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Abstract

In this paper, we consider the initial boundary value problem for the
three species cooperating model under various boundary conditions
in which the solution may blow up in finite time. Explicit lower
bound for blow up time is being obtained by using techniques based
on Sobolev type and first order differential inequalities.
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1 Introduction

The role of population ecology in mathematics is not to predict the change of specific populations, but
to provide the general insight into how biological processes, often driven by individual behavior, affect
population change over time. First of all, the ecology is reduced to differential equation model which
represents the essential phenomenon and the dynamic rules of mathematics and biology will be studied.

In this paper, let us consider the following three species cooperating model under different boundary
conditions in R

3:

u1t = d1∆u1+u1(a1− c1u1+ e1u2), x ∈ Ω, t > 0,

u2t = d2∆u2+u2(a2+b2u1− c2u2+ e2u3), x ∈ Ω, t > 0,

u3t = d3∆u3+u3(a3+b3u2− c3u3), x ∈ Ω, t > 0,

u1(x,0) = u10(x),u2(x,0) = u20(x),u3(x,0) = u30(x), x ∈ Ω,

u1(x, t) = u2(x, t) = u3(x, t) = 0, x ∈ ∂Ω, t > 0,

∂u1

∂n
=

∂u2

∂n
=

∂u3

∂n
= 0, x ∈ ∂Ω, t > 0,

∂u1

∂n
= α1u1,

∂u2

∂n
= α2u2,

∂u3

∂n
= α3u3, x ∈ ∂Ω, t > 0,
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where Ω is a bounded domain in R
3 with smooth boundary ∂Ω, αi, i = 1,2,3 are positive, T > 0 is

the maximal existence time. The population densities of three cooperating species are respectively
represented by ui = ui(x, t), i = 1,2,3. The real constants ai, ci, i = 1,2,3, represents the intrinsic growth
rates and intra-specific competition respectively. The positive constants e1, e2, b2, b3 are coefficients
for inter-specific cooperation. The problem (1) is a simple food chain model which describes the three
interacting species in which the presence of one species encourages the growth of preceding one and
vice versa.

The nonlinear parabolic partial differential equations are being attracted by many researchers due
to its applications in the broad fields such as engineering, biology, physics and so on. During the past
decades, existence and blow up phenomena of solutions to various classes of nonlinear mathematical
biology problems have been studied by several authors (refer [1–4]). The books by Straughan [5],
Quittner and Souplet [6] as well as the survey paper of Bandle and Brunner [7] and references therein
provide us a deeper knowledge on blow up. Kim and Lin [8] obtained the blow up estimates for the
above food chain model under Dirichlet boundary conditions. They found the upper bound estimates
for any n and lower bound to blow up rate for n = 1. They also investigated the three species food chain
model in [9] and showed that the global existence of solutions exists if the intra-specific competitions are
strong, whereas blowing up of solutions exists under certain conditions if the intra-specific competitions
are weak. One can follow the articles [10–12] for recent developments in three species models.

Moreover, when u3 = 0, the system (1) gets reduced to the following cooperating two species Lotka
Volterra model

u1t = d1∆u1+u1(a1−b1u1+ c1u2), x ∈ Ω, t > 0,

u2t = d2∆u2+u2(a2+b2u1− c2u2), x ∈ Ω, t > 0,

}

(2)

Lou et al. [13] gave the sufficient condition for the solution to blow up in finite time for the problem
(2) under homogeneous Neumann boundary conditions. Lin [14] derived the upper and lower bounds
of blowup rate for the two species Lotka-Volterra cooperating model (2) under homogeneous Dirichlet
boundary conditions. Lin et al. [15] considered the above two species model and they obtained blow
up properties of the system (2). They also proved that the periodic solutions exist if the intra-specific
conditions are strong, whereas blow up of solutions exists under certain conditions if the intra-specific
conditions are weak. Pao [16] showed that the blow up of solutions for the system (2) is possible
provided the two species are strongly mutualistic (c1b2 > c2b1) which means that the geometric mean of
the interaction coefficients exceeds that of population regulation coefficients. For recent developments,
one can refer [17–20].

