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Abstract. In this paper, we study the existence of mild solutions for a first order
impulsive neutral functional integro-differential equations in Banach spaces. The re-
sults are obtained by using Krasnoselski-Schaefer fixed point theorem and semigroup
theory.

1 Introduction

The theory of impulsive differential equations has become an important area of inves-
tigation in recent years stimulated by their numerous applications to problems from
mechanics, electrical engineering, medicine, biology, ecology, etc. For more details
on impulsive differential equations and on its applications, we refer the reader to
[1, 2, 3, 11, 17, 18] and the references therein.

The theory of impulsive neutral functional differential and integrodifferential
equations have been studied by many authors, see for instance [4, 5, 6, 7, 20]. The
authors treated in these works [4, 5, 7, 8, 9] are really ordinary and not partial differ-
ential equations. Partial differential equations with impulses are studied, for instance,
by Liu [18], Hernandez [14,15,16] and Ntouyas [21]. In [12], J.P. Daueret al. studied
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the existence of mild solutions to semilinear neutral evolution equations with nonlo-
cal conditions is proved. The result is obtained by using the Krasnoselski-Schaefer
type fixed point theorem. Recently Hernandez [13], investigated the existence results
for partial neutral functional integrodifferential equations with unbounded delay by
using the Leray-Schauder nonlinear alternative fixed point theorem. More recently
Ntouyas [21], proved the existence of solutions of impulsive partial neutral func-
tional differential inclusions under the mixed Lipschitz and Caratheodory conditions.
The results generalize those of [15, 21].

This paper is divided into three sections. Frist two sections are introduction and
preliminaries. Sections 3 is devoted to study the existence of solutions for first order
impulsive neutral functional integro-differential equations in Banach spaces and also,
we study the same problem with nonlocal conditions.

In this paper, first we study the existence of solutions for first order neutral func-
tional integrodifferential equations with impulsive effects as

j^lxit) ~g{t,x,)] = Ax{t) + f (i,x,, J^h{t,s,xs)dsj , (1.1)

Ax|,=/*=4Wi*")), k=],2,-,m, (1.2)
xit) = <^{t), /6[-r,0], (1.3)

where A is the infinitesimal generator of an analytic semigroup of bounded linear
operators {T{t), t > 0}, on a Banach space X, g : J x D -^ X,h : J x J x D -^ X
and f:JxDxX^Xare given functions, where D — {\\f: [-r,0] —> X such that \\>
is continuous everywhere except for a finite number of points i at which \^{s~) and
\|/(.y+) exists and \|/(i-) = \\f{s)} , <t) G D{0 < r < oo),0 = io < ii < • •• < i^ < W i =
b,Ik G C{X,X){k = 1,2, ...,m) are bounded functions, x{tj¡') and x{t^) represent the
left and right limits of ^(i) at í = tk, respectively.

For any continuous functions x defined on the interval [-r,b] — {t\,t2.. ./m} and
any í € 7, we denote by x, the element of D defined by

^,(e)=^(i + e), de[-r,o].

Here x,{-) represents the history of the time t - r, upto the present time t.
For \|/ e D, then

ee[-r,O]}.

2 Preliminaries and Hypotheses

Let X be a Banach space provided with norm || • ||. Let A : D{A) —» X is the infinitesi-
mal generator of an analytic semigroup {^(f), t > 0}, of bounded linear operators on
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X. If { r ( 0 , Í > 0}, is uniformly bounded and analytic semigroup such that 0 G p(y4),
theti it is possible to define the fractional power (-A)", forO < a < 1, as closed linear
operator on its domain D(-A)" . Further more, the subspace D( -A)" is dense in X,
and the expression

\\x\\a=\\{-Afx\\, xeD{-Af

defines a norm on D{-A)°-. For more details of fractional power of operators and
semigroup theory, we refer [22].

From this theory, we define the following Lemma.

