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This paper investigates the synchronization problem of inertial neural networks (INNs) with time delays
by virtue of event-triggered (E-T) impulsive control, in which a Lyapunov function based E-T mechanism
is used to determine impulsive instants. The synchronization analysis of INNs through E-T impulsive con-
trol technique unlike time-triggered impulsive control, which would be activated when certain well-
designed conditions exist, E-T impulsive control is only allowed when certain well-defined events occur.
Besides that, control input is only required at triggered instants and also no control input is required for
two triggered instants in a sequence. Considering the E-T mechanism, the synchronization analysis of the
INNs is discussed by reduced and non-reduced order approaches and constructing the suitable Lyapunov
functionals. Finally, two simulation results are provided to illustrate the efficacy of the theoretical results.
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1. Introduction

The dynamical behaviours of neural networks (NNs) with iner-
tia, i.e. inertial neural networks (INNs), have been extensively stud-
ied so far and many attractive results on the asymptotic and
exponential stability of equilibrium for delayed INNs have been
obtained. The synchronization problem of inertial delayed neural
networks has become a prominent topic in recent years. Many
potential applications for synchronization exist, including secure
communications [1,2], information science, and image encryption
[3,4]. With increased interest in INNs, many researchers are inves-
tigating the synchronization problem of delayed INNs. Zhang and
Cao [5] investigated the finite-time synchronization of delayed
INNs by using integral inequality method. In [6], global exponential
stabilization and lag-synchronization of the delayed INNs are con-
sidered. By utilizing matrix measure and Halanay inequalities,
some sufficient conditions for the stability and synchronization
results are derived for a class of delayed memristive INNs [7], iner-
tial bidirectional associative memory NNs [8]. In [2], a class of INNs
with multi-proportional delays was considered. First, the original
INNs with multi-proportional delays can be expressed as a first-
order differential equation by designing a suitable variable substi-
tution. Second, certain new and effective criteria for achieving
finite-time and fixed-time synchronization of the INNs are estab-
lished by using Lyapunov functionals and analytical techniques,
in connection with unique control algorithms. Tang and Jian [9]
investigated the exponential synchronization of INNs with discrete
and finite distributed time-varying delays through periodically
intermittent control. Although the switching speed of the power
amplifiers is finite, time delays in neural systems are common
when NNs are used in embedded systems, which affects the
dynamical behaviors of NNs [1,2,4,9,10]. Therefore, it is required
to investigate the synchronization of time-delayed INNs. Mean-
while, several control systems, including sliding mode control
[11], adaptive control [12,13], feedback control [14], sampled-
data control [15,16], pinning control [17,18], periodically intermit-
tent control [9], impulsive control [19,20], event-triggered control
(E-TC) [21,22], have been developed to investigate synchronization
and stability problems.

Impulsive control has received a lot of interest because of its
many applications in real-world networks. The convergence rate
of the systems may become quicker or slower, or even non-
convergent, if the state of nodes is subject to instantaneous change
at certain impulsive instants [23]. Therefore, it is necessary to
investigate the role of impulsive control in the synchronization
and stability of the dynamical systems. Many studies are currently
being researched on the impact of time-triggered (T-T) impulsive
control on neural networks. But the working period of impulsive
controller cannot be changed until controller is formatted. That
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is, the impulsive instants are pre-designed, making impulsive
instants stationary [24–26]. In addition, the memristor based
delayed NNs was explored by impulsive controller in [24], where
the impulsive instants cannot be changed until the controller is
formatted. In current technological advancements, the selection
of a controllers such as sampled data control [27,28], H1 control
[29], optimum control [30], sliding mode control [31], impulsive
control [32], has a significant impact on the output of the system.
There are two broad groups of state feedback control techniques
for synchronization that have been studied thus far. One is contin-
uous or piecewise continuous control, for example, sampled data
control [27], optimum control [30], or sliding mode control [31],
requires the controller to react as the state error changes. More-
over, continuous controller upgrades, would require a large
amount of power. It’s possible that the other, which is discontinu-
ous, can aid with issues like impulse control. Furthermore, the
impulsive control technique has sparked the interest of many
scholars, because of its applications in finance, biological models,
and medicine. It is a discontinuous control approach with a range
of benefits over continuous control (like state-feedback control)
systems, such as high reliability, efficiency, easy installation, and
minimal maintenance costs. In general, the sample period of a
time-triggered control (T-TC) cannot be set too high in order to
ensure that delayed NNs are synchronized. However, if delayed
NNs are in perfect working order to be dependable, a shorter sam-
pling interval may result in resource waste. Furthermore, on a net-
work channel with limited bandwidth, the T-TC technique
dramatically increases the likelihood of packet waiting and colli-
sion. Thus, researchers have devised a control that is triggered by
events in order to overcome the limitations imposed by existing
T-TC techniques. This control is called E-TC. Unlike T-TC, the E-T
mechanism has proven significant benefits in reducing controller
update times in order to achieve the desired results [33–39]. For
instance, in [36], the synchronization issue of delayed switched
NNs with communication delays has been researched by E-TC. It
significantly reduces the number of control updates required for
coupled switched NNs synchronization tasks involving embedded
microprocessors with limited on-board resources. To reduce the
control updates a distributed E-TC technique under the periodic
sampling has been introduced in [40] for leader less synchroniza-
tion of delayed coupled NNs. In [41], secure communication based
quantized synchronization results has been given for master–slave
NNs under the E-TC. An E-TC strategy is a type of control applica-
tion approach that is inserted between both the sampler and the
controller by an E-T strategy that has been predesigned. When
using E-TC, sampling is only accomplished when the state-
dependent error reaches a tolerable level of severity. When com-
pared to a T-TC procedure, the E-TC method has a lower likelihood
of redundant information transfer. E-TC laws govern whether sam-
pling should be performed rapidly or slowly, and whether sam-
pling information should be conveyed for control update
purposes. The approach was then applied to networks, and
event-triggered impulsive control (E-TIC) approaches were pre-
sented as a result of the application. Whenever the E-TIC strategy
is violated, the combination of delayed impulsive control and the
E-T mechanism produces E-T instants, and delayed impulsive con-
trol is only applied at these E-T instants. As a result, in order to
increase the performance of systems under E-TC, it is necessary
to improve the approach used to determine whether an event
has occurred. From the perspective of application, the E-TIC tech-
nique is appropriate, and the control approach will effectively
increase the utilization of resources in systems with restricted
bandwidth. Following up on the aforementioned investigations,
the authors discuss INNs with E-TIC, and thoroughly investigate
the synchronization criteria of this network. As far as the authors
are aware, few literature studies have devoted to the synchroniza-
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tion problem for delayed INNs with both order reduced and non
reduced method through the E-TIC scheme, which is another moti-
vation of our research. Motivated by the preceding discussions, our
paper’s main conclusions are summarized below:

