̄m
r [ Âdm

4ρ̄,s Î�(k − d(k))],
H4 = 2[ Âm

2ρ̄,s�(k)+ Ê1ρ̄,sθ(Ĉt�(k))]T P̄m
r [( Âm

3ρ̄,s + M̃m
ρ̄,sΔ(k)Ĉt )�(k)],

H5 = 2[ Âm
2ρ̄,s�(k)+ Ê1ρ̄,sθ(Ĉt�(k))]T P̄m

r [ Âdm
4ρ̄,s Î�(k − d(k))],

H6 = 2[( Âm
3ρ̄,s + M̃m

ρ̄,sΔ(k)Ĉt )�(k)]P̄m
r [ Âdm

4ρ̄,s Î�(k − d(k))].

By the inequality ±2ab ≤ a2 + b2, it is clear that

H1 ≤[ Â1ρ̄, s
m�(k)]T P̄m

r [ Â1ρ̄, s
m�(k)] + [ Âm

2ρ̄,s�(k)+ Ê1ρ̄,sθ(Ĉt�(k))]T P̄m
r

[ Âm
2ρ̄,s�(k)+ Ê1ρ̄,sθ(Ĉt�(k))].

By using the similar evaluation for
6∑

z=2
Hz , we obtain

E{ΔVr (k)− (υ − 1)Vr (k)} ≤ SsTtζ
T (k)ϒζ(k), (25)

where ζ(k) = [�T θ(Ĉt�(k))T x(k − d(k))T x̂b(k − τb(k))T f (k)T ], x̂b(k −
τb(k)) = [̂x1(k−τ1(k)) x̂2(k−τ2(k)) . . . , x̂h(k−τh(k))],ϒ = ϒ̄+ϒT

2 P̄
m
r ϒ2 +

n∑

i=1
ϒT
3 P̄

m
r ϒ3 +

n∑

i=1
ϒT
4 P̄

m
r ϒ4 +

n∑

i=1
ϒ̂T
3 P̄

m
r ϒ̂3 +

n∑

i=1
ϒT
5 P̄

m
r ϒ5 and the elements

of ϒ̄ and ϒ are as given in theorem statement.
Then by applying Schur complement lemma to (25), we can obtain LMIs (14) and

(15). Hence, it is obvious that

E{ΔVr (k)− (υ − 1)Vr (k)− wT (k)Ww(k)} ≤ 0,

E{Vr (k + 1)− υVr (k)} ≤ E{wT (k)Ww(k)},
E{Vr (k + 1)} ≤ υE{Vr (k)} + E{wT (k)Ww(k)}
E{Vρ(kl )(k)} ≤ υk−klE{Vρ(kl )(kl)}

+ μW E{
kl−1∑

g=kl

υk−g−1wT (k)Ww(k)}.
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Note that E{Vρ(kl )(kl)} ≤ αE{Vρ(kl−1)(kl−1)} and E{Vρ(kl−1)(kl−1)} ≤ υkl−kl−1

E{Vkl−1(kl−1)}+
kl−1∑

g=kl−1

υkl−g−1μW w
T (g)w(g). From the above inequalities, we can

obtain

E{Vρ(kl ) (k)} ≤υk−klE{Vρkl (kl)} + μW
k−1∑

g=kl

υk−g−1wT (g)w(g),

≤αυk−kl−1E{V(ρkl−1)(kl−1)} + αμW υk−kl
kl−1∑

g=kl−1

υkl−s−1wT (g)w(k)

+ μW
k−1∑

g=kl

υk−g−1wT (g)w(g). (26)

Letting k = N , k0 = 0 we can get,

E{Vρ(k)(k)} ≤υNαNρ(0, N )E{Vρ(0)(0)}} + υNμW α
Nρ(0,N )

N−1∑

g=0

wT (g)w(g),

≤υNαNρ(0, N )E{Vρ(0)(0)} + υNμW α
Nρ(0,N )ε. (27)

From considered Lyapunov–Krasovskii functional (19), we have

E{Vρ(0)(0)} =�T (0)Pm
ρ(0)�(0)+

−1∑

g=k−d(0)

�−g−1�T (g)Qρ(0)�(g)

+
−d1∑

g̃=−d2+1

−1∑

ḡ=g̃

�−ḡ−1�T (ḡ)Qρ(0)�(ḡ)+
h∑

b=1

−1∑

c=−τb(0)
�−c−1

×�T (c)Rbρ(0)�(c)+
h∑

b=1

−τ1∑

c̄=−τ2+1

−1∑

g̃=ḡ

�−g̃−1�T (g̃)Rbρ(0)�(ḡ).

