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Chronic Obstructive Pulmonary Disease (COPD) is a multifarious progressive disease that 
increases the mortality and morbidity ratio as well as becoming a life-threatening issue of 
an individual. Accurate and cost-effective diagnosis of diseases plays a primary role in the 
medical domain and a wide range of research has been carried out on disease prediction 
using sensory approaches along with the assistance of machine learning techniques. The 
traditional disease diagnosis procedures are invasive, costlier and the decision support 
systems were unreliable most of the time. The human exhaled breath discharged from 
the body is composed of various Volatile Organic Compounds (VOCs) which can be 
influenced by metabolic and disease activities. Hence, the analysis of VOCs in exhaled 
breath has an incredible potentiality for COPD diagnosis and can rapidly decrease the 
mortality rate. In this research, IoT-Spiro System is designed and an intelligent machine 
learning forecasting framework (IMLFF) has been proposed. IoT-Spiro System perceives the 
various VOCs patterns available in exhaled breath and that real-time parameter has been 
analyzed using IMLFF. The proposed framework incorporates a hybrid Genetic Big Bang-Big 
Crunch (GBB-BC) algorithm for selecting the optimal features from the real-time dataset 
and a Fuzzy-based Quantum Neural Network (F-QNN) classifier for diagnosing COPD. The 
experimental results illustrate that IMLFF outperforms when compared to recent existing 
approaches concerning various statistical parameters and performance metrics. From the 
result analysis, it has been determined that IoT-Spiro System and IMLFF framework can 
serve as an efficient assisting model to the medical practitioner for diagnosing COPD.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a heterogeneous and slowly progressive disease characterized by irre-
versible airway inflammation, which is a fourth-leading disease that causes mortality worldwide. Due to the inadequacy 
of early chronic obstructive pulmonary disease (COPD) diagnosis, the death ratio is constantly increasing and thereby it’s 
becoming a life-threatening challenge to the healthcare service providers [1,2]. Accurate and well-timed disease diagnosis is 
obligatory for providing effective treatment and to reduce the cost involved in personalized treatment. The disease diagnosis 
and treatment planning are currently based on the invasive disease diagnosis procedures and knowledge of the healthcare 
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provider rather than intelligent tools. On accounting for the major challenges posing towards the early disease diagnosis, 
there is a never-ending search for appropriate techniques which can potentially diagnose the disease at an early stage 
and improve the patient’s experience. From the study, a non-invasive method of analyzing the volatile organic compounds 
(VOCs) in exhaled breath can mentor as promising biomarkers in early disease diagnosis [3]. The origination of VOCs in 
exhaled breath can be either exogenous or endogenous, in which endogenous group of VOCs is formed by lipid peroxidation 
or pathophysiological process or bacteria in the liver, kidney, and lungs [4].

Most of the invasive methods used in COPD diagnosis are depending upon the patient’s medical record, symptom anal-
ysis, and clinical examination report. These methods may tend to provide a wrong diagnosis and also it may create a 
huge time delay due to human errors; besides, it is more expensive and computationally complex. The patient record is 
a file that holds the clinical history which includes identity, clinical trials, examinations reports, treatments, medications, 
and other healthcare services rendered to the patient [5,6]. Moreover, the medical datasets are in the form of digitized 
translation of patient records which upholds various attributes or features. The critical feature selection [7] has become an 
important arena where many healthcare researchers were focusing on the achievement of accurate disease diagnosis [8]. In 
most healthcare datasets, the number of attributes or features may range from tens to thousands on which feature selec-
tion can be applied for finding the significant subset of features that can extensively improve the accuracy of the classifier 
models.

Internet of Things (IoT) is a ground-breaking technology adapted to medical devices which facilitates remote monitoring 
of patients, discharging the potential to save patient’s life and empowering the healthcare providers to deliver ultimate 
care [9]. The patient commitment and satisfaction towards interaction with physicians have also increased and become 
more efficient. IoT is undoubtedly creating an impact by redefining the space between the patients and healthcare providers 
by removing the geographical barriers and improving treatment outcomes. The key beneficiary aspect of remote patient 
monitoring is supported by cloud technology, where the data collected via sensor are stored and which can be accessed 
remotely without any physical constraints [10]. In addition, IoT-based medical devices with cloud assistance will serve as 
a time-critical application for diagnosing the disease. Machine learning owes a major role in the decision-making process 
by handling a huge amount of data. Disease diagnosis using IoT and machine learning approaches might deal with an 
enormous amount of data which are of different forms and also data privacy may arise when the data belongs to healthcare 
applications [11].

From the literature, it has been witnessed that the researchers have not consented to a generalized machine learning 
framework for the diagnosis of COPD. Most of the invasive methods used in COPD diagnosis are depending upon the pa-
tient’s medical record, symptom analysis, and clinical examination report. These methods may tend to provide a wrong 
diagnosis and also it may create a huge time delay due to human errors; besides, it is more computationally expensive and 
complex. Therefore, IoT-based exhaled VOC analysis can be a capable non-invasive method for personalized monitoring and 
disease diagnosis. The main objective of the present work is to minimize the hurdles and barriers in disease diagnosis by 
developing an IoT-Spiro System for gathering the VOC patterns in human exhaled breath. Then the gathered VOC patterns 
are analyzed using the proposed machine learning framework, which offers the various impending benefits such as early 
disease diagnosis, cost reduction, personalized health monitoring, better-quality care, and patient experience. The major 
research contributions rendered in this article are compiled and summarized below:

• A hybrid Genetic Big Bang-Big Crunch (GBB-BC) algorithm is presented for optimal feature selection, which comprises 
of Genetic Algorithm (GA), Vantage Point-Tree, and Big Bang Big Crunch (BB-BC) Algorithm. This forms the root cause 
objective of the research work that optimizes the feature selection operation for enhancing the disease prediction 
accuracy.

• The output of the hybrid GBB-BC optimal feature selection algorithm has been analyzed using the proposed Fuzzy-based 
QNN classifier which is comprised of the Fuzzy Analytic Hierarchy Process (Fuzzy AHP) and Quantum Neural Network 
(QNN).

• The result of the Fuzzy-based Quantum Neural Network (F-QNN) classifier is compared with the existing techniques to 
substantiate the supremacy of the proposed classifier.

• Finally, this research article recommends the GBB-BC optimal feature selection algorithm and F-QNN classifier which 
yields a high level of accuracy in COPD diagnosis.

The remaining part of this research article is organized as follows: Section 2 briefly discusses data collection, prepro-
cessing, feature selection, and classification models used in the machine learning framework of this research. Section 4
elaborately presents the experimental results with statistical analysis. Finally, Section 5 of the article is concerned with the 
conclusion and the future recommendation of this research work is summarized.

2. Related works

2.1. VOC analysis for COPD diagnosis

Pulmonary disease and diversified clinical challenges are the major cause of morbidity in children and adults [12,13]. 
The non-invasive diagnosis of COPD would be extremely advantageous in developing a personalized healthcare system for 
2
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the future. Most of the VOC patterns witnessed in the exhaled breath may be formed or modified by the pathophysiological 
process in human body parts. Various researchers investigated the distinctive patterns of VOCs were found in COPD subjects 
and its significant subjects. The research works [14] and [15] have suggested that the VOC patterns in exhaled breath may 
be useful in predicting COPD in patients. In the past, several techniques have been used for collecting and analyzing the 
exhaled VOCs [16,17] and in which gas chromatography (GC) and eNose are commonly used techniques. GC techniques 
initially collect the exhaled breath samples and store it in inert bags and then the individual VOCs are analyzed by mass 
spectrometry or flame ionization detection mechanism [16]. The eNose can also be used for analyzing the breath samples 
with the assistance of nanosensors incorporated within the device [17]. The major drawback of eNose is that the analysis of 
individual VOC patterns from exhaled breath is impossible and none of the techniques are cost-effective and the accessibility 
ratio is also too low. Enormous researchers illustrated that VOC profiles [18–20] can accurately discriminate COPD subjects 
from healthy subjects. Fens et al. reported that the VOC profiles of COPD patients were associated with eosinophilic and 
neutrophilic cell counts abnormality [21].