1. Up until now, no related synchronization results have been
reported for delayed INNs by using reduced and non-reduced
order method. Therefore, to shorten such a gap, we will present
several new results guaranteeing synchronization of delayed
INNs in this brief. To solve this problem an E-TIC approach is
proposed. The NNs in this paper are with inertial term, which
extend the earlier publications [34–40] without inertial term.

2. Several researchers in [1,5,6,9] apply the reduced-order method
and in [42,43] apply the non reduced-order method to study the
dynamical behavior of delayed INNs, as we known, the INNs
system with reduced-order method may rigor in real world
applications. Different from those works, in this brief learn
about the twomethods namely reduced order and non- reduced
order (Direct method) methods are clearly described, as well as
how their shortcomings are exposed and how non reduced
order method is optimal to meet them.

3. Besides, by designing a E-TIC scheme, the leader–follower syn-
chronization of the addressed delayed INNs is studied and some
effective conditions are given. It is important to note that the
dynamic behaviors of a class of INNs are analyzed in this paper
by employing some new Lyapunov functions without using the
variable transformation, this differs totally from the classical
reduced order method.

Notations: Let R and Rn denote the set of real numbers and real
n-dimensional space equipped with the Euclidean norm jj � jj. Rn�m

the set of all real n�m matrices. For any matrix M 2 Rn�n;MT rep-
resents the transpose of a square matrix M and the symbol I

denotes the transpose of a block matrices and diag . . .f g express a
diagonal matrix. 0 and I are respectively denotes the zero and iden-
tity matrix with appropriate dimension. C ¼ 1;2; . . . ;Nf g.
2. Preliminaries and model description

Graph Theory: Let G ¼ V; E;Að Þ be an N-order digraph, where
the edge set is E, and the node set is V. The ordered pair of node
i; jð Þ represents the directed edge Eij 2 E in digraph G, where node
j is a node i’s neighbor. Denote the set of neighbors of node i as
Ni ¼ j 2 VjEij 2 E

� �
. The definitions of matrices A;B;D; L and H

can be found in [44] and thus are omitted here.
Consider the INNs consisting of N identical nodes with the

dynamics of the ith node is described by the following second-
order differential equation:

d2xi tð Þ
dt2

¼ �A
dxi tð Þ
dt

� Bxi tð Þ þ Cf xi tð Þð Þ þ Df xi t �uð Þð Þ þ I tð Þ

þ v i tð Þ; i 2 C: ð1Þ

where d2xi tð Þ=dt2 is called as the inertial term of the INNs (1);

xi tð Þ ¼ xi1 tð Þ; . . . ; xin tð Þð ÞT 2 Rn is the vector state of the ith node at
time t;A ¼ diag a1; . . . ; anf g;B ¼ diag b1; . . . ; bnf g are constant matri-
ces with ap; bp > 0; C ¼ cpq

� �
n�n and D ¼ dpq

� �
n�n; p; q ¼ 1;2; . . . ; n

denote the connection weight matrix and time delayed connection
weight matrix respectively; The nonlinear function f xi tð Þð Þ ¼
f xi1 tð Þð Þ; . . . ; f xin tð Þð Þð ÞT and f xi t �uð Þð Þ ¼ f xi1 t �uð Þð Þ; . . . ;ð

f xin t �uð Þð ÞÞT are the activations function for the INNs (1); u is
the constant time delay; I tð Þ ¼ I1 tð Þ; . . . ; In tð Þð ÞT is the input vector;
v i tð Þ represents the control input to realize leader-following
synchronization to be defined later.
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The initial conditions of the INNs(1) is represented as follows:

xi rð Þ ¼ ti rð Þ; dxi rð Þ
ds

¼ .i rð Þ; �u 6 r 6 0;

where ti rð Þ;.i rð Þ 2 PC1 �u;0½ �;Rnð Þ;PC1 �s;0½ �;Rnð Þis the set of
functions which are continuously differentiable defined on �u; 0½ �.

To continue, consider the following assumptions, definitions,
and lemmas.