Defining P̃m = G−1/2PmG−1/2, Q̃ = G−1/2QG−1/2 and R̃b = G−1/2RbG−1/2

(b = 1, 2, . . . , h), we obtain

E{Vρ(0)(0)} =λP̃m�
T (0)G�(0)+ λQ̃

−1∑

g=k−d(0)

�−g−1�T (g)G�(g)

+ λQ̃
−d1∑

g̃=−d2+1

−1∑

ḡ=g̃

�−ḡ−1�T (g̃)G�(g̃)+ λR̃
h∑

b=1

−1∑

c=−τb(0)
�−c−1
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×�T (c)G�(c)+ λR̃
h∑

b=1

−τ1∑

c̄=−τ2+1

−1∑

c̃=c̄

�−c̃−1�T (c̃)G�(c̃),

≤
{

λP̃m + d2υ
d2−1λQ̃ + υd2 (d2 − d1)(d1 + d2 − 1)

2
λQ̃ + τ2υτ2−1λR̃b

+ υτ2 (τ2 − τ1)(τ1 + τ2 − 1)

2
λR̃b

}

C2,≤ λ̃C2, (28)

where λ̃ = λP̃m + d2υd2−1λQ̃ + υd2
(d2−d1)(d1+d2−1)

2 λQ̃ + τ2υ
τ2−1λR̃b

+ υτ2

(τ2−τ1)(τ1+τ2−1)
2 λR̃b

. Further, if inequality (17) holds, then we have

E{Vρ(k)(k)} ≤υNαNρ(0, N )̃λC1 + υNμW α
Nρ(0,N )ε.

≤υNα
N
τa (̃λC1 + εμW ). (29)

On the other hand, we get E{Vρ(k)(k)} ≥ E{�T (k)Pm
ρ(k)�(k) ≥ E {�T (k)G 1/2

P̃m
ρ(0)G

1/2} ≥ λP̃
m
r . From (28)–(29), we can deduce that �T (k)G�(k) ≤

υN

λP̃
m
r
α

N
τa (̃λC1 + εμW ).

Then, it is clear from (16) that �T (k)G�(k) < C2. Thus, considered augmented
filtering system (13) is finite-time bounded subject to (0,C2,G , N , ε). Next, we will
show the strictly (Q,S ,R)-β dissipativity of augmented filtering error system (13),
by considering the performance index as follows:

J (k) = E

{ N∑

k=0

[eT (k)Qe(k)+ 2eT (k)S ϕ(k)+ ϕT (k)Rϕ(k)] − β
N∑

k=0

ϕT (k)ϕ(k)

}

.

(30)

Hence, it is obvious that E{ΔVr (k)− (υ − 1)Vr (k)− J (k)} ≤ 0. Thus, we get
E{Vr (k+1)} < E

{
υVr (k)+eT (k)Qe(k)+2eT (k)S ϕ(k)+ϕT (k)[R−β I ]ϕ(k)}.

In addition, for any scalar υ ≥ 1 it follows that

E{Vr (k)} ≤E
{
υkVr (0)+

k−1∑

a=0

υk−a−1eT (k)Qe(k)+ 2
k−1∑

a=0

υk−a−1eT (k)S ϕ(k)

+
k−1∑

a=0

υk−a−1ϕT (k)[R − β I ]ϕ(k)}.

On the other hand Vr (k) ≥ 0 ∀k = 1, 2 . . . , N and under zero initial conditions, we
have

E

{

β

k−1∑

a=0

υk−a−1ϕT (k)ϕ(k)

}

≤E

{ k−1∑

a=0

υk−a−1eT (k)Qe(k)
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+ 2
k−1∑

a=0

υk−a−1eT (k)S ϕ(k)

+
k−1∑

a=0

υk−a−1ϕT (k)Rϕ(k)

}

.