2.2. Feature selection

The existence of irrelevant data inside the feature set must be reduced for extracting the subset of features is com-
monly referred to as feature selection in machine learning and optimization problems [8]. In this scope, feature selection 
is significant to enhance the quality and speed up the learning process of the data. Feature selection is to choose a subset 
of attributes from the input data which can proficiently define the input data while the impact of irrelevant and noise is 
minimized without compromising the disease prediction. Especially, it plays an imperative role in shrinking the progression 
scale of data whereas irrelevant and replicated features were eliminated. Feature selection is an effective practice in pre-
processing the data with high dimensions and also the effectiveness of the learning is improved. The necessity of obtaining 
optimal features works well with an optimization algorithm that reduces the error factor in the disease prediction [22]. 
Generally, wrapper or filter techniques are used in feature selection [23–25] whereas in this research work, GA and BB-BC 
algorithms were employed together with a vantage point tree for optimizing the critical feature selection.

Genetic Algorithm (GA) shows significance in optimization-based issues and it is also a robust search method in the 
multimodal landscape [26]. GA is inspired by natural genetics and evolution through which an optimal global solution can 
be attained with high probability and it has high exploration capability towards searching for optimal features in a search 
space [27]. The execution of GA is initiated with the random distribution of a chromosome. The occurrence of crossover 
and mutation generates the subsequent generation of items which poses diversifying characteristics. The schema of GA 
was assessed and the context of better production opportunities was allocated to the chromosome that directs to the best 
solution. Due to its high exploration capability, GA has been applied on various domains particularly for solving the feature 
or attribute selection problems such as Das et al. [28], Ratta et al. [29], Garcia et al. [30], and Triguero et al. [31] but GA 
does not have exploitation ability to identify optimal feature around the search space.

Big Bang–Big Crunch (BB-BC) algorithm was formulated from cosmological science in which big bang describes the 
expansion of the universe from an explosion of the particles in the space, whereas the big crunch theory signifies the 
gravitational force and it inversed the process of expansion which ultimately pull back everything into its original state 
[32]. From the wider perception, the universal evolution was an eternal process of big bang expansion and big crunch 
constriction phase. In the big bang phase, candidate items are generated for optimization problems and the items were 
dispersed over the exploration space [33]. In the big crunch phase, randomly dispersed candidates were drawn into distinct 
regions which are assigned based on the centric point of the population. The output of the big bang phase was fed as an 
input to the big crunch phase. Convergence of the expansion phase is reinstated with fitness value and current position of 
the candidate item to generate weighted average point which is center of mass. The expansion and contraction are reiterated 
until the termination criterion is reached. Even though BB-BC endows good exploitation capability but it suffers from a lack 
of exploration capability [34].

The vantage-point tree (VP Tree) is a metric tree that splits the information in a metric space by choosing a needed 
position in a space [35]. The VP Tree partitions the data points into two levels that are data points closer to the vantage 
point than the assigned threshold value and the points that are not close to the data point. The partitioning procedure is 
applied recursively into data and a tree structure is generated. Every node in the tree holds the input and radius value. In 
common, the VP tree serves better for searching the desired number of nearest neighbors and it can scale up with any size 
of the dataset.

2.3. Machine learning classifiers

The invasive-based methods for disease diagnosis depend only on the patient’s medical records, physical investigation 
report, and examination of concerned symptoms by medical practitioners. The existing methods typically cause inaccurate 
diagnosis and also consume more time for diagnosing due to its error-prone characteristics. Besides, its computational com-
plexity is also high and more expansive. To overcome these drawbacks in invasive-based disease diagnosis, a non-invasive 
system has been developed by many researchers with the support of machine learning techniques. Machine learning pre-
dictive models like k-Nearest Neighbor (k-NN), AdaBoost (AB), Decision Tree (DT), Support Vector Machine (SVM), Artificial 
3



JID:TCS AID:13520 /FLA [m3G; v1.321] P.4 (1-22)

G.S. Karthick and P.B. Pankajavalli Theoretical Computer Science ••• (••••) •••–•••
Neural Network (ANN), Logistic Regression (LR), Naïve Bayes (NB), and Fuzzy Logic (FL) has been highly considered by many 
researchers for earlier and accurate diagnosis of diseases [36].

K-NN is a simple supervised learning algorithm, which learns all the possible cases and then predicts the class labels 
for new cases with the help of similarity measures [37]. There are numerous methods have been used for calculating the 
similarities between two instances with n number of attributes. Every method has the following three properties. Consider 
dist(X,Y) be the distance between two points X, Y then,

(i) dist(X,Y)≥0 and dist(X,Y)=0 iff X=Y
(ii) dist(X,Y)=dist(Y,X)

(iii) dist(X,Z)≤dist(X,Y)+dist(Y,Z)

Property 3 describes the triangle in equality which is a straight line and also the shortest distance between two points 
[38]. From the studies, it has been identified that the performance of K-NN is not good and research is essential to enhance 
the accuracy and efficiency.

The SVM is a machine learning classification model which uses a margin strategy for solving complex problems and it 
results by offering high performance when it has been applied for classification applications [39,40]. According to a binary 
classification problem, the attributes are divided with a hyper plane vTd+m=0, where v is a dimensional coefficient vector, 
m is the offset value from the origin, d is dataset values. The results of SVM are v and m, in which v can be obtained by 
using linear case lagrangian multipliers. The data points plotted on borders are support vectors and therefore, the solution 
v can be written as v = ∑n

i=1 ∝i cidi, where n denotes the number of support vectors, ci are target labels to di.
The NB is a classification algorithm that depends on the conditional probability theorem which identifies the class labels 

of a new feature vector [41]. For each given class, the NB calculates the conditional probability of a training dataset. Further, 
the probability is computed for a given new vector class by considering each vector independently and this algorithm is 
well-concerned for the text-based classification problems.

The ANN is an iterative supervised machine learning algorithm that solves the problems without identifying and ex-
plaining the method of a particular problem to be solved, without constructing algorithms or developing programs, and 
also without knowing the problem to be solved [42]. Moreover, the ANN comprises three major constituents such as inputs, 
functions, and outputs. The input component utilizes the attribute values and weights, in which the weights of each at-
tribute are modified during the training process of the neural network. The output component produces the known class by 
altering the weights to stabilize the error rate between the output obtained and the actual class. Most of the applications 
of ANN indirectly identify the multifaceted relationships between the variables [43].

Multi-Criterion Decision Making (MCDM) issues were handled with the Analytical Hierarchy Process (AHP) in addition 
to fuzzy set theory [44]. The implementation of fuzzy numbers achieved the sensible judgments of humans. The decision-
maker solved the most complex criterion with the assist of the Fuzzy Analytic Hierarchy Process (FAHP), in which pair-wise 
comparison is done and numerous alternate solutions were generated based on the preferences of the decision-makers. 
FAHP tends to yield a high degree of accuracy by considering various fuzzy metrics and better results were achieved through 
multiple preferences.