Lemma 1. The following properties hold:

(i) If 0 < ß < a < 1, then Xa C Xß and the imbedding is compact whenever the
resolvent operator of A is compact,

(ii) For every 0 < a < 1 there exists Ca > 0 such that

| | ( - A ) « r ( 0 1 | < ^ , o<t<b.

Lemma 2. [13] Let v( ),H'( ) : [0,b] —> [0,°°) be continuous functions. If w( ) is non-
decreasing and there are constants 0 > 0,0 < a < 1 such that

lo [t-sy "

then

n-1 g^a

j=0 "

for every t e [0, b] and every neN such that na > 1, and r(-) is the Gamma function.

We need the following Krasnoselski-Schaefer type fixed point theorem to prove
our existence theorem.

Theorem 1. [10] Let <l>i,4>2 be two operators satisfying:

(a) <I>i is contraction, and
(b) <î>2 is completely continuous.

Then either

(i) the operator equation «ï>ix + *2-^ = x has a solution, or
(ii) the set Ç = {M e X : X4>I(^) + X<I>2M = u) is unbounded for A,e (0,1).

Now we list the following hypotheses:
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(HI) There exist constants 0 < ß < \,cuC2,Lg such that g is Xß -valued, {-Afg is
continuous, and

(Oli(-A)P^(r,Jc)||<C)||;c||D + C2, it,x)eJxD,

iii)\\i-A)^8{t,xi)-i-A)^g{t,X2)\\<Lg\\xi~X2\\D,{t,Xi)eJxD,i= 1,2. with

(H2) A is the infinitesimal generator of an analytic semigroup {T{t),t > 0}, of bounded
linear operators on X, and 0 G p(A) such that

\\T{t)\\<M,t>0 and | | ( -A) ' -Pr ( i ) | | < % | , 0<t<b,

for some constants M,C|_ß and every t eJ =[0,b].

(H3) There exists a constant 4 suchthat ||4(;t)|| <dk,k= 1,2,...,m for each .Ï 6 X.
(H4) (i) For each {t,s) GJXJ, the function h{t,s, •) : D -> X is continuous, and for

each xED, the function fi{-,-,x) :JxJ-^Xis strongly measurable.
(ii) For each t e 7, the function / ( / , , •) : D x X -> X is continuous, and for each
{x,y) eDxX, the function f{-,x,y) : 7 -> X is strongly measurable.
(iii) For every positive integer k there exists a* G ¿ ' (0, b) such that

sup \\fit,x,y)\\<ak{t), foTteJ a.e.
{NIMI}t

(iv) There exists an integrable function m : [0,b] -^ [0,oo) and a constant a > 0
such that

| | / i ( i , i , . ï ) | | < am{s)ao{\\x\\D), 0<s<t<b,xeD

where Í2o : [0,°°) -+ (0,0°) is a continuous and nondecreasing function.
(H5) ||/(r,.ï,>')|| < /'(/)í^(lkllD+ Ibll) for almost all ? 6 7 and all xeD,ye X, where

p e L ' (7,/?"•") and n : Ä+ —> (0,«») is continuous and increasing with

Jo'^'^ ais
where

7=0 ß
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(H6) Ç is completely continuous and there exists a constant Q such that

(H7) (i) The function h{t,s, •) : D —» X is continuous for almost all {t,s) eJ xJ and
for eachxE D, the function h{-.,-,x) : 7 x 7 —» X is strongly measurable,
(ii) There exists an integrable function q : [0,b] —» [0,<») and a constant L > 0
such that

\\hit,s,x)\\ < Lq{s)\\f{\\x\\D), 0 < s < t < b , x e D ,

where \^ : [0, o°) —> (0, «>) is a continuous and nondecreasing function.
(H8) (i) The function / ( i , -, •) : D x X -^ X is continuous for almost all t G J, and for

each {x,y) e DxX, the function fi-,x,y) : 7 —>X is strongly measurable,
(ii) For every positive integer p there exists ap G L ' iJ,R+) such that

sup \\f{t,x,y)\\<ap{t), foTteJ a.e.