This implies that

J (k) = E

{

β

N∑

k=0

ϕT (k)ϕ(k)

}

≤E

{ N∑

k=0

eT (k)Qe(k)+ 2
N∑

k=0

eT (k)S ϕ(k)

+
N∑

k=0

ϕT (k)Rϕ(k)

}

. (31)

Moreover, from (31) the inequality of Definition 2 in [26] can be easily obtained.
Thus, it is concluded that augmented filtering error system (13) is stochastically
finite-time bounded with strict (Q,S ,R)-β dissipative performance subject to
(C1,C2,G , N , ε). Hence, the proof is completed. ��

The following theorem proves the stochastically finite-time boundedness with
strictly (Q,S ,R) − β dissipative of augmented fault detection filter system (13)
when the filter gain parameters are unknown.

Theorem 2 Let Assumption 1 holds. βzi , υ, C1, α, ε1 be known scalars. Q ≤ 0, S ,
R = RT and V are known matrices. If there exist positive definite matrices Pm

r ,

Q, Qr , Rbr (b = 1, 2, . . . , h), positive scalars λP̃m , λP̃
m
, λQ̃ , λQ̃r

, λR̃b
(b =

1, 2, . . . , h) and any matrices Y , ˜K m
t , H̃ m

t , L̃ m
t such that the following inequalities

hold together with (16)–(18) for all s, t = 1, 2, . . . , l :

[ϒ̃ss] < 0, s = t, (32)

[ϒ̃st ] + [ϒ̃ts] < 0, s �= t, (33)

where

ϒ̃st =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ϒ̄]6×6 ϒ̃1,2 ϒ̃1,3 ϒ̃1,4 ϒ̆1,3 ϒ̃1,5 L̂T
t

√−Q ε1Nτ T 0
∗ P̄m

r − Y T − Y 0 0 0 0 0 0 Mτ
∗ ∗ P̆m

r 0 0 0 0 0 0
∗ ∗ ∗ P̆m

r 0 0 0 0 0
∗ ∗ ∗ ∗ P̆m

r 0 0 0 Mτ
∗ ∗ ∗ ∗ ∗ P̆m

r 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Y =
[
Y1 Y2
Y T
2 Y3

]

, P̄m
r =

[
P̄m

1r P̄m
2r

P̄mT
2r P̄m

3r

]

, Rrτ =
[
R1rτ R2rτ

RT
2rτ R3rτ

]

, Q =
[
Q1 Q2

QT
2 Q3

]

,

Qr =
[
Q1r Q2r

QT
2r Q3r

]

, ϒ̄1,1 = −υP̄m
r + Qr + dQ + Rbr + τRbr , ϒ̄1,2 = ĈT

t VT ,

ϒ̄1,5 = −L̂T
t S , ϒ̄1,6 = L̂T

t R, ϒ̄2,2 = −2I , ϒ̄3,3 = −υd2Qr , ϒ̄4,4 = −υτ2Rbr ,

ϒ̄5,5 = −I − S , ϒ̄6,6 = −R + γ, ϒ̃1,3 = [π2
1i Â

m1
1ρ̄,si Y

T 0 0 0 0 0]T ,
ϒ̃1,2 = [ Âm

ρ̄,sY
T Êρ̄,sY

T Âdm
ρ̄,sY

T Âm
τb,sY

T F̂m
ρ̄,sY

T B̂m
ρ̄,sY

T ]T ,
ϒ̃1,4 = [π3

2i Â
m2
2ρ̄,si Y

T π2
2i Ê

m2
1ρ̄,si Y

T 0 . . . 0︸ ︷︷ ︸
4

]T , ϒ̂1,3 = [π2
3i Â

m1
1ρ̄,si Y

T 0 . . . 0︸ ︷︷ ︸
5

]T ,

ϒ̃1,5 = [0 . . . 0︸ ︷︷ ︸
5

π2
4i Â

m4
3ρ̄,si Y

T ]T , NT
τ = [Nm(M̂

m
ρ̄,s + M̃m3

ρ̄,si ) 0 . . . 0︸ ︷︷ ︸
5

]T ,

Mτ = Ĉt M, P̂
m
r = diag{P̄m

r − Y T − Y , P̄m
r − Y T − Y , . . . , P̄m

r − Y T − Y },

then there exists distributed fuzzy-dependent filter (10) for addressed system (1) such
that augmented fault detection filter system (13) is stochastically finite-time bounded
and strictly (Q,S ,R)-β dissipative with respect to (C1,C2,G , N , ε). Moreover, the
filter gain parameters in (10) can be obtained byK m

t = Y−1
2

˜K m
t ,H m

t = Y−1
2 H̃ m

t

and L̂ m
t = L̃ m

t .