Quantum Neural Network (QNN) computation is evolved from the mathematical model and the nature of quantum 
mechanics which is a certainty of physics. QNN is an explicit depiction of the process of computation that is the correlation 
of behavior with other systems. QNN had achieved rapid parallel solutions by considering poly-logarithmic size and depth. In 
QNN the process of computation is attained in a few steps with (O (logk n), k ≥ 1) [45]. The significance of complexity-theory 
channels numerous aspects of computation that is depth, size, and precision. In the QNN, depth denotes the iteration; size 
denotes the size of the dataset, and precision is a problem-solving technique. The computational complexity is minimized 
with the QNN approach [46].

3. Materials and methods

3.1. Intelligent machine learning forecasting framework for COPD diagnosis

The main objective of developing an intelligent machine learning forecasting framework for COPD diagnosis is to support 
the IoT-Spiro system in the process of decision making with a high degree of accuracy and early diagnosis. The intention 
of this framework may lead to serving as an efficient assisting model to the medical practitioner for automated diagnosing 
of COPD. The developed IMLFF aims to acquire the real-time dataset using IoT-Spiro System and to pre-process the highly 
variant real-time clinical dataset, thus pre-processing is a practicable step. Then the intelligent framework consists of optimal 
feature selection along with examining the impact of machine learning classification models. To facilitate the understanding 
of the developed framework IMLFF, the workflow is illustrated schematically in Fig. 1. In this section, the process of acquiring 
real-time data using the IoT-Spiro System is explained. Second, the preprocessing method used for standardizing the real-
time data is briefed. Finally, the mechanism used for optimal feature selection and classification models used for diagnosing 
COPD patients and healthy subjects is explained.
4
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Fig. 1. IMLFF: intelligent machine learning forecasting framework.

3.1.1. Real-time data acquisition using IoT-Spiro system
The improvements in computational power and real-time data analytics influenced the healthcare industry with accurate 

disease diagnoses. There has been a huge demand for cost-effective and accurate disease diagnosis, which in turn results in 
the development of the IoT-Spiro System for acquiring the data from healthy and non-healthy subjects. This device incor-
porates an array of gas sensors, microcontrollers, a Wi-Fi module, and other supporting components. The developed device 
recognizes twelve VOCs which include isobutene, ethanol, acetone, benzene, formaldehyde, ammonia, nitrogen dioxide, car-
bon monoxide, hydrogen, propane, toluene, and acetaldehyde. Then, the VOC data were uploaded to the cloud storage using 
the pushing box, which is an application programming interface (API) that acquires data from a microcontroller to cloud 
storage. From the cloud storage data were extracted and analyzed using the proposed machine learning framework.

In this research experiment, 150 healthy subjects and 150 COPD subjects (160 males and 140 females, age ranges from 21 
to 70 years) have participated. The subjects included in this study were accepted and signed the informed consent before the 
experiment. The work was scrutinized and approved by the Institutional Human Ethical Committee of Bharathiar University 
(BUHEC). The data collection was conducted at Kongunadu Hospital Campus and the subjects were seated comfortably 
during the process. For each subject, vital clinical factors were considered and acquired that consist of numerical and 
nominal features. The factors which are more prominent for COPD diagnosis have been identified from the relevant medical 
literature and also based on the opinions of the senior medical experts. The acquired real-time dataset contains 30 features, 
in which 12 different VOC features and 18 prominent medical factors related to COPD diagnosis have been considered.

3.1.2. Preprocessing
The characteristics of medical data are originated via the clinical process and wearable devices tend to overcome various 

issues like availability of data and the complex representation of data turns the decision-making applications challenging. 
Preprocessing is mandatory for transforming the data into well-formed and efficient data, so the machine learning algo-
rithms can be utilized efficiently. As a part of the development of the machine learning framework for disease diagnosis 
using the IoT-Spiro system, preprocessing methods like the elimination of missing values, MinMaxScaler, and Standard Scaler 
has been used to standardize the dataset [32]. The missing values are identified and eliminated from the dataset. MinMaxS-
caler strategy can be useful for machine learning algorithms when the dataset contains the input values with differing scales 
and therefore, the application of the MinMaxSxaler technique to the dataset improves the efficacy of classifier training. The 
5
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MinMaxScaler is a typical technique that transforms given features or attributes individually by scaling it within a given 
range (between 0 and 1), can be written as,

f i − min( f )

max( f ) − min( f )
(1)

Similarly, Standard Scaler ensures whether the value of each attribute or feature is normally distributed and scales them
to mean zero and variance one, can be written as,

f i − mean( f )

stdev( f )
(2)

where f is the feature or attribute of a given dataset. Therefore, effective preprocessing techniques were used in this research 
work to avoid the negative outcome due to noisy and un-normalized data.

3.1.3. Feature selection using hybrid GBB-BC algorithm
Feature selection is an efficient technique in a machine learning framework that identifies the significant features re-

lated to the disease. The identification of significant features helps in eliminating unnecessary, redundant features from the 
dataset which directly impose the machine learning classifiers to provide quick and better results. Besides, this technique 
improves the comprehensibility of healthcare data, reduces the complexity and training time of machine learning classifiers. 
In this research work, GA has been employed to select the optimal features because this technique explores the search space 
of all probable subsets to obtain the optimal features which minimize the irrelevant features and maximize the predictive 
accuracy of the disease diagnosis system. The disadvantage of GA is that suffers from a lack of exploitation and to over-
come this downside, the present work developed a hybrid metaheuristic feature selection model that fuses GA, BB-BC, and 
vantage point tree.

The potentiality of the metaheuristic techniques is identified by its ability to balance the diversification and intensi-
fication throughout the process of searching the optimal features. Intensification is an integral factor that deepens the 
process of searching and identifying the neighborhood candidates of the optimal solution, whereas diversification is an-
other co-integral factor that enables the algorithm to explore the search space efficiently. The extreme intensification of 
the algorithm increases the risk of searching the candidates in a local optimal space by visiting only a portion of the local 
search space. However, extreme diversification may tend to have slower convergence, where solutions are residing around 
the optimal solution.

The BB-BC algorithm reveals the superior intensification capability, but it suffers from the pitfall of less diversification. 
At the big bang phase, most of the candidates are to be found in a small portion of the search space but few candidates 
may be locked in the subdomain space. To overcome this pitfall, a GBB-BC has been developed which blends BB-BC, GA, and 
VP Tree, the procedure flow is shown in Fig. 2 as well as the steps were presented in Algorithm 1. The benefits of each of 
these algorithms are combined to conquer the shortcomings of its other constituent algorithms. The BB-BC algorithm holds 
the ability of exploitation (intensification) and obtains the optimal attributes with the help of the VP Tree by searching 
the candidates around the center of mass. The GA facilitated with the exploration (diversification) ability which avoids the 
searching of candidates only within a local optimal space and upholds the exploration widely among the search space.

The population is initiated randomly and the fitness values are computed for each candidate in the population. The 
population is divided into two different groups after initialization and the candidates are allocated to the groups using 
linear distribution mechanisms. Then one group will pass into the GA phase and another group will pass into the BC phase, 
as follows:

sGA =
(

1 − k

T i

)
xnP (3)

sBC = k

T i
xnP (4)

where sGA is the candidate size that passes into the GA phase, sBC is the candidate size that passes into the BC phase, k
refers to the current iteration, T i refers to the total iterations and nP refers to the total candidates in the population.