Assumption 2.1. The activation functions f p �ð Þ : R ! R in (1)
satisfy Lipschitz condition, that is there exists a constants Fp > 0
for all p ¼ 1; . . . ; n;u;v 2 R such that

j f p uð Þ � f p vð Þ j6 Fp j u� v j :

Definition 2.2. [45] Suppose that V : Rn ! Rþ is locally Lipschitz
function, the upper right-hand Dini derivative of V along a non-
linear impulsive delay system is represented by

DþV g½ � ¼ lim
r!0þ

sup
1
h

V hþ rgð Þ �V hð Þ½ �:

Lemma 2.3. [45] For the impulsive system with time delay
_h tð Þ ¼ f htð Þ; t P t0; t – tn; h tð Þ ¼ gn h t�ð Þð Þ; t ¼ tn;n 2 Zþ; h� t0 ¼ /
with E-T mechanism tn ¼ inf t > tn�1 : X t; h tð Þð Þ P 0f gthe Lipschitz
function V : Rn ! Rþ and there exist constants
c > 0; an > 0; dn > 0;g > 0; c > 0; with an 2 0;gð �;n 2 Zþ, (a)
V gn hð Þð Þ 6 e�dnV hð Þ;8h 2 Rn;8n 2 Zþ; (b) DþV f½ � 6 cV h tð Þð Þ;
wherever ecs�gV h t þ sð Þð Þ 6 V h tð Þð Þ;8s 2 �u;0½ �; t – tn,where h tð Þ
represents the solution of the impulsive model; (c) Sequence anf g
in E-T mechanism satisfies an þ

Pl
k¼1

an�k � dn�kð Þ 6 g;8 l 2 Sn;8n P 2,

where Sn ¼ 1;2; . . . ;n� 2;n� 1. Then the delayed impulsive con-
trol model does not reveal Zeno behavior (ZB) under E-T mecha-
nism. Moreover, the triggered impulsive sequence tnf g satisfies

tn � tn�1 P
an

cþ c
; 8n 2 Zþ:

Lemma 2.4. Assume that V h tð Þð Þ is a positive definite and radially
unbounded function under the conditions of Lemma 2.3. Then, for
any constant c > 0 and triggering parameters an 2 Rþ such thatPm
n¼1

an ! þ1 as m ! þ1 the system (1) is globally exponentially

stable under E-T mechanism:

tn ¼ inf t > tn�1 : X t; h tð Þð Þ P 0f g ð2Þ
with X t; h tð Þð Þ ¼ V h tð Þð Þ �max ectn�1V h tn�1ð Þð Þ; ect0V0f gean�ct ,
where V0 ¼ sup V h t0 þ sð Þð Þ; s 2 �s; 0½ �f g;V h tð Þð Þ and V h tn�1ð Þð Þ
denote the Lyapunov functions.

In this paper, we will make leader-following synchronization of
delayed INNs that synchronize by the suitable designed controller.
Therefore, take INNs (1) as the followers and consider the leader of
the delayed INNs (1) is represented as follows:

d2s tð Þ
dt2

¼ �A
ds tð Þ
dt

� Bs tð Þ þ Cf s tð Þð Þ þ Df s t �uð Þð Þ þ I tð Þ: ð3Þ

in which s tð Þ ¼ s1 tð Þ; s2 tð Þ; . . . ; sn tð Þð ÞT 2 Rn, denotes the vector state
of the leader node and the remaining parameters and functions are
the same as those in (1). The initial values of the INNs (3) is repre-
sented as follows:
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s rð Þ ¼ d rð Þ; ds rð Þ
ds

¼ h rð Þ; �u 6 r 6 0;

where d rð Þ; h rð Þ 2 PC1 �u; 0½ �;Rnð Þ. Now letting the suitable variable
transformation yi tð Þ ¼ dxi tð Þ=dtð Þ þ xi tð Þ.for i 2 C the INNs (1) can be
rewritten into the following first order equations:

dxi tð Þ
dt ¼ �xi tð Þ þ yi tð Þ þ ui tð Þ;

dyi tð Þ
dt ¼ axi tð Þ � byi tð Þ þ Cf xi tð Þð Þ þ Df xi t �uð Þð Þ þ I tð Þ þ v i tð Þ; i 2 C;

(
ð4Þ

where a ¼ A� B� I;b ¼ A� I;C ¼ 1; . . . ;Nf g and letting
z tð Þ ¼ ds tð Þ=dtð Þ þ s tð Þ then the INNs (3) can be written as

ds tð Þ
dt ¼ �s tð Þ þ z tð Þ;

dz tð Þ
dt ¼ as tð Þ � bz tð Þ þ Cf s tð Þð Þ þ Df s t �uð Þð Þ þ I tð Þ:

(
ð5Þ

Define the synchronization error e1i tð Þ ¼ xi tð Þ � s tð Þ; e2i tð Þ ¼
yi tð Þ � z tð Þfor i 2 C. Therefore, the error dynamics of the ith node
can be described as:

de1i tð Þ
dt ¼ �e1i tð Þ þ e2i tð Þ þ ui tð Þ;

de2i tð Þ
dt ¼ ae1i tð Þ � be2i tð Þ þ Cf e1i tð Þð Þ þ Df e1i t �uð Þð Þ þ v i tð Þ;

(
ð6Þ

where f e1i tð Þð Þ ¼ f xi tð Þð Þ � f s tð Þð Þ; f e2i tð Þð Þ ¼ f yi tð Þð Þ � f z tð Þð Þ.
It is obvious that the synchronization problem of leader (3) and

follower (1) is equivalent to the synchronization between (5) and
(4). To realize the leader following synchronization between (1)
and (3), we design the following E-T impulsive control:

ui tð Þ ¼
X
n2Zþ

KiEi tð Þd t � tnð Þ;

v i tð Þ ¼
X
n2Zþ

eK i
eEi tð Þd t � tnð Þ;