Proof To prove the theorem, left and right multiplying (14) and (15) by diag{I , . . . I
︸ ︷︷ ︸

6

,

Y T ,Y T ,Y T ,Y T ,Y T , I } and its transpose, respectively, and then using the inequality
−Y T (P̄m

r )
−1Y ≤ (P̄m

r )
−1 − Y − Y T , we have

ϒ̃12×12 + sym(NτΔF(k)Mτ ) < 0, (34)

where ϒ̃12×12, P̄m
r , Y , Nτ and Mτ are defined as in the statement of Theorem 2.

By applying Lemma 1 in [31], there exist positive scalars ε1 and ε2 such that (34)
can be rewritten as

ϒ̃12×12 + ε1Nτ T
Nτ + ε−1
1 MτMτ

T < 0. (35)

Inequality (35) can be precisely observed as the matrix terms in (32). Hence, if LMIs
(32) and (33) together with (16)–(18) hold, considered system (1) with fault detection
distributed filter (10) is stochastically finite-time bounded with strict (Q,S ,R)-β
dissipative subject to (C1,C2,G , N , ε). Hence the proof of this theorem is completed.

��
Suppose that there is no distributed time-varying delay and Markovian jump in
discrete-time system (1), then augmented fault detection filtering system (13) can
be rewritten as

�(k + 1)=SsTt
{
(
Âρ̄,s+M̂ρ̄,sΔ(k)Ĉt

)
�(k)+ Êρ̄,sθ(Ĉt�(k))+ Âd

ρ̄,s Î�(k − d(k))
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+ B̂ρ̄,sw(k)+ F̂s f (k)+ Â1ρ̄,s�(k)+ Â2ρ̄,s�(k)

+ (
Â3ρ̄,s + M̃ρ̄,sΔ(k)Ĉt

)
�(k)

+ Âd
4ρ̄,s Î�(k − d(k))+ Ê1ρ̄,sθ(Ĉt�(k))

}

,

e(k) =L̂ t�(k)− f (k), (36)

where

Â1ρ̄,s =
q∑

i=1

β̂1i (k) Â
1
1ρ̄,si , Â2ρ̄,s =

q∑

i=1

β̂2i (k) Â
2
2ρ̄,si , Â3ρ̄,s =

q∑

i=1

β̂1i (k) Â
1
1ρ̄,si ,

Â4ρ̄,s =
q∑

i=1

β̂4i (k) Â
4
3ρ̄,si , Ê1ρ̄,s =

q∑

i=1

β̂2i (k)Ê
2
1ρ̄,si , M̃ρ̄,s =

q∑

i=1

β̂3i (k)M̃
3
ρ̄,si ,

Âρ̄,s =
[
Âs 0
ω ˆKt

]

, M̂3
ρ̄,si =

[
0

−Ĥt�β3�ρ̄

]

, Êρ̄,s =
[

0
−Ĥt�β2�ρ̄

]

,

Âτb,s =
[
Âτbs
Âτbs

]

,

Âd
ρ̄,s =

[
0

−Ĥt�β4�ρ̄Ĉt

]

, B̂ρ̄,s =
[

B̂s

B̂s − Ĥt�ρ̄ D̂t

]

, F̂s =
[
F̂s
F̂s

]

,

Â4
3ρ̄,si =

[
0

−Ĥtσi�ρ̄Ĉt

]

,

Â1
1ρ̄,si =

[
0 0

−Ĥtσi�ρ̄Ĉt 0

]

, Â2
2ρ̄,si =

[
0 0

−Ĥtσi�ρ̄S1Ĉt 0

]

, M̃3
ρ̄,si =

[
0

−Ĥtσi�ρ̄

]

,

Ê2
1ρ̄,si =

[
0

−Ĥtσi�ρ̄

]

, Ĉt =[Ĉt 0], L̂ t =[Lt − Lt ], Î =[0 1], ω= Âs − ˆKt−

Ĥt (�β1 +�β3)�ρ̄Ĉt − Ĥt�β2�ρ̄S1Ĉt .