All the above mentioned works are related in finding the existence and blow up of solutions for
various models. But our main interest is to evaluate t∗, the blow up time. Since t∗ is not easily
computable, we need to derive its upper and lower bounds. Many methods which are used in proving
blow up of solutions provide an upper bound for blow up time. For application purposes, due to the
explosive nature of solutions, it is important to determine the lower bound for blow up time. Over
the last few years, beginning with the work of Payne and Schaefer [21, 22], lower bound to blow up
time are obtained for various types of problems and also under different boundary conditions by using
first order differential inequality technique. In [23], Bhuvaneswari et al. obtained the explicit lower
bound for blow up time for two species chemotaxis model in R

3 along with Dirichlet, Neumann and
Robin boundary conditions. Marras in [24], considered blow-up solutions to parabolic systems, coupled
through their nonlinearities under various boundary conditions with nonlinearities depending on the
gradient solution and obtained lower bound for blow up time. One can refer [25–29] for recent articles
on lower bound.

Therefore, in line with these motivations, in this work the lower bound for blow up time for the
solution of the system (1) under Dirichlet boundary condition is derived in section 2. Since the Sobolev
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Talenti inequality does not hold true for the case of Neumann boundary condition, we derive lower
bound for the same by using Sobolev type inequality which provides the restriction for convex domain
Ω ∈ R

3 in section 3. In section 4, we obtain a blow up estimate from below for Robin type boundary
condition.

2 Dirichlet boundary condition

In this section, we obtain the lower bound for blow time in R
3 for the system (1) under Dirichlet

boundary condition ui(x, t) = 0, i = 1,2,3, on the boundary. And also let us assume that the initial
values ui0(x), i = 1,2,3 satisfy the compatibility condition on the boundary ui0(x) = 0 on ∂Ω.

Let us assume that the solutions for the system (1) blow up in finite time t∗. For n ≥ 1, define the
auxiliary function

ϕ(t) =

ˆ

Ω
u2n

1 dx+
ˆ

Ω
u2n

2 dx+
ˆ

Ω
u2n

3 dx

= ϕ1(t)+ϕ2(t)+ϕ3(t), (3)

where ϕ0(x) =
´

Ω u2n
10dx+

´

Ω u2n
20dx+

´

Ω u2n
30dx satisfies the first order differential inequality of the form

ϕ ′(t) ≤ ψ(ϕ) for some compatible function ψ(ϕ). It then follows that t∗ is bounded below by t∗ ≥
´ ∞

ϕ(0)
dη

ψ(η) . The following Lemma is useful for us in proving our main results.

Lemma 1. [24] Let w be a real valued function defined in R
3. Then the following inequality holds true

for all x ∈ Ω:
ˆ

Ω
w3dx ≤

CT

4τ3 (

ˆ

Ω
w2dx)3+

3τCT

4

ˆ

Ω
|∇w|2dx, (4)

where CT = 2π−13−
3
4 is the Sobolev constant (see [30], q = 6, p = 2,m = 3).

Theorem 2. Let Ω ⊂ R
3 be a bounded, star-shaped and convex domain in two orthogonal directions

with smooth boundary ∂Ω. Assume that (u1,u2,u3) are nonnegative classical solutions of the system
(1) in Ω under Dirichlet boundary condition with compatible initial data. Moreover, let the solution
(u1,u2,u3) blows up in ϕ measure (3) at time t∗. Then t∗ satisfies

t∗ ≥
ˆ ∞

ϕ(0)

dη
Aη +Bη3+C

, (5)

for some positive constants A, B and C.

Proof. Differentiating ϕ1(t), upon substituting (1) and simplifying, we get

ϕ ′
1(t) = 2nd1

ˆ

Ω
u2n−1

1 ∆u1dx+2na1

ˆ

Ω
u2n

1 dx−2nc1

ˆ

Ω
u2n+1

1 dx+2ne1

ˆ

Ω
u2n

1 u2dx

= 2nd1

ˆ

∂Ω
u2n−1

1
∂u1

∂n
ds−2n(2n−1)d1

ˆ

Ω
u2n−2

1 |∇u1|
2dx+2na1

ˆ

Ω
u2n

1 dx

−2nc1

ˆ

Ω
u2n+1

1 dx+2ne1

ˆ

Ω
u2n

1 u2dx. (6)

Using Young’s and Hölder’s inequalities to the last term, one can get
ˆ

Ω
u2n

1 u2dx ≤ (

ˆ

Ω
u2n+1

1 dx)
2n

2n+1(

ˆ

Ω
u2n+1

2 dx)
1

2n+1
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≤
2n

2n+1

ˆ

Ω
u2n+1

1 dx+
1

2n+1

ˆ

Ω
u2n+1

2 dx. (7)