The size of the candidate’s passes into the GA phase is relatively high at the beginning and then the size of the can-
didate’s passes into the GA phase will linearly decrease whereas the size of the candidate’s passes into the BC phase will 
linearly increase. The implementation of this rule avoids the poor diversification (exploration) ability of the BB-BC algorithm 
and however, the poor intensification (exploitation) ability of the GA algorithm is rectified by the big bang operator at the 
end.

The GA and BC phases are executed in parallel to obtain the solution set which contains the optimal attributes and also 
to overcome the disadvantages of the constituent algorithms. In the GA phase, the optimization process starts by applying 
genetic operators such as selection, crossover, and mutation on the selected solutions from the population. The crossover 
and mutation can be considered as important evolutionary operators of GA. The solutions set is generated by selecting a 
two-parent candidate solution using tournament selection, followed by a single or double or uniform crossover operation 
is applied to the selected parent candidates to generate two offspring solutions. During mutation operation, random local 
6
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Fig. 2. Flowchart of GBB-BC optimal feature selection algorithm for COPD diagnosis.

changes are applied to the generated offspring which updates the population by swapping a few candidate solutions in the 
population using the elitism strategy. The updated population is taken into account for consideration in the next iteration 
and at each iteration; the solution set is evaluated using a fitness function. Finally, the best candidate solution set Sx,k (best 
candidate solution of the GA phase at current iteration) is returned by the GA phase. Table 1 illustrates the parameters 
setting of GA.

The initial process of the BC phase tends to calculate the center of mass (CoM) for the candidates passed into the phase 
using the equation,

CoMpos =
∑n

i=1
1

fiti
k

posi
k∑n

i=1
1

fiti
k

(5)

The VP tree mechanism is used for improving the exploitation process of the BC phase and the VP tree mechanism is 
applied to the CoMpos to intensify the searching process [35]. Every CoMpos is considered as a vantage point that acts as a 
root node and from CoMpos point distance values of all other candidate points are determined. Then, μbe the median of 
obtained distance values is computed based on,
7
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Algorithm 1: Hybrid GBB-BC Algorithm for Optimal Feature Selection

Input: D: Dataset, P: P: Population, nP: Population Size, Ti: Total Number of Iterations, rC: Crossover Rate, rM: Mutation Rate

Output: S: Set of Optimal features

Procedure:

1. Begin

2. Initialize the Population P of size nP using Random Method

3. Calculate the fitness function of each candidate in population P
4. Divide the population P into two groups by using Linear Distribution:

sGA = (1 − k

T i
) × nP

sBC = k
T i × nP

GA Phase:

5. Select two parent candidates from population sGA using tournament selection

6. Then perform crossover operation on selected parent candidates to produce offspring solutions

7. If (rand(0.0,0.1)≤rM)

8. Perform mutation on offspring’s solutions

9. End If
10. Add the offspring’s to the population

11. Eliminate the identified least-fit solutions from the population by applying: rC x sGA

12. Return best candidate solutions, Sx,k

Big Crunch Phase:

13. Compute the CoM for each set of candidates

CoMpos =
∑n

i=1
1

fiti
k

posi
k∑n

i=1
1

fiti
k

14. Determine the distance d(CoMpos, ci); i = 1, 2, . . . ..n.

15. Calculate the median μ of the distance values

μ = ( nD
2 ) + ( nD

2 + 1)

2
16. Partition the candidates set into two subsets C1 and C2,

C1 = {c ∈ C1 | d(CoMpos, ci)<μ}
C2 = {c ∈ C2 | d(CoMpos, ci) ≥ μ}

17. Accept the subset C1 as a solution set Sy,k of BC phase and discard subset C2.

18. Identify the similar candidates from the solutions Sx,k and Sy,k using Sk= Sx,k ∪ Sy,k.

19. If (Sk == Sk-1) then S=Sk

20. Return S
21. Else

Big Bang Phase:

22. Calculate the new CoM from the candidate solution Sk.

23. Generate the new candidates around the new CoM using the equation:

Pk+1 = CoMpos + randk × ω × (Pmax − Pmin)

k + 1
24. End If
25. Repeat from Step 2 to Step 19 until the condition specified at Step 19 is satisfied.

26. End.

Table 1
Parameters setting for GA phase.

Parameters Values

Population Size 30
Selection Mechanism Tournament Selection
Crossover Mechanism Single, Double or Uniform
Crossover Rate 0.7
Mutation Rate 0.1

μ = (nD
2 ) + (nD

2 + 1)

2
(6)

where μbe the median, nD is the number of candidates in the given population. Then consider μ value as a threshold for 
partitioning the candidate solution into two candidate subsets namely C1 and C2, which has been defined as,

C1 = {
c ∈ C1 | d(CoMpos, ci)<μ

}

8
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C2 = {
c ∈ C2 | d(CoMpos, ci) ≥ μ

}
where d(CoMpos, ci) is the distance between the points CoMpos and ci , ci denotes the candidates. The candidate subset C1

can be considered as a candidate solution set Sy,k (best candidate solution of the BC phase at current iteration) which 
satisfies the condition, and C2 can be discarded. From the solutions obtained from GA and BC phases, similar candidates at 
current iteration Sk are identified which can be defined as Sk=Sx,k ∪ Sy,k. Then the candidate solution set Sk is compared 
with the candidate solution set generated by the previous iteration to identify the chance of obtaining significant changes in 
the forthcoming iterations. In case the condition (Sk == Sk-1) is satisfied then the current candidate solution set is returned 
as optimal feature solution set S and in the state of unsatisfied condition, a candidate is elected as a new CoM. Then the 
new candidates are generated around the new CoM which can be defined as,

Pk+1 = CoMpos + randk × ω × (Pmax − Pmin)

k + 1
(7)

where Pk+1is the new candidates, randk is the random number generated by the normal distribution, ω is limitation pa-
rameter of search space and Pmax and Pmin are upper and lower limits respectively. Then the steps of GA and BC phases 
will be repeated until the specified termination condition is met.

3.1.4. Diagnosis of COPD using fuzzy-based quantum neural network classification algorithm

Algorithm 2: Fuzzy-Based Quantum Neural Network Classification Algorithm

Input: Optimal features Set S, Target Value TarV

Output: Class Labels

Procedure:

1. Begin

2. Initialize ∂ = 0.01, θ l = 0, δθ l = 0.25, nS=13

3. Perform pair-wise comparison among feature alternatives using triangular membership function

4. Compute the relative weight of optimal feature using eigenvector

CFWi = [∏nS
i=1 ri j]1/nS

5. Standardize the Eigenvector Solution

nE V = CFWi/ 
∑nS

i=1 CFWi

6. Calculate the net weight

NetW j = ∑nS
i ri × GloWij + b

7. Calculate the value of linear activation for the hidden layer

nt j = ∑
LW ij NetW j

8. Compute the output of the hidden layer using the simple sigmoid function

O j = ∑NetW j

l=1 ( 1
1+exp(−nt j+θ l)

)

9. Calculate the value of linear activation for the output layer

ntk = ∑
LW jk O j

10. Compute the output of the output layer by using the logarithmic sigmoid function

O k = ( 1
1+exp(ntk)

)

11. Estimate the error rate of the output layer

�k = (TarVk − O k) − O k(1 − O k)

12. If �k < TarVk

13. Else If
14. Else

15. Update the quantum interval

θ l = θ l + δθ

16. End If
17. Update the output layer weight

LW New
kj = LW Old

kj + ∂�k O j

18. Estimate the error rate of the hidden layer

� j = O j(1 − O j) 
∑

k LW New
kj �k

19. Update the hidden layer weight

LW New
ij = LW Old

i j + ∂� j O i

20. End

To diagnose COPD, the F-QNN classification algorithm is proposed (given in Algorithm 2), where the optimal features are 
fed into the FAHP technique for determining the relative weights of features and feature alternatives, and then the weights 
are fed into a quantum neural network for the diagnosis of COPD. The proposed model is explained in this section and the 
workflow of the proposed classification algorithm is depicted in Fig. 3.
9
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Fig. 3. Flowchart of fuzzy-based QNN classification algorithm for COPD diagnosis.