Corollary 1 Let Assumption 1 holds and βzi , υ, C1, α, ε2 are known scalars. Q ≤ 0,
S , R = RT and V be known matrices. If there exist positive definite matrices Pm

r ,

Q, Qr , positive scalars λP̃m , λQ̃ , λP̃
m
, λQ̃r

and any matrices Y , ˜Kt , H̃t , L̃t such
that the following inequalities hold together with (16)–(18) for all s, t = 1, 2, . . . , l :

[ ̃ss] < 0, s = t, (37)

[ ̃st ] + [ ̃ts] < 0, s �= t, (38)
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where

 ̃st =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
 ̄
]
5×5  ̃1,2  ̃1,3  ̃1,4  ̆1,3  ̃1,5 L̂T

t

√−Q ε2 N̄ T 0
∗ P̄r − Y T − Y 0 0 0 0 0 0 M̄
∗ ∗ P̆r 0 0 0 0 0 0
∗ ∗ ∗ P̆r 0 0 0 0 0
∗ ∗ ∗ ∗ P̆r 0 0 0 M̄
∗ ∗ ∗ ∗ ∗ P̆r 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Y =
[
Y1 Y2
Y T
2 Y3

]

, P̄r =
[
P̄1r P̄2r

P̄T
2r P̄3r

]

, Q =
[
Q1 Q2

QT
2 Q3

]

, Qr =
[
Q1r Q2r

QT
2r Q3r

]

,

 ̄1,1 = −υP̄r + Qr + dQ,  ̄1,5 = −L̂T
t S ,  ̄1,6 = L̂T

t R,  ̄2,2 = −2I ,

 ̄4,4 = −I − S ,  ̄5,5 = −R + γ I ,
 ̃1,2 = [

Âρ̄,sY
T Êρ̄,sY

T Âd
ρ̄,sY

T F̂ρ̄,sY
T B̂ρ̄,sY

T ]T
,

 ̃1,3 = [
π2
1i Â

1
1ρ̄,si Y

T 0 · · · 0︸ ︷︷ ︸
4

]T
,  ̃1,4 = [

π3
2i Â

2
2ρ̄,si Y

T π2
2i Ê

2
1ρ̄,si Y

T 0 · · · 0︸ ︷︷ ︸
3

]T
,

 ̆1,3 = [
π2
3i Â

1
1ρ̄,si Y

T 0 · · · 0︸ ︷︷ ︸
4

]T
,  ̃1,5 = [

0 · · · 0︸ ︷︷ ︸
4

π2
4i Â

4
3ρ̄,si Y

T ]T
,  ̄1,2 = ĈT

t V
T
i ,

N̄ T = [
N (M̂ρ̄,s + M̃3

ρ̄,si ) 0 · · · 0︸ ︷︷ ︸
4

]T
,  ̄3,3 = −υd2Qr , M̄ = Ĉt M,

P̆r = diag{Pr − Y T − Y ,Pr − Y T − Y , . . . ,Pr − Y T − Y },

then there exists distributed fuzzy-dependent filter (10) such that augmented fault
detection filter system (36) is stochastically finite-time bounded and strict (Q,S ,R)-
β dissipative with respect to (C1,C2,G , N , ε). Moreover, the filter gain parameters
in (10) can be obtained byKt = Y−1

2
˜Kt , Ht = Y−1

2 H̃t and L̂t = L̃t .

Proof The proof of this corollary is similar to Theorem 2 and hence it is neglected. ��

4 Numerical Examples

In this section, we have given two numerical examples including inverted pendulum
model to demonstrate the efficiency of the proposed distributed filter design technique.