Inserting (7) in (6), one gets

ϕ ′
1(t) ≤ −

2(2n−1)d1

n

ˆ

Ω
|∇un

1|
2dx+2na1

ˆ

Ω
u2n

1 dx+[
2n

2n+1

(

2n(e1− c1)− c1
)

]

×

ˆ

Ω
u2n+1

1 dx+
2ne1

2n+1

ˆ

Ω
u2n+1

2 dx. (8)

Analogously proceeding for ϕ2(t),ϕ3(t), one can obtain the following:

ϕ ′
2(t) ≤ −

2(2n−1)d2

n

ˆ

Ω
|∇un

2|
2dx+2na2

ˆ

Ω
u2n

2 dx+[
2n

2n+1

(

2n(b2+ e2− c2)− c2
)

]

×

ˆ

Ω
u2n+1

2 dx+
2nb2

2n+1

ˆ

Ω
u2n+1

1 dx+
2ne2

2n+1

ˆ

Ω
u2n+1

3 dx, (9)

ϕ ′
3(t) ≤ −

2(2n−1)d3

n

ˆ

Ω
|∇un

3|
2dx+2na3

ˆ

Ω
u2n

3 dx+[
2n

2n+1

(

2n(b3− c3)− c3
)

]

×

ˆ

Ω
u2n+1

3 dx+
2nb3

2n+1

ˆ

Ω
u2n+1

2 dx. (10)

Thus adding (8), (9) and (10), we get

ϕ ′(t) ≤ −
2(2n−1)d1

n

ˆ

Ω
|∇un

1|
2dx−

2(2n−1)d2

n

ˆ

Ω
|∇un

2|
2dx−

2(2n−1)d3

n

ˆ

Ω
|∇un

3|
2dx

+2na1

ˆ

Ω
u2n

1 dx+2na2

ˆ

Ω
u2n

2 dx+2na3

ˆ

Ω
u2n

3 dx

+[
2n

2n+1

(

2n(b2+ e1− c1)− c1
)

]

ˆ

Ω
u2n+1

1 dx

+[
2n

2n+1

(

2n(b2+b3+ e1+ e2− c2)− c2
)

]

ˆ

Ω
u2n+1

2 dx

+[
2n

2n+1

(

2n(b3+ e2− c3)− c3
)

]

ˆ

Ω
u2n+1

3 dx. (11)

Making use of Young’s and Hölder’s inequalities, we obtain
ˆ

Ω
u2n+1

i dx ≤ (

ˆ

Ω
u3n

i dx)
2n+1

3n |Ω|
n−1
3n

≤ (
2n+1

3n
)

ˆ

Ω
u3n

i dx+(
n−1
3n

)|Ω|, (12)

for i = 1,2,3. Inserting (12) in (11) and simplifying, we get

ϕ ′(t) ≤ −
2(2n−1)d1

n

ˆ

Ω
|∇un

1|
2dx−

2(2n−1)d2

n

ˆ

Ω
|∇un

2|
2dx−

2(2n−1)d3

n

ˆ

Ω
|∇un

3|
2dx

+2na1

ˆ

Ω
u2n

1 dx+2na2

ˆ

Ω
u2n

2 dx+2na3

ˆ

Ω
u2n

3 dx

+C1

ˆ

Ω
u3n

1 dx+C2

ˆ

Ω
u3n

2 dx+C3

ˆ

Ω
u3n

3 dx+C, (13)

where, Ci, i = 1,2,3, and C are constants that depend on bi,ei,ci,n and |Ω|. From Lemma (1) taking
w = un, one can yield

ˆ

Ω
u3n

i dx ≤
CT

4ε3
i

(

ˆ

Ω
u2n

i dx)3+
3εiCT

4

ˆ

Ω
|∇un

i |
2dx, i = 1,2,3, (14)
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where εi, i = 1,2,3, are positive constants whose values need to be determined later. Inserting (14) in
(13), one gets

ϕ ′(t) ≤ −[
2(2n−1)d1

n
−

3ε1CTC1

4
]

ˆ

Ω
|∇un

1|
2dx− [

2(2n−1)d2

n
−

3ε2CTC2

4
]

ˆ

Ω
|∇un

2|
2dx

−[
2(2n−1)d3

n
−

3ε3CTC3

4
]

ˆ

Ω
|∇un

3|
2dx+2na1

ˆ

Ω
u2n

1 dx+2na2

ˆ

Ω
u2n

2 dx

+2na3

ˆ

Ω
u2n

3 dx+
CTC1

4ε3
1

(

ˆ

Ω
u2n

1 dx)3+
CTC2

4ε3
2

(

ˆ

Ω
u2n

2 dx)3

+
CTC3

4ε3
3

(

ˆ

Ω
u2n

3 dx)3+C. (15)

Choose the values of εi, i = 1,2,3, such that

2(2n−1)di

n
−

3εiCTCi

4
= 0, i = 1,2,3.