(iii) ||/(i,.x,y)|| < /?(O«(II-«IID + Ibll) for almost all í G 7 and all x G D,y G X,
where p G L^{J,R+) and CO :/?+—> (0,oo) is continuous and increasing with

/
7o

where

;=0

m*(/) = max{HMC2pit),Lq{t)}

and F -

3 Existence results

In order to define the solution of problems (1.1)-(1.3) and (3.1)-(3.3) we consider the
following space
PC{[-r,b],X) = {x : [-r,è] —> X such that x{t) is continuous almost everywhere ex-
cept for some it at whichx(í¿") andx{t^),k= 1,2,...,m exists and jc(í¿") —x{tk)}.

For any í G 7 , we have x, E D and

\\x\\pc = sup{\x{t)\:te[-r,b]}.

Let AC(7,X) is the space of all absolutely continuous functions AÍ : 7 —» X.
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Definition 1. A function x G PC{[-r,b],X) r\ACi{tk,tk+i),X),k^ l,2,...,m, is said
to b e so lu t ion of { l . \ y ( l . 3 ) if x { t ) - g { t , x , ) is abso lu t e ly c o n t i n u o u s onJ — { t \ , t 2 , - - , t m }
and (1.1 H 1.3) are satisfied.

Theorem 1. If the assumptions (//I) - {H5) are satisfied, then IVP (1.1)-(1.3) has at
least one solution on [-/"joj.

Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator * : PC{[-r,b],X) ^ PC{[-r,b],X) defined by

if te[-r,O],

From hypothesis (//I) the following inequality holds.

\\AT{t-s)gis,Xs)\\ < \\{-Ay

(t-s)

Then from Bochner theorem [19], it follows that AT{t — s)g{s,Xs) is integrable on
[0,0-

Now we decompose <I> as <ï> = <ï>i -|-<î>2 where

)g{,^)gi,) J¿{s)gis,x,)ds ifteJ.

U{t) i f / e [ -

Now, we will show that the operators <E>i and <I>2 satisfy all the conditions of Theorem
2.1 on\-r,b].

First we show that <Î>| is contraction on PC{[—r,b\,X). Letx,y G X. From hypoth-
esis (//I), we have

II < Mt,x,)-g{t,y,)\\ + \\ i'AT{t-s)[g{s,Xs)-g{s,ys)]ds\\
JO
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Taking supremum over/, | | * i ; c -Oí ) ' ! < LO| |X-> ' | |D, Lo = L«{||(-/4)-ß|| +
Since ¿0 < 1, this shows that <ï>i is contraction on PC{[-r,b],X).

Next, we show that <I>2 is completely continuous on PC{[--r,b],X). First we prove
that i>2 maps bounded sets into bounded sets in PC{[-r,b],X). Let ß be a bounded
set in PC{[-r,b],X). Now for each u{t) G ^2x{t), then for each t eJ,xeB,

it - s)f Uxs,

Then

From hypothesis {H4){iii) we have

for all u e ^2{x) C *2(ß). Hence <i>2{B) is bounded.
Next, we show that <î>2 maps bounded sets into equicontinuous sets. Let B be

bounded, as above, and h € ̂ 2X for some x e B, then for each í e 7, we have

+ £ Tit-t,Mx{t¡;))
0<li¡<t

Let ri,r2 eJ- {íi,/2,--,ím},''i < ''2. Then we have

+ M £ dk+ Y. \\T{r2~t,)-Tir,-tk)\\d,.
t 0<ti,<r,
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As r2 —* f] and e be small the right hand side of the above inequality tends to zero,
since T{t) is a strongly continuous operator and the compactness of T{t),t > 0 im-
plies the continuity in the uniform operator topology.

This proves the equicontinuity for the case where t ^ ti,i — \,2,...,m. Similarly
one can prove that at t = t¡. The equicontinuity for the other cases ri < 2̂ < 0 and
''I < 0 < r2 are obvious.