Example 1 In this example, the sensor network is presented in terms of directed graph
G = (V, E,A), with V = {1, 2} and E = {(1, 1), (1, 2), (2, 2)}, where V and E are the
set of nodes and edges of the graph, respectively. Moreover, we consider the adjacency
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matrix as

A =
[
1 1
0 1

]

.

Next, we consider nonlinear discrete-time Markovian jump system (1) with two oper-
ation modes and two plant rules as follows:

Fuzzy Rule 1:

A1
1 =

⎡

⎣
−0.2925 0.0895 0.02130
0.2075 −0.07216 0.0045
0.1783 0.1160 −0.2325

⎤

⎦ , A2
1 =

⎡

⎣
−0.3716 0.085 0.3300
0.2275 −0.0722 0.0445
0.2783 0.1260 −0.2495

⎤

⎦ ,

A1
1,1 =

⎡

⎣
−0.0028 0.0189 0.0023
0.0064 −0.09116 0.0055
0.0913 0.0216 −0.0125

⎤

⎦ , A2
1,1 =

⎡

⎣
−0.0027 0.0895 0.0013
0.0545 −0.0822 0.0045
0.0883 0.0161 −0.0025

⎤

⎦ ,

A1
2,1 =

⎡

⎣
−0.0573 0.0833 0.0345
0.03 −0.0584 0.0035

0.0476 0.0839 −0.0466

⎤

⎦ , A2
2,1 =

⎡

⎣
−0.0027 0.0895 0.0013
0.0545 −0.0822 0.0045
0.0883 0.0161 −0.0025

⎤

⎦ ,

E1
1 = [

0.5 0.3 0.1
]T
, E2

1 = [
0.6 0.5 0.1

]T
.

Fuzzy Rule 2:

A1
2 =

⎡

⎣
−0.2917 0.0833 0.0220
0.1430 −0.0583 0.0026
0.1366 0.1519 −0.2501

⎤

⎦ , A2
2 =

⎡

⎣
−0.2356 0.083 0.3300
0.2275 −0.0722 0.220
0.103 0.1260 −0.0583

⎤

⎦ ,

A1
1,2 =

⎡

⎣
−0.0357 0.0833 0.023
0.0075 −0.0832 0.0055
0.0983 0.026 −0.0184

⎤

⎦ , A2
1,2 =

⎡

⎣
−0.0036 0.0089 0.0023
0.0745 −0.0816 0.0054
0.0983 0.0264 −0.0034

⎤

⎦ ,

A1
2,2 =

⎡

⎣
−0.077 0.0191 0.0456
0.055 −0.0523 0.0354
0.0586 0.0722 −0.0207

⎤

⎦ , A2
2,2 =

⎡

⎣
−0.0657 0.0911 0.0362
0.0450 −0.0613 0.0275
0.0465 0.0521 −0.0106

⎤

⎦ ,

E1
2 = [

0.3 0.2 0.2
]T
, E2

2 = [
0.4 0.3 0.2

]T
.

The transition probability matrix is taken as χ =
[
0.2 0.8
0.6 0.4

]

. The measurement output

of the i th sensor node with s,m, i = 1, 2 is described in (8), and the parameter values
are chosen as,

C1
1,1 =

[
0.1 0.2 0.3
0.2 0.3 0.1

]

, C1
1,2 =

[
0.1 0.1 0.2
0.1 0.2 0.1

]

, C2
1,1 =

[
0.2 0.3 0.4
0.3 0.3 0.2

]

,

C2
1,2 =

[
0.1 0.2 0.1
0.2 0.2 0.2

]

,
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C1
2,1 = [

0.1 0.2 0.2
]
, C1

2,2 = [
0.1 0.2 0.1

]
, C2

2,1 = [
0.1 0.4 0.3

]
,

C2
2,2 = [

0.1 0.2 0.2
]
,

D1
1,1 = [

0.2 0.4
]T
, D1

1,2 = [
0.15 0.35

]T
, D2

1,1 = [
0.2 0.3

]T
, D2

1,2 = [
0.1 0.2

]T
,

D1
2,1 = 0.33, D1

2,2 = 0.21, D2
2,1 = 0.29 and D2

2,2 = 0.22.