8>><>>: ð7Þ

where, Ei tð Þ ¼ PN
j¼1;j–iâij xj tð Þ � xi tð Þ� �þ b̂i s tð Þ � xi tð Þð Þ, eEi tð Þ ¼PN

j¼1;j–iâij yj tð Þ � yi tð Þ� �þ b̂i z tð Þ � yi tð Þð Þ, Ki > 0 and eK i > 0 denotes

the control gain of the ith follower node dynamics to be designed,
âij are the elements of weighted adjacency matrix A of the directed

graph G; b̂i are the elements of leader adjacency matrix B of the
directed graph G, the Dirac delta function is d :ð Þ and the E-T impul-
sive sequence is denoted by tn;n 2 Zþf g. Then, the equivalent vector
form of the system (6) can be written s

de1 tð Þ
dt ¼ � IN � Inð Þe1 tð Þ þ IN � Inð Þe2 tð Þ;

de2 tð Þ
dt ¼ IN � að Þe1 tð Þ � IN � bð Þe2 tð Þ

þ IN � Cð Þf e1 tð Þð Þ þ IN � Dð Þf e1 t �uð Þð Þ; t – tn;

De1 tð Þ ¼ � KH� In
� �

e1 t�ð Þ;

De2 tð Þ ¼ � eKH� In
� �

e2 t�ð Þ; t ¼ tn;n 2 Zþ :

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð8Þ

where e1 tð Þ ¼ e11 tð Þ; e12 tð Þ; . . . ; e1N tð Þð ÞT ; e2 tð Þ ¼ e21 tð Þ; e22 tð Þ; . . . ;ð
e2N tð ÞÞT , Deh tð Þ ¼ eh tð Þ � eh t�ð Þ;h ¼ 1;2;K ¼ diag �k1; �k2; . . . ; �kN

� �
andeK ¼ diag ~k1; ~k2; . . . ; ~kN

n o
to be designed.

Remark 2.5. The structure of an impulse control scheme is simple,
and it just needs discrete control to produce the required result,
recently E-TIC has gotten a lot of attention as a mixture of
impulsive control and E-TC. By incorporating E-T mechanism into
impulse control, E-T impulse governs the system states by
instantly modifying the states at specific times, which are esti-
mated by an well-designed E-T mechanism.
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3. Main results

In this section, we are going to study the leader-following syn-
chronization of reduced and non-reduced order INNs by using E-
TIC. The synchronization criteria is given by the following two
theorems.

Theorem 3.1. Suppose that there exists constant matrices
a > 0; b > 0, and constants c > 0; c; a; #;n� n positive symmetric
matrices P1; P2;n� n diagonal matrices Q1;Q2 and positive diag-

onal matrices K; eK such that FQ1F < bP1; FQ2F < bP2 and

^ ¼

IN � 2P1 � P2b� bTP2 � l1P2
� �

P2C P2D P1aT þ P2a
I �Q1 0 0
I I �Q2 0
I I I H

26664
37775 < 0;

ð9Þ
�e�aIN IN �HTK

I �IN

" #
< 0; ð10Þ

�e�aIN IN �HT eK
I �IN

" #
< 0: ð11Þ

where H ¼ IN � �2P1 þ FQ1F þ #ecuþgP2 � l1P1ð Þ; F ¼ diag F1;f
F2; . . . ; Fng. Then the leader-following synchronization problem of

INN (1) and 3 is solved under the control gains K; eK and E-T mech-
anism tn ¼ inf t > tn�1 : X t; e tð Þð Þ P 0f g with X t; e tð Þð Þ ¼
eT1 tð Þ IN � P1ð Þe1 tð Þ þ eT2 tð Þ IN � P2ð Þe2 tð Þ �max ectn�1eT1 tn�1ð Þ IN � P1ð Þ�
e1 tn�1ð Þ; ect0V0gea�ct , where V0 ¼ sup eT1 t0 þ sð Þ IN � P1ð Þe1 t0 þ sð Þþ�
eT2 t0 þ sð Þ IN � P2ð Þe2 t0 þ sð Þ; s 2 u;0½ �g.

Proof: Let us consider the following Lyapunov function
candidate

V tð Þ ¼ V1 tð Þ þV2 tð Þ; ð12Þ
where V1 tð Þ ¼ eT1 tð Þ IN � P1ð Þe1 tð Þ;V2 tð Þ ¼ eT2 tð Þ IN � P2ð Þe2 tð Þ.

Find the derivative of V tð Þ along the solutions of (8)

DþV1 tð Þ 6 2eT1 tð Þ IN � P1ð Þ _e1 tð Þ;
¼ 2eT1 tð Þ IN � P1ð Þ � IN � Inð Þe1 tð Þ þ IN � Inð Þe2 tð Þ½ �;
¼ eT1 tð Þ IN � 2P1½ �e1 tð Þ þ eT1 tð Þ

IN � 2P1ð �e2 tð Þ:DþV2 tð Þ�
6 2eT2 tð Þ IN � P2ð Þ _e2 tð Þ;¼ eT2 tð Þ IN � 2P2ð Þ IN � að Þe1 tð Þ½

� IN � bð Þe2 tð Þ þ IN � Cð Þf e1 tð Þð Þ þ IN � Dð Þf e1 t �u tð Þð Þð Þ�;

¼ eT2 tð Þ IN � P2aþ aTP2
� �� 	

e1 tð Þ
�eT2 tð Þ IN � P2bþ bTP2

� �� 	
e2 tð Þ

þeT1 tð Þ IN � FQ1Fð Þ½ �e1 tð Þ þ eT2 tð Þ IN � P2DQ
�1
2 DTP2

� �h i
e2 tð Þ

eT1 tð Þ IN � 2P1 þ FQ1Fð Þ½ �e1 tð Þ
þeT1 t �uð Þ IN � FQ2F½ �e1 t �uð Þ
þeT1 tð Þ IN � 2P1½ �e2 tð Þ þ eT2 tð Þ IN � P2aþ aTP2

� �� 	
e1 tð Þ:

When eT1 t �uð Þ IN � P1½ �e1 t �uð Þ 6 ecuþgeT1 tð Þ IN � P1ð Þe1 tð Þ,
where g P an þ