The problem of diagnosing COPD is expressed using a tree-like structure that illustrates the correlation between the aim 
of disease diagnosis, optimal features, and related alternatives. The problem is discriminated into aim, its optimal features, 
and respective feature alternatives. The pair-wise comparison among feature alternatives is made with the assistance of the 
fuzzy triangular membership function. The resultant value may mislead when the uncertainty of manual decision-making 
is not considered. The pair-wise comparison is made for every optimal feature with the other features and articulated as 
semantic judgments, which are transformed to numerical values using the satty fundamental preference scale.

The significance of the comparison of a particular optimal feature si to another optimal feature sj is signified as a square 
matrix, as illustrated below:
10



JID:TCS AID:13520 /FLA [m3G; v1.321] P.11 (1-22)

G.S. Karthick and P.B. Pankajavalli Theoretical Computer Science ••• (••••) •••–•••
Table 2
Optimal features global weights and feature alternatives local weights.

No Optimal features Optimal features global weight
Feature alternatives local weight

1 2 3 4

1 Age 0.1675 0.0169 0.0365 0.0478 0.0663
2 Body Mass Index 0.1016 0.0102 0.0203 0.0305 0.0406
3 Status of Smoking 0.1511 0.0231 0.0496 0.0784 –
4 History of Continuous Cough 0.1052 0.0384 0.0668 - –
5 Neutrophils Value 0.0632 0.0107 0.0209 0.0316 –
6 Eosinophils Value 0.0738 0.0153 0.0238 0.0347 –
7 History of Chronic Lung Disease 0.1260 0.0504 0.0756 - –
8 Type of Chest Pain 0.2096 0.0246 0.0483 0.0611 0.0756
9 NH3 in Exhaled Breath 0.0246 0.0078 0.0168 – –
10 C3H6O in Exhaled Breath 0.0985 0.0374 0.0611 - –
11 H2 in Exhaled Breath 0.0719 0.0246 0.0473 – –
12 NO in Exhaled Breath 0.0753 0.0251 0.0502 – –
13 CO in Exhaled Breath 0.0513 0.0201 0.0312 – –

R = [ri j] =

⎡
⎢⎢⎢⎣

1 r12 r13 . . . ri j
1/r12 1 r23 . . . r2 j
1/r13 1/r23 1 . . . r3 j
. . . . . . . . . 1 . . .

1/ri j 1/r2 j 1/r3 j . . . 1

⎤
⎥⎥⎥⎦ (8)

where ri j specifies the relative significance of the element’s square matrix elements. The assessment of ri j is done based on 
the condition given below:{

if ri j = r, then ri, j = 1
r , r �= 0;

if si is equal to s j then ri j = 1, ri, j = 1, ∀i
(9)

The eigenvector is used for evaluating the relative weights of each optimal feature with respect to its feature alternatives 
transversely across the hierarchical levels.

CFWi =
[

nS∏
i=1

ri j

]1/nS

(10)

where C F W i is an optimal feature (ith) weight and nS is the size or count of optimal features; therefore, nS=13.
The eigenvector solution is standardized based on the ratio of every optimal feature with respect to the summation of 

the entire optimal features is represented below.

nE V = CFWi/

nS∑
i=1

CFWi (11)

where nE V is the standardized eigenvector and the process of standardization is recursively estimated until the divergence 
between the resultant value of current and previous computation is less than 0.0001. Every optimal feature weight in 
predicting COPD is computed as given in Table 2.

The local weights of feature alternatives are specified in a form of a matrix in which every column value is multiplied 
with the GloWij (global weight) of corresponding optimal feature and the resulting values are summited with an appropriate 
bias ‘b’ as shown below.

NetW j =
nS∑
i

ri × GloWij + b (12)

where ri is the incoming value, GloWij is the weights of the link among the nodes i.e. global weight of every optimal 
feature.

The local weights of feature alternatives and the global weights of optimal features are passed to the subsequent phase of 
the classifier, namely, the quantum neural network. The subsequent level of the classification model is composed of hidden, 
input, and output layers. The QNN is equipped with only one hidden layer with three sub-states with varied quantum 
interval θ l of the quantum level ‘l’.

The non-linear activation function which comprises of superposition of the multi-sigmoid function is employed at the 
hidden layer of QNN. Hence, more states can be represented in a hidden layer whereas traditional sigmoid function can able 
to express only two states.
11
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Let us consider that ∂ represents the learning rate of the network, �k denotes the error rate of the output layer, � j
denotes the rate of the hidden layer, O j is the output of the hidden layer, O k is the output of the output layer, correspond-
ingly. LW ij is the link weight between input and hidden layers and LWkj is the link weight between hidden and output 
layers.

Initially, weights are assigned with small random numbers and TarV represents the target value of the training network. 
The training pair T is {NetW1, TarV1; NetW2, TarV2; NetWT , TarVT}; where NetWi (J×1) is the input and TarVi (K×1) is the 
target value for the given inputs.

The error rate of the output (�k) and hidden layers (� j ) are expressed as,

�k = (TarVk − O k) − O k(1 − O k) {k = 1,2,3, . . . ..K } (13)

� j = O j(1 − O j)
∑

k

LW New
kj �k { j = 1,2,3, . . . J } and {k = 1,2,3, . . . K } (14)

Accordingly, the weights of output layer (LW New
kj ) and hidden layers (LW New

ij ) are updated using the following equation,

LW New
kj = LW Old

kj + ∂�k O j (15)

LW New
ij = LW Old

i j + ∂� j O i (16)

From the recent literature, the sigmoid function is considered as a predictability function and outperforms prediction-
oriented problems. Hence, the sigmoid activation function has been employed for determining the output of the hidden 
layer and output layer, where different graded levels have been used for every hidden neuron between the hidden and 
output layer. The linear activation function and output estimation at a hidden layer can be expressed as,

nt j =
∑

LW ijNetW j (17)

O j =
NetW j∑

l=1

(
1

1 + exp(−nt j + θ l)

)
(18)

where nt j is the linear activation function for the hidden layer, NetW j is the (input) weight of optimal feature, O j is the 
output of the hidden layer and LW ij is the weight among the input and hidden layers.

The linear activation function and the output of the output layer is obtained by the applying logarithmic sigmoid function 
can be expressed as,

ntk =
∑

LW jk O j (19)

O k =
(

1

1 + exp(ntk)

)
(20)

where ntk is the linear activation function at the output layer and LW jk is the weight among the hidden and output layer, 
and O k is the output of the output layer.

The quantum interval will be increased by a small interval δθ l , only when the error rate is not less than the target value 
and when there is no change in error rate from the previous iteration, the quantum interval updation can be expressed as,

θ l = θ l + δθ l (21)

If the gained error rate is less than the target value, the weights of the hidden and output layer are updated and then 
the training of the quantum network is terminated.