Further, we assume that the distributed time delay satisfies 1 ≤ τb(k) ≤ 4, where
b = 1, 2 with τ1(k) = 1.4 + 0.22 sin(k) and τ2(k) = 1.3 + 0.2 cos(k). Further, the
communication delay bound satisfies 1 ≤ d(k) ≤ 3 which occurs stochastically. The
saturation value forS1 andS2 is taken as diag{0.6, 0.6, 0.6} and diag{0.7, 0.7, 0.7},
respectively. Let 
1 = 0.7 and 
2 = 0.5 be the quantization densities. The occur-
rence probabilities of saturation nonlinearity, packet losses, communication delay and
quantization densities are taken for each sensor nodes. For the first sensor node, we
choose β̄11 = 0.7, β̄21 = 0.1, β̄31 = 0.05 and β̄41 = 0.15 and for the second sensor
node, we have β̄12 = 0.6, β̄22 = 0.15, β̄32 = 0.05, β̄42 = 0.15. The other parameters
are chosen as υ = 1.01, Q = −0.4, S = 0.7 and R = 2.1. By solving the LMI
constraints derived in Theorem 2 together with the above given parameters, we obtain
the minimum β = 0.897. Due to page limitations, the filter gain parameters are not
presented here.

Let us set the initial conditions as x(0) = x f (k) = [0 0 0]T for the system and filter
states. The simulation results for augmented fault detection filter system (13) are pre-
sented in Figs. 1–7. The responses of the state xl(k) and its estimate x f l(k) (l = 1, 2, 3)
with and without fault are plotted in Fig. 1. Moreover, Fig. 2 shows the responses of
error system.To bemore specific, Fig. 2 clearly displays the impact of fault signal f (k).
In Fig. 3 the residual signal is depicted. Further, the residual evaluation function is cal-

culated as Jϑ(k) =
√∑20

k=0 ϑ
T (k)ϑ(k) = 0.0917 and the selected threshold value is

Jth = 0.0911. It is obvious from Fig. 4 that the value of Jϑ exceeds the selected thresh-
old Jth in one time step. The sensor node that is active at each time instant is displayed
in Fig. 5. Finally, the distributed time-varying delay τq(k) (q = 1, 2) and time history
of x̃ T (k)Gm x̃(k) are presented in Figs. 6 and7, respectively. Thus, augmented fault
detection filter system (13) is stochastically finite-time bounded with prescribed strict
(Q,S ,R)-β dissipative performance index subject to (0, 22.8235, I , 100, 0.78) in
the presence of distributed delays and incomplete measurements.

Example 2 In this example, the effectiveness of the proposed distributed filter design
is examined for a nonlinear inverted pendulummodel as in [31]. The parameter values
are taken as in [31], which are given as follows:

A1 =
⎡

⎣
1.0157 0.0895 0.0030
0.0745 0.7216 0.0445
14.7832 5.1604 0.0250

⎤

⎦ , B1 =
⎡

⎣
0.0047
0.0895
0.3246

⎤

⎦ ,

A2 =
⎡

⎣
0.9573 0.0833 0.0022
1.0300 0.5834 0.0259
12.3656 5.5189 0.1056

⎤

⎦ , B2 =
⎡

⎣
0.0045
0.0833
0.4166

⎤

⎦ .
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Fig. 1 Trajectories of xl (k) and x f l (k) (l = 1, 2, 3) with and without fault

Further, the other parameter values for addressed system (1) are taken as E1 =
[
0.55 0.39 0.9

]T and E2 = [
0.32 0.25 0.5

]T
. Here, we have taken the sensor

network with two sensors and the local measurements are y1(k) = C1s x(k) and



50 Circuits, Systems, and Signal Processing (2022) 41:28–56

0 20 40 60 80 100
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (k)

 

 

e(k)

Fig. 2 Responses of error system
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Fig. 4 Evaluation function with and without fault

y2(k) = C2s x(k), where

C1s =
[
1 0 0
0 0 1

]

and C2s = [
1 0 0

]
, s = 1, 2.