Pl
k¼1

an�k � dn�kð Þ and FQ2F < #P2; FQ1F < #P1, by

(9) it is not difficult to compute that

DþV tð Þ 6 eT1 tð Þ IN � 2P1 þ FQ1F þ #ecuþgP2ð Þ½ �e1 tð Þ
þeT2 tð Þ IN � �P2b� bTP2 þ P2CQ

�1
1 CTP2 þ P2DQ

�1
2 DTP2

� �h i
e2 tð Þ

þeT1 tð Þ IN � 2P1½ �e2 tð Þ þ eT2 tð Þ IN � P2aþ aTP2
� �� 	

e1 tð Þ;
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¼ eT1 tð Þ IN� 2P1þFQ1Fþ#ecgþgP2� l1P1ð Þ½ �e1 tð ÞþeT1 tð Þ IN� l1P1½ �e1 tð Þ
þeT2 tð Þ IN� �P2b�bTP2þP2CQ

�1
1 CTP2þP2DQ

�1
2 DTP2� l1P2

� �h i
e2 tð Þ

þeT2 tð Þ IN� l1P2½ �e2 tð ÞþeT1 tð Þ IN�2P1½ �e2 tð ÞþeT2 tð Þ IN� P2aþaTP2
� �� 	

e1 tð Þ;
¼ nT tð Þ^n tð Þþ l1 eT1 tð Þ IN�P1ð Þe1 tð ÞþeT2 tð Þ IN�P2ð Þe2 tð Þ� 	
6 l1V tð Þ;t2 tn�1;tn½ Þ;n2Zþ:

Consequently from Eqs. (11) and (10), we have

�e�aIN þ IN � KH
� �T

IN � KH
� �

6 0;

�e�aIN þ IN � eKH� �T
IN � eKH� �

6 0:

which implies that

V tnð Þ ¼ eT1 tnð Þ IN � P1ð Þe1 tnð Þ þ eT2 tð Þ IN � P2ð Þe2 tnð Þ;
6 eT1 t�n

� �
IN � KH
� �� In
� 	T

IN � P1ð Þ IN � KH
� �� In
� 	

e1 t�n
� �

þeT2 t�n
� �

IN � eKH� �
� In

h iT
IN � P2ð Þ IN � eKH� �

� In
h i

e2 t�n
�

¼ eT1 t�n
� �

IN � KH
� �T

IN � KH
� �� �

� P1

h i
e1 t�n
� �

þeT2 t�n
� �

IN � eKH� �T
IN � eKH� �
 �

� P2

� 

e2 t�n
� �

;

6 e�aV t�n
� �

:

Then it is easy to see that all the required conditions in Lemma
(2.3)-(2.4) are satisfied, then the synchronization problem of INNs
(1) and (3) is solved. The proof is now completed.

Remark 3.2. The first-order differential Eqs. (4) and (5) are
produced via the variable substitutions yi tð Þ ¼ dxi tð Þ=dtð Þ þ xi tð Þ
and z tð Þ ¼ ds tð Þ=dtð Þ þ s tð Þ have double the dimension of the given
second-order INNs (1) and (3) this enormously increase the
difficulties of analytical calculations and the complexity of the
obtained result. Moreover, designing a second-order neural net-
work using control inputs other than a reduced order system may
be more significant and helpful. Therefore, to avoid to overcome
these problems rising from the reduced order variable substitu-
tions, a new method is directly investigating the synchronization
problems of the INNs. Next we are going to investigate the leader-
following synchronization of non-reduced order INNs by using E-
TIC.

To synchronize the INNs (1) with the leader node (3) the E-TIC
input is designed as follows:

ui tð Þ ¼
X
n2Zþ

~~kigi tð Þd t � tnð Þ; ð13Þ

where gi tð Þ ¼ PN
j¼1;j–i

âij xj tð Þ � xi tð Þ� �þ b̂i s tð Þ � xi tð Þð Þ; ~~ki denotes the

control gain of the ith followers node which is to be design, âij are
the elements of weighted adjacency matrix A of the directed graph

G; b̂i are the elements of leader adjacency matrix B of the directed
graph G; d �ð Þ denotes Dirac delta function and event-based impulse
sequence is tn;n 2 Zþf g. The synchronization error between INNs
(1) and leader node (3) is described as the following second order
differential equation:

d2ei tð Þ
dt2

¼ �A
dei tð Þ
dt

� Bei tð Þ þ Cf ei tð Þð Þ þ Df ei t �uð Þð Þ þ ui tð Þ:
ð14Þ

Thus, under the E-TIC input (13), the compact form of the error
(16) can be written as



;
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€e tð Þ ¼ � IN � Að Þ _e tð Þ � IN � Bð Þe tð Þ þ IN � Cð Þf e tð Þð Þ
þ IN � Dð Þf e t �uð Þð Þ;

De tð Þ ¼ � ~eKH� In
� �

e t�ð Þ; t ¼ tn;n 2 Zþ:

ð15Þ

where De tð Þ ¼ e tð Þ � e t�ð Þ; ~eK ¼ diag ~~k1; . . . ;
~~kN

n o
to be designed.

In order to investigate our synchronization results for non-
reduced order INNs, the following notations are given.

P ¼ ac� Aa2 þ 1
2a

2jCj þ 1
2a

2jDj;
Q ¼ Bacþ 1

2a
2 jCjF þ jDjFð Þ þ jCjF þ jDjFð Þjacj;

R ¼ xþ c2 � Ba2 � Aac;

where, a; c;x are some non-zero constants.