Solving the above, we get

εi =
8(2n−1)di

3nCTCi
, i = 1,2,3.

Thus (15) now gets reduced to the differential inequality

ϕ ′(t) ≤ Aϕ +Bϕ3+C, (16)

where A = 2n(a1 + a2+ a3) and B =
CT

4
[
C1

ε3
1

+
C2

ε3
2

+
C3

ε3
3

] and we have made use of the fact that, for any

γ > 1 and non negative a and b,

aγ +bγ ≤ (a+b)γ . (17)

Integrating the inequality (16) from 0 to t, we get

t ≥
ˆ ϕ(t)

ϕ(0)

dη
Aη +Bη3+C

.

From our assumption that the solution blows up in time t∗ in some finite measure ϕ(t), we obtain

t∗ ≥
ˆ ∞

ϕ(0)

dη
Aη +Bη3+C

.

Thus we get the desired result.

3 Neumann boundary condition

In this section, let us obtain the lower bound for blow up time for the system (1) under Neumann

condition
∂ui

∂n
= 0, i = 1,2,3 on ∂Ω that satisfies the compatibility condition

∂ui0

∂n
= 0 on the boundary.

Theorem 3. Let (u1,u2,u3) be the solution of (1) under Neumann condition in a bounded, convex and
star-shaped domain Ω ⊂ R

3. If the solution becomes unbounded in the finite measure ϕ at some finite
time t∗, then t∗ is bounded below by

t∗ ≥

ˆ ∞

ϕ(0)

dη
C+Dη +Eη3/2+Fη3

, (18)

where C,D,E,F are positive constants.
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Proof. The proof is same as that of Theorem (2) till (13). Since the Sobolev Talenti inequality
is valid only for the Dirichlet case, that cannot be applied here. So in order to bound the 7th to 9th

terms we make use of the following Sobolev type inequality which was derived by Payne and Schaefer
in [21, (2.8)-(2.16)] in a restricted convex domain Ω in R

3.
ˆ

Ω
u3n

i dx ≤
1

33/4
{

3
2ρ0

ˆ

Ω
u2n

i dx+(
d
ρ0

+1)(
ˆ

Ω
u2n

i dx)
1
2 (

ˆ

Ω
|∇un

i |
2dx)

1
2}

3
2 . (19)

Making use of the following inequalities,

(a+b)
j+1

j ≤ 2
1
j (a

j+1
j +b

j+1
j ),

ap +bq ≤ pa+bq, p+q = 1,

where a and b are some positive constants, (19) now becomes, for i = 1,2,3,
ˆ

Ω
u3n

i dx ≤
21/2

33/4
{m3/2

1 (

ˆ

Ω
u2n

i dx)3/2+m3/2
2 (

ˆ

Ω
u2n

i dx)3/4(

ˆ

Ω
|∇un

i |
2dx)3/4}

≤
21/2m3/2

1

33/4
(

ˆ

Ω
u2n

i dx)3/2+
21/2m3/2

2

33/44ε3
i

(

ˆ

Ω
u2n

i dx)3

+
21/2m3/2

2 εi31/4

4
(

ˆ

Ω
|∇un

i |
2dx), (20)

where we have made use of the arithmetic geometric inequality for positive weight function εi, i= 1,2,3,
whose values need to be determined later on, m1 =

3
2ρ0

and m2 = ( d
ρ0
+1). Thus inserting (20) in (13),

we get

ϕ ′(t) ≤ −[
2(2n−1)d1

n
−

21/2m3/2
2 ε1C131/4

4
]

ˆ

Ω
|∇un

1|
2dx

−[
2(2n−1)d2

n
−

21/2m3/2
2 ε2C231/4

4
]

ˆ

Ω
|∇un

2|
2dx

−[
2(2n−1)d3

n
−

21/2m3/2
2 ε3C331/4

4
]