Next, we show that 4>2 is continuous. Let {x„} c B and Xn—*x'm PC{[-r,b],X).
Then by hypothesis {H4){iii), we have

if \ Í f \
f[s,x„^, h{t,s,x„^)ds] -^f[s,Xs, h{t,s,Xs)ds], n-> «

\ Jo J \ Jo )
and

h{t,s,Xs)ds

By dominated convergence theorem, we obtain the continuity of 4>2:

< sup [ll i'T{t-s)[f (s,x„^, rh{s,x,x„,)dx
¡eJ ^ Jo \ Jo

T{t-tk)[ik{x„{tk))-ik{x{tkm\

-^0 as « -> oo

Thus <ï>2 is continuous. From the Arzela-Ascoli theorem it suffices to show that <I>2
maps B into a precompact set in X. Let 0 <t < bhe fixed and let e be a real number
satisfying 0 < e < i. For x E B we define

{^lx){t) = T{t)m + Tie) f \{t-s-¿)f(s,xs, rhis,x,x,)dx]ds

Then from the compactness of T{t),t > 0, the set Vg(i) = { ( * | J : ) ( 0 :xeB}is pre-
compact in X for every e,0 < e < /. Moreover, for every x E B.v/e have

\\ds

t
Mak{s)ds+ J2

t-t<it<t
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Therefore, there are precompact sets arbitrarily close to the set V(i) = { ( * 2 - Ï ) ( 0 : x G
B}. Hence the set ^2ÍB) is precompact in X. Hence the operator <ï>2 is completely
continuous.

To apply the Krasnoselski-Schaefer theorem, it remains to show that the set

is bounded for X G (0,1). To this end let A:() G Ç(*). Then X^i (f ) + X(t>2X = x for
some A. G (0,1 ) and

i'Tit-s)f(s,Xs, rhis,x,
Jo \ Jo

xs\\D^ \ am(T)í2o(lkx||D)dT
Jo J

\\X,\\D

JO {t — s)

k—\

/
0 (i —

where

F = MMoll -fc, | | ( -

= max{||A:(.y)|| : - r < í < í } , í G 7. Then ||X,||D <^(í) for all í G7 and there
is a point Í* E [-r,t\ such that /̂(O = ||A:(Í*)||. Hence we have
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/ ,
O (t — s) ^

or
F

f i r \
+ MC2 p{s)Q.{ij{s) + a m{x)Çïo(fj{x))dz]ds,teJ.

Jo \ Jo J
where

F ciCt 13
rv-RTT and C2 - - ^

From Lemma 2.2, we have

(s) + a r
JoV JO

where

j^O ß

Let us take the right hand side of the above inequality as v(/). Then v(0) = BoCo,/j{t) <
vit),O<t <band

' if \
y^J j ^ m s ofJs SJ
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Let w{t) = v(i) + a/óm(.s)í2o(v(í))d5.Then w(0) = v(0) = ßoCo,v(O < w{t) for all
/ G J, and

Integrating from 0 to í, we obtain

ds ^ /•* r dsr'^<) ds ^ /•*

Hence there exists a constant M such that v{t) < M for all t G 7, and |t/(í) < v(í) < M
for all t G y. Therefore

||.ï| |= sup \\x{t)\\^^l{b)<w{b)<M forallA:G¡;(4>).
/e[-r,fc]

This shows that the set Ç is bounded in PC{[—r,b],X). Consequently, by Theorem
2.1, the operator * has a fixed point in PC{[-r,b],X). Thus the IVP (1.1)-(1.3) has a
solution on [-r,¿?]. This completes the proof. D

Finally, we study the same problem (1.1)-(1.3) with nonlocal conditions of the
form