Assumption 3.3. There exist some non-zero constants a; c;x such
that the conditions
Q�R=4P��l1x=2
� �

< 0; 1=4P��l1=2
� �

< 0;R� c < 0;2P� a < 0
are satisfied.
Theorem 3.4. Suppose that the Assumptions (2.1) and (3.3) hold.
Then there exists non-zero constants a; c;x;�l1 and N � N positive

diagonal matrices ~eKsuch that IN � ~eKH� �
� aIn

h i
IN � ~eKH� �

� aIn
h i

=2 < 0; IN � ~eKH� �
� aIn

h i
IN � ~eKH� �

� cIn
h i

< 0 and

�e�aIN IN �HT ~eK
� �IN

" #
< 0: ð16Þ

Therefore, the synchronization problem of INNs (1) and (3) is

obtained under the gain matrix ~eK ¼ diag ~~k1; . . . ;
~~kN

n o
.

Þ

Proof. Construct the following Lyapunov function candidate

V tð Þ ¼ 1
2

XN
i¼1

xe2i tð Þ þ 1
2

XN
i¼1

a _ei tð Þ þ cei tð Þð Þ2:

Calculating the derivatives of V tð Þ along the solutions of (14)

DþV tð Þ ¼
XN
i¼1

xei tð Þ _ei tð Þ þ
XN
i¼1

a _ei tð Þ þ cei tð Þð Þ a€ei tð Þ þ c _ei tð Þð Þ;

¼
XN
i¼1

xei tð Þ _ei tð Þþ
XN
i¼1

a2 _ei tð Þ€ei tð Þþac _e2i tð Þþacei tð Þ€ei tð Þþc2ei tð Þ _ei tð Þ� 	
;

¼
XN
i¼1

xei tð Þ _ei tð Þþ
XN
i¼1

c2ei tð Þ _ei tð Þþ
XN
i¼1

a2 _ei tð Þþacei tð Þ� �
�A _ei tð Þ�Bei tð ÞþCf ei tð ÞþDf ei t�uð Þð Þð

#
þ
XN
i¼1

ac _e2i tð Þ;
"

¼
XN
i¼1

xei tð Þ _ei tð Þþ
XN
i¼1

c2ei tð Þ _ei tð Þ

þ
XN
i¼1

�Aa2 _e2i tð Þ�Ba2ei tð Þ _ei tð ÞþCa2 _ei tð Þf ei tð Þð ÞþDa2 _ei tð Þf ei t�uð Þð Þ�
�Aacei tð Þ _e tð Þ�Bace2i tð ÞþCacei tð Þf ei tð Þð ÞþDacei tð Þf ei t�uð Þð Þ�XN
i¼1

ac _e2i tð Þ;6
XN
i¼1

ac�Aa2
� �

_e2i tð Þ�
XN
i¼1

Bacð Þe2i tð Þ

þ
XN
i¼1

xþc2�Ba2�Aac
� �

ei tð Þ _ei tð Þþ
XN
i¼1

a2j _ei tð Þjþjacjjei tð Þj� �jCjjf ei tð Þð Þj

þ
XN
i¼1

a2j _ei tð Þjþjacjjei tð Þj� �jDjjf ei t�uð Þð Þj:

ð17
326
By Assumption (2.1) and uv 6 1
2 u2 þ v2
� �

, we have

XN
i¼1

a2j _ei tð Þj þ jacjjei tð Þj� �jCjjf ei tð Þð Þj 6 1
2

XN
i¼1

a2jCjF _e2i tð Þ þ e2i tð Þ� �
þ 1

2

XN
i¼1

jacjjCjF e2i tð Þ þ e2i tð Þ� �
¼ 1

2

XN
i¼1

a2jCjF _e2i tð Þ

þ 1
2

XN
i¼1

a2jCjFe2i tð Þ

þ 1
2

XN
i¼1

jacjjCjFe2i tð Þ

þ 1
2

XN
i¼1

jacjjCjFe2i tð Þ;

¼ 1
2

XN
i¼1

a2jCjF _e2i tð Þ

þ 1
2

XN
i¼1

a2jCjF þ jacjjCjF�
þjacjjCjFÞe2i tð Þ:

ð18ÞXN
i¼1

a2j _ei tð Þj þ jacjjei tð Þj� �jDjjf ei t �uð Þð Þj

6 1
2

XN
i¼1

a2jDjF _e2i tð Þ þ e2i t �uð Þ� �þ 1
2

XN
i¼1

jacjjDjF e2i tð Þ þ e2i t �uð Þ� �
;

¼ 1
2

XN
i¼1

a2jDjF _e2i tð Þ þ 1
2

XN
i¼1

a2jDjFe2i t �uð Þ

þ 1
2

XN
i¼1

jacjjDjFe2i tð Þ þ 1
2

XN
i¼1

jacjjDjFe2i t �uð Þ;

¼ 1
2

XN
i¼1

a2jDjF _e2i tð Þ þ 1
2

XN
i¼1

jacjjDjFe2i tð Þ

þ 1
2

XN
i¼1

a2jDjF þ jacjjDjF� �
e2i t �uð Þ:

ð19Þ
From (17)-(19), we get

DþV tð Þ 6
XN
i¼1

ac� Aa2 þ 1
2
a2jCj þ 1

2
a2jDj


 �
_e2i tð Þ

�
XN
i¼1

Bacþ 1
2
jacjjCjF þ 1

2
jacjjDjF þ 1

2
a2jCjF




þ1
2a

2jDjF þ 1
2 jacjjCjF þ 1

2 jacjjDjF
�
e2i tð Þ

þ
XN
i¼1

xþ c2 � Ba2 � Aac
� �

ei tð Þ _ei tð Þ;

¼
XN
i¼1

ac� Aa2 þ 1
2a

2jCj þ 1
2a

2jDj� �
_e2i tð Þ

�
XN
i¼1

Bacþ 1
2a

2 jCjF þ jDjFð Þ þ jCjF þ jDjFð Þjacj� �
e2i tð Þ

þ
XN
i¼1

xþ c2 � Ba2 � Aac
� �

ei tð Þ _ei tð Þ;