Moreover, the disturbance distribution matrices D1s and D2s in (8) are taken as 0.2
and [0.1 0.2]T , respectively. Due to the physical limitations of the sensor nodes,
the measurements may be saturated and the values of the saturation function can be
taken as S1 = diag{0.6, 0.6, 0.6} and S2 = diag{0.9, 0.9, 0.9}. Here, the values
for quantization densities are assumed to be
1 = 0.9, 
2 = 0.88. Furthermore, the
lower andupper boundsof the randomlyoccurring communicationdelayd(k) are taken
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Fig. 7 Evolution of x̃ T (k)Gm x̃(k)

as 1 and 3, respectively. Moreover, the occurrence probabilities of the quantization,
sensor saturation, packet losses and random delay are selected to be 70%, 10%, 10%,
10% and 75%, 5%, 5%, 15% for the first and second sensor, respectively. In this
regard, we have β̄11 = 0.7, β̄21 = 0.1, β̄31 = 0.1, β̄41 = 0.1, β̄12 = 0.75, β̄22 = 0.05,
β̄32 = 0.05, β̄42 = 0.15.

Notice that the first sensor has two elements and more transmission power and
bandwidth may be consumed if such a measurement is directly transmitted. Further,
the second sensor transmits only one element from the local measurement. Now, we
have �ρ1(k) ∈ {[1 0], [0 1]} and �ρ2(k) = 1. Moreover, we consider periodic signals
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Fig. 8 Responses of the states xz(k) and its estimates x f z(k) (z = 1, 2, 3) with and without fault

for the switching purpose of two sensors as

ρ(k) =
{
1, 1 ≤ k ≤ 6
2, 6 < k < 11.
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Fig. 9 Response of error system
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Fig. 10 Responses of residual signal
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Fig. 11 Evaluation function and threshold

The other parameters are chosen as υ = 1.01, Q = −0.6, S = 1.9 and R = 2.9.
Now, using the aforementioned parameters and solving the LMIs in Corollary 1,
the dissipative performance level is obtained as β = 2.1937. Next, we set the initial
conditions as x(0) = x f (0) = [0 0 0]T for the state and filter system. Moreover, the
fault signal and disturbance input are taken as

f (k) =
{
0.45sin(k), 10 ≤ k ≤ 25,
0.05sin(k), 55 ≤ k ≤ 75,

and w(k) =
{−0.8sin(k), 10 ≤ k ≤ 30,

0, otherwise.
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Fig. 13 Evolution of x̃ T (k)G x̃(k)

The corresponding simulation results are presented in Figs. 8 9, 10, 11 and 12.
Specifically, Fig. 8 displays the state trajectories of the system and fault detection filter
with and without fault signal. The responses of error system can be viewed in Fig. 9.
Further, the response of residual signalϑ(k) is plotted in Fig. 10. It is clear fromFig. 11

that the residual evaluation function Jϑ(k) =
√∑16

k=0 ϑ
T (k)ϑ(k) = 0.2648 exceeds

the selected threshold Jth = 0.2568 within six time steps, wherein the efficiency of the
proposed fault detection is clearly revealed. Moreover, active sensor node at each time
instant is shown in Fig. 12. Finally, the evolution of x̃ T (k)G x̃(k) is shown in Fig. 13.
From this figure, it is obvious that the trajectories of the augmented fault detection
filtering error system do not exceed the bound C2. Thus from these simulation results,
it can be concluded that fault detection filtering error system (36) is stochastically
finite-time bounded with strict (Q,S ,R)-β dissipative performance index subject
to (0, 50.4043, I , 100, 0.9) under the proposed distributed fault detection filter design
even in the presence of incomplete measurements.

5 Conclusion

The finite-time fault detection filter design problem for a class of T–S fuzzyMarkovian
jump systems with distributed delay and incomplete measurements has been inves-
tigated. The issues such as packet losses, sensor saturation and signal quantization
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are considered simultaneously in a single framework. Lyapunov stability theory and
stochastic analysis techniques are used to establish the sufficient conditions for the
existence of fault detection filter that ensures the stochastic finite-time boundedness
of the resulting augmented filtering error system with a prescribed dissipative per-
formance level. Further, the fault detection filter gain parameters have been obtained
by solving the linear matrix inequality-based constraints. Two numerical examples
including an inverted pendulum model have been presented to establish the efficiency
and applicability of the proposed finite-time fault detection filter design technique.

Data Availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.
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