4. Results and discussion

This section deals with the discussion on the outcomes of optimal feature selection algorithms and classification models 
from different perspectives.

4.1. Performance analysis of feature selection algorithms

The real-time dataset was used in this experiment for determining the suitable machine learning models for the diagnosis 
of COPD. The dataset has a size of 300 records, 30 features, and the target class label has two classes that represent 
the healthy subjects and COPD subjects. The data size was constantly increased while executing the algorithms and the 
univariate ANOVA is utilized to analyze the performance of feature selection algorithms based on the three values such as 
average execution time, the number of reduced features, and the number of generations.
12
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Table 3
Average execution time vs data sizes.

Algorithm Data size

20 50 100 150 200 250 300

Avg. 
Exe. 
Time 
(Mins)

GBB-BC 0.00055 0.001147 0.08434 0.12705 0.169965 0.21139 0.254305
GA 0.001437 0.005089 0.096684 1.132612 1.278256 2.410868 2.65349
PSO 0.001254 0.004954 0.094534 0.14234 1.25437 1.39756 2.63579
BBA 0.127232 1.23534 1.32546 1.49565 2.628262 2.798227 3.052532

Table 4
Summary of ANOVA for average execution time.

Model Degree of 
freedom

Sum of squares Mean square F ratio Significance of F 
(P-value)

Regression 4.000 64258.522 16064.631 380.973 0.003
Residual 2.000 84.335 42.167
Total 6.000 64342.857

Table 5
Summary of correlation coefficients with respect to average execution time.

Algorithm Coefficients Standard error t Stat Sign (P-value)

(Constant) 20.546 6.595 3.116 0.089
GBB-BC 576.474 110.922 5.197 0.035
GA 18.243 8.468 2.154 0.164
PSO 6.642 6.524 1.018 0.416
BBA 20.684 7.147 2.894 0.102

Table 6
Summary of regression statistics for average execution time.

Model Multiple R R square Adjusted R square Standard error

Regression Statistics 0.999 0.999 0.996 6.494

4.1.1. Analysis of average execution time
From the experimental results, it has been observed that the GBB-BC algorithm determines the optimal features with 

minimum execution time when compared to the commonly used meta-heuristic algorithm [45]. In the literature, it has 
been shown that the traditional metaheuristic feature selection techniques perform well in terms of the number of optimal 
features selected [45]. The significant difference between these algorithms is evidenced concerning average execution time 
through statistical analysis is shown in Table 3 and Fig. 4a.

The test of formulated hypothetical statements becomes:

Hypothesis H0 – No significant difference between GA, PSO, BBA, and GBB-BC algorithms with respect to average execution 
time for optimal feature selection. (H0: ET1 = ET2 = ET3 = ET4)

Hypothesis H1 – Significant difference between GA, PSO, BBA, and GBB-BC algorithms with respect to average execution 
time for optimal feature selection. (H1: ET1 �= ET2 �= ET3 �= ET4)

As can be seen in Table 4, the average execution times (independent variable) of the algorithms are not all the same 
with respect to the data sizes (dependent variable); the p-value concludes that the regression model is a good fit for the 
data. Thus, the null hypothesis (H0) is rejected and the alternative hypothesis (H1) is accepted.

Table 5 depicts that the algorithms are positively correlated as average execution time and data size are moving in the 
same direction. From the regression statistics summary shown in Table 6, the observed value of ‘R’ is 0.999 denotes the 
goodness of fit, and R2 = 128517.045/128685.714 = 0.999 which denotes that 99% of the variance in average execution 
time can be determined by this model. Then based on the regression statistics summary, a significant difference between 
GA, PSO, BBA, and GBB-BC algorithms is identified concerning average execution time.

4.1.2. Analysis of the number of generations
The GBB-BC algorithm identifies the optimal features with the minimum number of generations (iterations), in contrast 

with the GA, PSO, and BBA algorithms. The total number of generations (iterations) needed for identifying the optimal 
features by these algorithms on various sizes of data is illustrated in Table 7 and Fig. 4 b.

The test of formulated hypothetical statements becomes:
13



JID:TCS AID:13520 /FLA [m3G; v1.321] P.14 (1-22)

G.S. Karthick and P.B. Pankajavalli Theoretical Computer Science ••• (••••) •••–•••
Fig. 4. Analysis of feature selection algorithms. (a) Average execution time vs data sizes. (b) Number of generations vs data sizes. (c) Number of optimal 
feature vs data sizes.

Hypothesis H0 – No significant difference between GA, PSO, BBA, and GBB-BC algorithms with respect to the number of 
generations (iterations) needed for optimal feature selection. (H0: nG1 = nG2 = nG3 = nG4)

Hypothesis H1 – Significant difference between GA, PSO, BBA, and GBB-BC algorithms with respect to the number of gener-
ations (iterations) needed for optimal feature selection. (H1: nG1 �= nG2 �= nG3 �= nG4)

According to Table 8, the number of generations (independent variable) taken by these algorithms for producing opti-
mal features is significantly different with respect to the data sizes (dependent variable); the p-value concludes that the 
regression model is a good fit for the data. Thus, the null hypothesis (H0) is rejected and the alternative hypothesis (H1) is 
accepted.

The summary of the correlation coefficient shown in Table 9 indicates that the number of generations needed to produce 
the optimal features is positively correlated with the changing rate of data size. From the regression statistics summary 
shown in Table 10, the observed value of ‘R’ is 0.999 which denotes the goodness of fit, and R2 = 64317.068/64342.857 =
0.999 which denotes that 99.9% of the variance in the number of generations has been determined by this model. Then 
14



JID:TCS AID:13520 /FLA [m3G; v1.321] P.15 (1-22)

G.S. Karthick and P.B. Pankajavalli Theoretical Computer Science ••• (••••) •••–•••
Table 7
Number of generations vs data sizes.

Algorithm Data size

20 50 100 150 200 250 300

No. of 
generations 
(iterations)

GBB-BC 2 2 3 3 3 4 4
GA 3 16 25 31 38 43 49
PSO 4 7 13 19 26 31 37
BBA 3 5 9 13 19 24 29

Table 8
Summary of ANOVA for the number of generations needed to produce optimal features.

Model Degree of Freedom Sum of squares Mean square F ratio Significance of F 
(P-value)

Regression 4 64317.068 16079.267 1246.963 0.001
Residual 2 25.789 12.895
Total 6 64342.857

Table 9
Summary of the correlation coefficient for the number of generations needed to produce optimal features.

Algorithm Coefficients Standard error t Stat Sign (P-value)

Intercept −21.812 10.093 −2.161 0.163
GBB-BC 5.870 5.446 1.078 0.394
GA 0.618 0.561 1.101 0.386
PSO 5.153 2.681 1.922 0.195
BBA 2.615 2.791 0.937 0.448

Table 10
Summary of regression statistics for the number of generations needed to produce optimal features.

Model Multiple R R square Adjusted R square Standard error

Regression Statistics 0.999 0.999 0.999 3.591

Table 11
Number of optimal feature vs data sizes.

Algorithm Data size

20 50 100 150 200 250 300

No. of 
optimal 
features

GBB-BC 18 15 14 14 13 15 15
GA 21 21 19 17 16 17 18
PSO 27 27 24 22 20 18 18
BBA 15 18 19 21 21 23 23

based on the regression statistics summary, the considerable difference between GA, PSO, BBA, and GBB-BC algorithms is 
identified with respect to the number of generations required for determining the optimal features.