J^ (3.1)
t£J=[O,bl i+h. Â:=l,2,... ,m,

M=r. =4Wír))' k^\X-.m, (3.2)
^ ( 0 + (C(^,1,,...,A:,iJ)(0 = (t)(0, ' G [ - r , O ] , (3.3)

where A is the infinitesimal generator of an analytic semigroup of bounded linear
operators {7'(í),í > 0}, on a Banach space X,g . JxD-^X,h.JxJxD-^X and
f : J X D X X —* X are given functions, where D = {\\l : [-r,0] —+ X such that V|/ is
continuous everywhere except for a finite number of points s at which i|/(i~) and
\|;(i+) exists and \ | Í ( Í " ) - V|/(5)} , (j) G D(0 < r < °o),0 < T̂ I < • • • <r]p < b,p e
NX-DP '-^D,{DP = DxDxDxxD, p times), 0 = io < ii < • • • < ?m < 'm+i =
fc, Ik G C(X,X)(it = 1,2... m), are bounded functions. Ax\,^,^ = x(t^)-•«('*"),x{t^) =
lim/,_>o+ Jí(í* + h) and J:(/¿' ) = lim/,_^o- ^('t — /Ï) represent the right and left limits of
x{t) at t = Í*, respectively.

Now, we state and prove the existence result for the problem (3.1)-(3.3).
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Theorem 2. If the assumptions (//I) - (//3) and {H6) - (//8) are satisfied, then IVP
(3.1)-(3.3) has at least one solution on [-r,è].

Proof. Transform the problem (3.1)-(3.3) into a fixed point problem. Consider the
operator * : PC{[-r,b],X) -» PC{{-r,b],X) defined by

+ ¡¿AT{t-s)gis,Xs)ds

From hypothesis (//1 ) the following inequality holds

\\AT{t-s)g{s,Xs)\\<\\{-A)

it-sy-

Now we decompose <I> as <I> = 4>i -I- <I>2 where

Í0

ifteJ.

ift£[-r,O],

iftGJ.

ifte[-r,O],

\fteJ.

Now, we will show that the operators <I>i and <i>2 satisfy all the conditions of Theorem
2.1 on [-r,¿7]. From Theorem 3.1 easily we can prove that <I>| is contraction and <î>2
is completely continuous.

To apply the Krasnoselski-Schaefer theorem, it remains to show that the set

= x foris bounded for X € (0,1 ). To this end let x{-) e G{4>). Then
some XG (0,1) and
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+ M [
Jo

\\D+ r
Jo

'O [t — S)

+ M P{S)(Ù(\\XS\\D+
Jo \ Jo

^̂ jf ds

0 \t — S)

where

k=\

= max{||j:(í)|| : - r < j < í } , î e 7. Then ||JÍ,||D < / J ( Í ) for all Í £ 7 and there
isapointi* E [—r,t\ such that/Í(Í) = ||Ar(í*)||. Hence we have

O [t — s)

q{x)\\f{lj{x))dxjds.
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or

+ l - c , |

where

Co = TT, ;—DT7> C I = J7-, ;—DTT ^nd

1 ̂ ci||(-A)~ß|| 1-ci||(-A)~P||

From Lemma 2.2, we have

/' Í r \ \

where

^ o ' ß ' •

Let us take the right hand side ofthe above inequality as v(i). Then v(0) = //Co,
v(/) ,O</<èand

< HC2Mpit)(u (vit) -f L r qis)Mfivis))ds

Let w(/) = v(0 + ¿/Ó9(5)v|/(v(.y))d5. Then H'(O) r̂  v(0) -1-0 = / / Q , v(i) < H'(Î) for
ail t G 7, and

w'(0

This implies that



Existence Results for an Impulsive Neutral Functional 47

——. r-r < / m*(s)ds
,) (ù(x) + wx) -Jo ^ ^w{0)

dx

Hence there exists a constant M such that v(i) < M for all t G 7, and ij{t) < v{t) < M
for all / G 7. Therefore

I H I - sup \\x{t)\\=n{b)<w{b)<M forall.ïGG(<ï>).
ie[-rM

This shows that the set G is bounded in PC{[-r,b],X). Consequently, by Theorem
3.2.3, the operator <ï> has a fixed point in FC{[-r,b],X) . Thus the IVP (3.4.1)-(3.4.3)
has a solution on [- r, ¿7]. This completes the proof. O
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