¼
XN
i¼1

P _e2i tð Þ þQe2i tð Þ þRei tð Þ _ei tð Þ� �
;

6 �l1V tð Þ:
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As a result from (16), we have

� eaIN þ IN � ~eKH� �T

IN � ~eKH� �
6 0 ð20Þ

when t ¼ tn,

V tnð Þ ¼ 1
2 IN �xInð Þe2 tnð Þ þ 1

2 IN � aInð Þ _ei tnð Þ þ IN � cInð Þe tnð Þð Þ2;
6 1

2 IN �xInð Þ IN � ~eKH� �
� In

h i
IN � ~eKH� �

� In
h i

e2 t�n
� �

þ 1
2 IN � cInð Þ IN � ~eKH� �

� In
h i

IN � ~eKH� �
� In

h i
e2 t�n
� �h i2

;

¼ 1
2 IN � ~eKH� �

� In
h i

IN � ~eKH� �
� In

h i
IN �xInð Þe2 t�n

� �
þ 1

2 IN � ~eKH� �
� In

h i
IN � ~eKH� �

� In
h i

IN � cInð Þ2e2 t�n
� �h i

;

¼ 1
2 IN � ~eKH� �

� In
h i

IN � ~eKH� �
� In

h i
IN �xInð Þe2 t�n

� �þ IN � cInð Þ2e2 t�n
� �h i

;

¼ 1
2 IN � ~eKH� �

� In
h i

IN � ~eKH� �
� In

h i
IN �xInð Þe2 t�n

� �þ IN � cInð Þ2e2 t�n
� �þ IN � aInð Þ2 _e2 t�n

� �hh
þ2 IN � aInð Þ _e t�n

� �
IN � cInð Þe t�n

� ��
� IN � aInð Þ2 _e2 t�n

� �� 2 IN � aInð Þ _e t�n
� �

IN � cInð Þe t�n
� ��;

¼ IN � ~eKH� �
� In

h i
IN � ~eKH� �

� In
h i

V t�n
� �

� 1
2 IN � ~eKH� �

� aIn
h i

IN � ~eKH� �
� aIn

h i
_e2 t�n
� �

� IN � ~eKH� �
� aIn

h i
IN � ~eKH� �

� cIn
h i

_e t�n
� �

e tnð Þ
6 e�aV t�n

� �
:

Then it can be conclude that all the required conditions in
Lemma (2.3)-(2.4) are satisfied then the synchronization problem
of INNs (1) and (3) is obtained and the proof is completed. h
Fig. 1. Network communication topology of Examples 4.1 and 4.2.
Remark 3.5. The novelty and technical difficulty of this paper can
be illustrated as follows:

1. It is proposed to use an E-TIC design to accomplish synchroniza-
tion in a network of INNs that has a delay in time. We derive the
primary results of this paper in terms of lower-dimensional lin-
ear matrix inequalities, which are used to accomplish leader-
following synchronization of INNs with time delays, based on
particular assumptions about node dynamics and graph theory
ideas. One of the most significant contributions of this paper is
the investigation of leader-following synchronization of INNs
with E-TIC, which differs from the majority of previously pub-
lished works in the field. The findings of this paper contribute
to the improvement of previously published results in the field
of leader-following synchronization of delayed INNs with other
controllers.

2. In the E-TC scheme, sampling occurs only when the state-
dependent error reaches a tolerable level. When compared to
the T-TC process, the E-TC method has a lower likelihood of
redundant information transfer. The E-TC law specifies whether
sampling shall be done rapidly or slowly, and whether sampling
data must be transmitted for control updates. After then, the
approach was applied to networks, and E-TC approaches were
proposed.
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3. When delayed impulsive control is used in connection with the
E-T mechanism, E-T instants are produced when the E-TIC strat-
egy is violated, and delayed impulsive control is only performed
at the E-T instants in this design. As a result, in order to increase
the performance of systems operating under E-TC conditions,
the strategy must be modified in accordance with the E-T con-
dition. From the perspective of application, the E-TIC technique
is appropriate, and the control approach will effectively
increase the utilization of resources in bandwidth-constrained
environments.

4. Numerical simulations

In this section, we present two simulation results and their fig-
ures to illustrate the efficacy of the analytical solutions of this
paper.

Example 4.1. In this example we consider the following isolated
delayed INNs with two neurons:

d2s tð Þ
dt2

¼ �A
ds tð Þ
dt

� Bs tð Þ þ Cf s tð Þð Þ þ Df s t �u tð Þð Þð Þ þ I tð Þ: ð21Þ

and the corresponding followers system is represented by the fol-
lowing second order equations with six nodes and each node has
two neurons:

d2xi tð Þ
dt2

¼ �A
dxi tð Þ
dt

� Bxi tð Þ þ Cf xi tð Þð Þ þ Df xi t �u tð Þð Þð Þ
þ I tð Þ þ v i tð Þ; i ¼ 1; . . . ;4;

ð22Þ

with the controllers to be designed as (4) and (5), where
xi tð Þ ¼ xi1 tð Þ; xi2 tð Þð ÞT ; i ¼ 1; . . . ;6.