4.1.3. Analysis of the number of optimal features
In specific, the number of features reduced by GA, PSO, and BBA algorithms is considerably greater than the features 

reduced by the GBB-BC algorithm. When there is an increase in data size, remarkable changes in the number of optimal 
features for diagnosing the presence of the disease are experimentally observed as illustrated in Table 11 and Fig. 4 c.

In this research work, the feature selection algorithms like GA, PSO, and BBA are compared with the GBB-BC algorithm, 
and from the above three analyses, it is concluded that the GBB-BC algorithm outperforms the other algorithms.

The test of formulated hypothetical statements becomes:

Hypothesis H0 – No significant difference between GA, PSO, BBA, and GBB-BC algorithms in terms of feature reduction. (H0 : 
nOF1 = nOF2 = nOF3 = nOF4)

Hypothesis H1 – Significant difference between GA, PSO, BBA, and GBB-BC algorithms in terms of feature reduction. (H1: 
nOF1 �= nOF2 �= nOF3 �= nOF4)

According to Table 12, a significant difference is observed between GA, PSO, BBA, and GBB-BC algorithms in terms of the 
number of reduced optimal features; the p-value concludes that the regression model is a good fit for the data. Thus, the 
null hypothesis (H0) is rejected and the alternative hypothesis (H1) is accepted.
15
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Table 12
Summary of ANOVA for the reduction in the number of optimal features.

Model Degree of 
freedom

Sum of squares Mean square F ratio Significance of F

Regression 4 63593.279 15898.320 42.419 0.023
Residual 2 749.579 374.789
Total 6 64342.857

Table 13
Summary of the correlation coefficient for the reduction in the number of optimal features.

Algorithm Coefficients Standard error t Stat Sign (P-value)

(Constant) 550.965 480.108 1.148 0.370
GBB-BC −6.851 11.651 −0.588 0.616
GA 18.819 12.365 1.522 0.267
PSO −31.321 10.905 −2.872 0.103
BBA 2.745 12.362 0.222 0.845

Table 14
Summary of regression statistics for the reduction in the number of optimal features.

Model Multiple R R square Adjusted R square Standard error

Regression Statistics 0.994 0.988 0.988 19.359

Fig. 5. Heatmap derived using pearson coefficient of selected optimal features after applying GBB-BC on real-time dataset derived. The heatmap scale 
corresponds to the negatively and positively correlated optimal features.

Therefore, the summary of the correlation coefficient (shown in Table 13) signifies the positive and negative values 
correspondingly, in which data size is increasing constantly and the numbers of optimal features are decreasing at a nominal 
rate except the BBA algorithm. According to the regression statistics summary presented in Table 14, the obtained value of 
‘R’ is 0.994 which denotes the goodness of fit, and R2 = 63593.279/64342.857 = 0.988 represents 98.8% of the variance in 
the feature reduction has been determined by this model. Therefore, the model proves that there is a considerable difference 
between the algorithms in terms of reduction in the number of optimal features.

In sum, a strong significant difference has been observed between the existing metaheuristic feature selection algorithms 
and hybrid GBB-BC algorithm based on three different independent variables such as average execution time, number of 
generations, and number of optimal features. The heatmap presented in Fig. 5 shows the Pearson correlation coefficient 
16
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Fig. 6. Crosstab visualization illustrates the distribution of the dependent variable upon each independent variable of the real-time dataset. Blue tabs 
indicate COPD subjects and red tabs indicate the healthy subjects. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Table 15
Confusion matrix.

Diagnosed COPD patients Diagnosed healthy subjects

Actual COPD patients TP FN
Actual healthy subjects FP TN

of 13 optimal features obtained by GBB-BC. From the heatmap, it has been observed that the VOC patterns tend to have 
significantly strong evidence, which facilitates the accurate prediction of COPD through VOC analysis. The cough history has 
a strong positive correlation with the optimal VOC features whereas BMI and chest pain has a strong negative correlation 
with optimal VOC features. Crosstab visualization is shown in Fig. 6, which illustrates the distribution of the dependent 
variable upon each independent variable of the real-time dataset. From the crosstab analysis, it has been observed that COPD 
subjects exhibit the symptom of continuous cough, history of lung disease, and typical chest pain. Further, the optimal VOC 
features {acetone, ammonia, nitric oxide, carbon monoxide, and hydrogen} are observed to be abnormal in COPD subjects.

4.2. Performance analysis of machine learning classifiers

The synthetic training dataset is given into the machine learning classifiers which include logistic regression (LR), k-
nearest neighbors (k-NN), support vector machine (SVM), Naïve Bayes (NB), random forest (RF), artificial neural network 
(ANN) and proposed F-QNN approaches. These machine learning classifiers are trained and tested with respect to differ-
ent applicable tuning parameters. In the section, the performance of classifiers was analyzed based on five performance 
evaluation metrics and the performance of the classifier is evaluated using 10-fold cross-validation. The confusion matrix 
determines the ability of classifiers for the accurate diagnosis of COPD disease, which is illustrated in Table 15.

Based on the confusion matrix, the following parameters were computed: True Positive (TP) - The total number of 
records labeled as the presence of COPD while they are COPD subjects. True Negative (TN) - The total number of records 
labeled as the absence of COPD while they are healthy subjects. False Positive (FP) – The total number of records labeled 
as the presence of COPD while they are healthy subjects. False Negative (FN) - The total number of records labeled as the 
17
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Table 16
Classifiers performance evaluation on optimal features.

Classifiers Tuning 
hyperparameters

Performance evaluation metrics of classifiers

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Processing 
time (s)

MCC AUC

LR
C = 1 74 66 82 2.313 74 74
C = 10 75 67 82 2.352 74 75
C = 100 78 67 88 2.159 78 79

k-NN

K=1 83 75 90 8.001 84 84
K=3 85 74 94 8.046 84 85
K=7 84 72 94 8.399 85 83
K=9 81 73 88 8.875 84 80

SVM C=100, g=0.0001 88 75 96 6.019 85 84
Kernel=RBF C=10, g=0.001 85 70 94 5.009 84 84

SVM C=100, g=0.0001 84 74 96 7.023 85 84
Kernel=Linear C=10, g=0.001 82 75 96 7.005 84 84

Random 
Forest

ntree=50 83 70 90 4.774 83 83
ntree=100 84 73 92 4.606 83 84

ANN
Hidden Neurons- 16 86 77 94 7.430 85 85
Hidden Neurons- 20 82 70 94 7.750 82 81
Hidden Neurons- 40 71 38 88 8.400 69 69

F-QNN
∂ = 0.01, δθ l = 0.25 95 95 97 1.784 89 89
∂ = 0.001, δθ l = 0.25 96 95 98 1.742 92 91

absence of COPD while they are COPD subjects. The various performance metrics are calculated using the confusion matrix 
and the performance metric involved in this research work is described as follows: Accuracy: The accuracy is the number of 
testing samples for which the presence of COPD or absence of COPD is accurately diagnosed and represented mathematically 
using the elements of confusion matrix as shown in Equation (22). Sensitivity: The proportion of positive records that are 
appropriately recognized to all positive records is the sensitivity or recall, which is also termed as a true positive rate 
and represented mathematically using the elements of the confusion matrix as shown in Equation (23). Specificity: The 
proportion of negative records that are appropriately recognized to all negative records is known to be specificity (true 
negative rate) and represented mathematically using the elements of the confusion matrix as shown in Equation (24). 
Processing Time: The amount of time taken by the classifier for diagnosing COPD is known as processing time. ROC and 
AUC: The receiver optimistic curve (ROC) is a graphical representation that analyzes the prediction ability of the machine 
learning classifiers by comparing the true positive rate and false-positive rate. The area under the curve (AUC) defines the 
characterization of classifiers ROC and the effectiveness of the classifier is denoted by the highest value of AUC.