ˆ

Ω
|∇un

3|
2dx

+2na1

ˆ

Ω
u2n

1 dx+2na2

ˆ

Ω
u2n

2 dx+2na3

ˆ

Ω
u2n

3 dx

+
21/2m3/2

1 C1

33/4
(

ˆ

Ω
u2n

1 dx)3/2+
21/2m3/2

1 C2

33/4
(

ˆ

Ω
u2n

2 dx)3/2

+
21/2m3/2

1 C3

33/4
(

ˆ

Ω
u2n

3 dx)3/2+
21/2m3/2

2 C1

33/4 ·4ε3
1

(

ˆ

Ω
u2n

1 dx)3

+
21/2m3/2

2 C2

33/4 ·4ε3
2

(

ˆ

Ω
u2n

2 dx)3+
21/2m3/2

2 C3

33/4 ·4ε3
3

(

ˆ

Ω
u2n

3 dx)3+C. (21)

Let us choose the values of εi, i = 1,2,3, in such a way that the first three terms of the above inequality
vanish.

εi =
25/2(2n−1)di

m3/2
2 nCi31/4

, i = 1,2,3.

Thus (21) now gets reduced to the differential inequality

ϕ ′(t)≤C+Dϕ +Eϕ3/2+Fϕ3, (22)
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where we have made use of the inequality (17) and

D = 2n(a1+a2+a3),

E =
21/2m3/2

1

33/4
(C1+C2+C3),

F =
21/2m3/2

2

33/4 ·4
(
C1

ε3
1

+
C2

ε3
2

+
C3

ε3
3

).

Solving (22), one gets

t ≥

ˆ ϕ(t)

ϕ(0)

dη
C+Dη +Eη3/2+Fη3

.

Since the solution blows up in finite time t∗ in finite measure ϕ ,

t∗ ≥

ˆ ∞

ϕ(0)

dη
C+Dη +Eη3/2+Fη3

.

Thus we get the desired result.

4 Robin boundary condition

We consider in this section the system (1) along with the Robin boundary condition ∂ui
∂n =αiui, i= 1,2,3,

where αi are positive constants. And also we assume that the initial values satisfy the compatibility
condition ∂ui0

∂n = 0 on the boundary ∂Ω. Moreover the theorem in the above section cannot be applied
here since we need to calculate the values of the integral over the boundary. We need the help of the
following lemma to prove our main result.

Lemma 4. For any C 1 function w(x)> 0 in a bounded star shaped convex domain Ω ⊂R
N, N ≥ 2, we

have the following inequality
ˆ

∂Ω
wndσ ≤

N
ρ0

ˆ

Ω
wndx+

nd
ρ0

ˆ

Ω
wn−1|∇w|dx, (23)

where ρ0 =
min
∂Ω (x ·n) and d = max

Ω |x|.

Proof. Since Ω is a bounded star-shaped domain, we have ρ0 > 0. Consider the identity

∇(wnx) = Nwn+nwn−1(x ·∇w).

On integrating the identity over Ω and applying Gauss divergence theorem, we obtain
ˆ

∂Ω
wn(x ·n)dσ = N

ˆ

Ω
wndx+n

ˆ

Ω
wn−1|x ·∇w|dx,

ˆ

∂Ω
wndσ ≤

N
ρ0

ˆ

Ω
wndx+

nd
ρ0

ˆ

Ω
wn−1|∇w|dx,

which follow from the definition of ρ0 and d.

Theorem 5. Let ui(x, t) be the nonnegative classical solution of the system (1) with Robin boundary
condition in a bounded star-shaped domain Ω ⊂ R

3 which is assumed to be convex in two orthogonal
directions. Then assuming that the solution blows up in finite time t∗ in finite measure ϕ(t), we need
to show that t∗ is bounded from below by (18).
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Proof. Differentiating the finite measure ϕ(t), we get

ϕ ′(t) = 2nd1α1

ˆ

∂Ω
u2n

1 ds+2nd2α2

ˆ

∂Ω
u2n

2 ds+2nd3α3

ˆ

∂Ω
u2n

3 ds

−
2(2n−1)d1

n

ˆ

Ω
|∇un

1|
2dx−

2(2n−1)d2

n

ˆ

Ω
|∇un

2|
2dx−

2(2n−1)d3

n

ˆ

Ω
|∇un

3|
2dx

+2na1

ˆ

Ω
u2n

1 dx+2na2

ˆ

Ω
u2n

2 dx+2na3

ˆ

Ω
u2n

3 dx

+C1

ˆ

Ω
u3n

1 dx+C2

ˆ

Ω
u3n

2 dx+C3

ˆ

Ω
u3n

3 dx+C. (24)