The coefficient matrices are given as
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Fig. 2. State trajectories of leader and follower nodes and phase portrait graph of leader in Example 4.1.
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Fig. 3. State trajectories of leader and following synchronization error between (21) and (22) in Example 4.1.
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A ¼ 0:1000:5½ �; B ¼ 0:2 0
0 0:7

� 

; C ¼ �0:75 2:3

1:8 �0:25

� 

;

D ¼ �0:68 1:5
�0:4 �1:2

� 

:

Also, f xi tð Þð Þ ¼ tanh xi1 tð Þð Þ; tanh xi2 tð Þð Þð ÞT ; f xi t �u tð Þð Þð Þ ¼
tanh xi1 t �u tð Þð Þð Þ; tanh xi2 t �u tð Þð Þð Þð ÞT , are the activations with-
out and with time delays that satisfy the Assumption 2.1 with Lip-
schitz constant Fi ¼ 0:5. The time varying delay u tð Þ ¼ 3:3t. The
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network communication topology of the INNs (21) and (22) is
given in Figure. 1 and the Laplacian and leader adjacency matrix
of the corresponding network topology are obtained as:

L ¼

1 �1 0 0 0 0
0 1 �1 0 0 0
1 0 1 0 0 1
0 0 0 1 1 0
0 0 0 �1 1 0
0 0 �1 0 0 1

0BBBBBBBB@

1CCCCCCCCA
;B ¼

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

0BBBBBBBB@

1CCCCCCCCA
:
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Let us take the initial values
s t0ð Þ ¼ 0:5;1ð ÞT ; xi t0ð Þ ¼ i� 3;6ð ÞT ; i ¼ 1; . . . ;6. Now we have to
design the E-T mechanism to realize the leader–follower synchro-
nization between (21) and (22). Choose the constant
c ¼ 0:08; a ¼ 0:2; b ¼ 8 and c ¼ 8. Then we are infer the LMI condi-
tions in Theorem 3.1 has solution that are feasible and the impul-

sive gain matrix is K ¼ eK ¼ 0:53I6 and

P1 ¼ 6:7 �0:02
�0:02 6:3


 �
; P2 ¼ 0:84 0:04

0:04 0:822


 �
:

Under the E-T mechanism, the leader-following synchroniza-
tion of systems (21) and (22) can be achieved. Fig. 2 shown that
the states of the one leader and six followers. Under the designed
ET impulsive control strategy, each followers node follows the lea-
der, as can be shown in Fig. 2. Under the same conditions the syn-
chronization error between (21) and (22) can converges to zero,
which is shown in Fig. 3. The triggered instants on the interval
[0, 10] is shown in Fig. 4.
0 1 2 3 4
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Fig. 4. Triggered instance of the INN (22) w
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Example 4.2. Consider the INNs (21) and (22) with the following
coefficient matrices:
A ¼
0:1 0 0
0 0:5 0
0 0 0:3

264
375; B ¼

0:2 0 0
0 0:7 0
0 0 0:5

264
375;

C ¼
�0:65 2:3 0:1
1:8 �0:25 0:2
0 �0:2 0:3

264
375; D ¼

�0:68 1:5 �0:4
�0:4 �1:2 0
0 0:2 0:2

264
375:

Also, f xi tð Þð Þ ¼ 0:5 jxi tð Þ þ 1j � jxi tð Þ � 1jð Þ; f xi t �u tð Þð Þð Þ ¼
0:5 jxi t �u tð Þð Þ þ 1j � jxi t �u tð Þð Þ � 1jð Þ, are the monotonically
increasing increasing activation functions for without and with
time delays, which are monotone increasing and globally Lipschitz
continuous. The time varying delay u tð Þ ¼ 3:3t. The network com-
munication topology of the INNs (21) and (22) is given in Figure. 1
and the Laplacian and leader adjacency matrix of the correspond-
ing network topology are obtained as in Example 1.
5 6 7 8 9 10

a=1.6 a=0.2 a=0.8 a=2

ith a ¼ 0:2;0:8;1:6;2 in Example 4.1.
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nd phase portrait graph of leader in Example 4.2.
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Fig. 6. State trajectories of leader and following synchronization error between (21) and (22) in Example 4.2.
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Fig. 7. Triggered instance of the INN (22) in Examples 4.1 and 4.2.
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Let us take the initial values

s t0ð Þ ¼ 1;2;3ð ÞT ; xi t0ð Þ ¼ i� 3;6;3ð ÞT ; i ¼ 1; . . . ;6. Now we have to
design the E-T mechanism to realize the leader–follower synchro-
nization between (21) and (22). Choose the constant
c ¼ 8:2; c ¼ 0:072; a ¼ 0:381 andb ¼ 8:55. Then we are infer the
330
LMI conditions in Theorem 3.1 has solution that are feasible and

the impulsive gain matrix is K ¼ eK ¼ 0:48I6 and

P1 ¼
6 �0:02 0:4

�0:02 6:1 0:3
0:2 0:4 0:3

0B@
1CA; P2 ¼

0:74 0:04 0:5
0:04 0:822 0:3
0:04 0:7 0:2

0B@
1CA:
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Under the E-T mechanism, the leader-following synchroniza-
tion of systems (21) and (22) can be achieved. Fig. 5 shows the
states of the one leader and six followers. Under the designed ET
impulsive control technique, each followers node follows the lea-
der, as can be shown in Fig. 5. Under the same conditions the syn-
chronization error between (21) and (22) can converge to zero,
which is shown in Fig. 6. The triggered instants of Examples 4.1
and 4.2 on the interval [0, 10] is shown in Fig. 7.
5. Conclusion

In this paper, the synchronization analysis of INNs with con-
stant time delays has been studied. Firstly, the INNs are taken with
reduced order using some variable transformations and by using
E-T mechanism with impulsive control mechanism the synchro-
nization conditions are obtained for the addressed networks.
Secondly, by constructing suitable Lyapunov functional candidate
for non reduced order INNs to obtain some new leader-following
synchronization criteria with the help of E-T mechanism. Finally,
two numerical results are offered to highlight the usefulness of
theoretical conclusions. Future work will focus on solving leader-
following fixed-time synchronization problem of discontinuous
coupled inertial neural network with E-T mechanism and indefi-
nite functionals.
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