Accuracy = TP + TN

No. of Patients
(22)

Sensitivity = TP

TP + FN
(23)

Specificity = TN

TN + FN
(24)

In this experiment, the IMLFF framework tends to learn from the optimal features selected by GBB-BC using different 
classification models with various turning parameters, and the results were averagely computed based on 10-fold cross-
validation. In return, the best possible model is identified by evaluating performance metrics. The performance of machine 
learning classifiers with the optimal features is evaluated with various metrics as depicted in Table 16.

From the result analysis, the LR classifier achieves as {78%, 67%, 88%, 78%, 79%} for {Accuracy, Sensitivity, Specificity, MCC, 
AUC} with the value of tuning hyperparameters C is100. The processing time of LR classifiers is minimum with the value 
of C=100 when compared to other values of tuning hyperparameters. The performance of LR can also be perceived from 
Fig. 7a and the variations in the performance under various hyperparameters can be observed from Fig. 9a under tuning 
of hyperparameters. The performance of the k-NN classifier is good {85%, 74%, 94%, 84%, 85%} for {Accuracy, Sensitivity, 
Specificity, MCC, AUC} with the hyperparameter k=3 but the processing time is not good at k=3. The consistent performance 
of the k-NN classifier is visualized in Fig. 7b and the minor deviation in the performance under various hyperparameters, 
which can be noted from Fig. 9b.

The classifier SVM (Kernel=RBF) shows better performance as {88%, 75%, 96%, 85%, 84%} for {Accuracy, Sensitivity, Speci-
ficity, MCC, AUC} with the hyperparameter of C=100, g=0.0001. The performance of (Kernel=RBF) can also be perceived 
from Fig. 7c and the disparities in the performance can be observed from Fig. 9c under tuning of hyperparameters. The 
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Fig. 7. Performance of corresponding classifiers with respect to the accuracy, sensitivity, specificity, MCC, and AUC under certain tuning hyperparameters 
yields best results. (a) LR, (b) k-NN, (c) SVM-RBF, (d) SVM-Linear, (e) RF, (f) ANN (g) F-QNN.

performance of SVM (Kernel=Linear) classifier achieves best results as {84%, 74%, 96%, 85%, 84%} for {Accuracy, Sensitivity, 
Specificity, MCC, AUC} with the hyperparameter of C=100, g=0.0001. The processing times of SVM (RBF) and SVM (Linear) 
at C=100, g=0.0001 is greater than the processing times at C=10, g=0.001, and SVM (RBF) shows a better accuracy rate 
than the SVM (Linear). The performance of SVM (Kernel=Linear) can also be visualized in Fig. 7d and the slight deviation 
in the performance under various hyperparameters can be noted from Fig. 9d.

The RF classifier shows the better performance as {84%, 73%, 92%, 83%, 84%} for {Accuracy, Sensitivity, Specificity, MCC, 
AUC} with the hyperparameter of tree size 100. The significant performance of the RF classifier is visualized in Fig. 7e 
and there is no major deviation in the performance under various hyperparameters, which can be noted from Fig. 9e. The 
performance of ANN classifier with 16 hidden neurons provides the best results as {86%, 77%, 94%, 85%, 85%} for {Accuracy, 
Sensitivity, Specificity, MCC, AUC} than the ANN classifier with 20 and 40 hidden neurons. The performance of ANN can 
also be perceived from Fig. 7f and the high-pitched variations in the performance under various hyperparameters can be 
observed from Fig. 9f under tuning of hyperparameters.

The F-QNN classifier achieves {96%, 95%, 98%, 92%, 91%} for {Accuracy, Sensitivity, Specificity, MCC, AUC} and requires 
lesser processing time at learning rate ∂ = 0.001. Although, the F-QNN classifier is substantially consistent than other classi-
fiers which are observed from Fig. 7g, and the minor deviation in the performance under different learning rates, which can 
be visualized from Fig. 9g. The classifier’s performance in terms of minimum processing time under certain hyperparameters 
is shown in Fig. 8a and the deviation in the processing time of classifiers under various hyperparameters can be visualized 
in Fig. 8b. In sum, by using the thirteen optimal features endowed by GBB-BC, the F-QNN classifier achieved an accuracy 
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Fig. 8. Performance analysis of classifiers in terms of processing time under certain tuning hyperparameters yields best results. (a) Minimum processing 
time of classifiers under certain hyperparameter. (b) Deviation in the processing time of classifiers under various hyperparameters.

Fig. 9. Violin plot illustrates the distribution of the corresponding classifier. (a) LR, (b) k-NN, (c) SVM-RBF, (d) SVM-Linear, (e) RF, (f) ANN, (g) F-QNN, 
where the violin plot depicts the maximum and minimum value with respect to the accuracy, sensitivity, specificity, MCC and AUC under various tuning 
hyperparameters.

rate of 96% than the other classifiers. The processing time for the diagnosis of COPD using the F-QNN classifier is lesser 
than the processing time required by other classifiers. Therefore, it can be concluded that the F-QNN model outperforms on 
using the optimal features selected by GBB-BC for the diagnosis of COPD.
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5. Conclusion

In this research work, an IoT-Spiro System has been developed and a complete machine learning framework has been 
designed for the diagnosis of COPD. The framework is evaluated on real-time data in which VOC patterns have been acquired 
via the IoT-Spiro system and some additional medical factors are also considered. Among the algorithms adapted to IMLFF 
to carry out the feature selection operation, hybrid GBB-BC performs better by identifying thirteen optimal features that 
are highly prominent to discriminate COPD subjects from healthy subjects. From the experimental and statistical analysis, 
the results depict that the hybrid GBB-BC outperforms the proven existing feature selection algorithms with respect to 
execution time, the number of generations needed for selecting the optimal features, and the number of reduced features. 
The significant difference between the optimal feature selection techniques has been proved and verified statistically.

Besides, the optimal features have been given as input to the well-known existing classifiers and a proposed F-QNN 
classifier for diagnosing COPD. The investigational results illustrate that the time required for processing is considerably 
reduced while using the optimal features selected by the GBB-BC algorithm for diagnosing COPD. The prediction accuracy 
of the F-QNN classifier is comparatively better than the other classifiers and the AUC rate proved the effectiveness of the 
proposed classifier. Hence, from the statistical and mathematical analysis, it is concluded that the IMLFF offers a promising 
diagnosis of COPD. Based on the analysis, the study confirmed that five VOCs (ammonia, acetone, hydrogen, nitric oxide, 
and carbon monoxide) in exhaled breath are significantly supporting the diagnosis of COPD and also the effectiveness of 
the developed IoT-Spiro system is proven. In the future perspective, studies will be conducted by analyzing the various VOC 
patterns that are related to other diseases using the IoT-Spiro System, and IMLFF will be tested against the diagnosis of 
other diseases. Also, fog computing concepts will be introduced and the irrelevant features will be removed at the edge of 
the cloud storage, and optimization techniques also be tested for improving prediction accuracy.
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