From (23), the first three terms now become, for N = 3,
ˆ

∂Ω
u2n

i ds ≤
3
ρ0

ˆ

Ω
u2n

i dx+
2nd
ρ0

ˆ

Ω
u2n−1

i |∇ui|dx

≤
3
ρ0

ˆ

Ω
u2n

i dx+
2nd
ρ0

(

ˆ

Ω
u2n

i dx
ˆ

Ω
u2n−2

i |∇ui|
2dx)1/2

≤
3
ρ0

ˆ

Ω
u2n

i dx+
d
ρ0

ˆ

Ω
u2n

i dx+
d
ρ0

ˆ

Ω
|∇un

i |
2dx

≤ m3

ˆ

Ω
u2n

i dx+m4

ˆ

Ω
|∇un

i |
2dx, (25)

where we have used Cauchy Schwarz inequality, m3 = 3+d
ρ0

and m4 = d
ρ0
. Inserting (25) in (24) and

simplifying one gets

ϕ ′(t) ≤ −(2d1[
2n−1

n
−nα1m4])

ˆ

Ω
|∇un

1|
2dx− (2d2[

2n−1
n

−nα2m4])

ˆ

Ω
|∇un

2|
2dx

−(2d3[
2n−1

n
−nα3m4])

ˆ

Ω
|∇un

3|
2dx+2n(a1+d1α1m3)

ˆ

Ω
u2n

1 dx

+2n(a2+d2α2m3)

ˆ

Ω
u2n

2 dx+2n(a3+d3α3m3)

ˆ

Ω
u2n

3 dx

+C1

ˆ

Ω
u3n

1 dx+C2

ˆ

Ω
u3n

2 dx+C3

ˆ

Ω
u3n

3 dx+C. (26)

Inserting (20) in the above inequality, we obtain

ϕ ′(t) ≤ −(2d1[
2n−1

n
−nα1m4]−

21/2m3/2
2 ε1C131/4

4
)

ˆ

Ω
|∇un

1|
2dx

−(2d2[
2n−1

n
−nα2m4]−

21/2m3/2
2 ε2C231/4

4
)

ˆ

Ω
|∇un

2|
2dx

−(2d3[
2n−1

n
−nα3m4]−

21/2m3/2
2 ε3C331/4

4
)

ˆ

Ω
|∇un

3|
2dx

+2n(a1+d1α1m3)

ˆ

Ω
u2n

1 dx+2n(a2+d2α2m3)

ˆ

Ω
u2n

2 dx

+2n(a3+d3α3m3)

ˆ

Ω
u2n

3 dx+
21/2m3/2

1 C1

33/4
(

ˆ

Ω
u2n

1 dx)3/2

+
21/2m3/2

1 C2

33/4
(

ˆ

Ω
u2n

2 dx)3/2+
21/2m3/2

1 C3

33/4
(

ˆ

Ω
u2n

3 dx)3/2
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+
21/2m3/2

2 C1

33/4 ·4ε3
1

(

ˆ

Ω
u2n

1 dx)3+
21/2m3/2

2 C2

33/4 ·4ε3
2

(

ˆ

Ω
u2n

2 dx)3

+
21/2m3/2

2 C3

33/4 ·4ε3
3

(

ˆ

Ω
u2n

3 dx)3+C. (27)

Choose the values of εi, i = 1,2,3, in the following way such that the first three terms of the above
inequality vanish

εi = 2di[
2n−1

n
−nαim4]

4

21/2m3/2
2 Ci31/4

.

Thus the above inequality (27) is now reduced to

ϕ ′(t)≤C+Dϕ +Eϕ3/2+Fϕ3, (28)

where

D = 2n(a1+a2+a3)+2nm3(d1α1+d2α2+d3α3),

E =
21/2m3/2

1

33/4
(C1+C2+C3),

F =
21/2m3/2

2

33/4 ·4
(
C1

ε3
1

+
C2

ε3
2

+
C3

ε3
3

).

Solving (28), we get the resultant lower bound.

5 Conclusion

In this article, explicit estimates from below for blow up time were obtained for different types of
boundary conditions for an ecological system namely, the three species cooperating model in R

3 by
choosing suitable type of auxiliary function and compatible initial data using first order differential
inequality technique.
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