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Abstract The governing equation for one-dimensional single species transport

model in a saturated porous medium with appropriate initial and boundary condi-

tions is discretized by using finite volume formulation. A weighted average approx-

imation is then applied to the integral terms. Twelve different schemes of explicit,

semi-implicit, and fully implicit in nature are derived. The stability and convergence

of those numerical schemes are also discussed. The numerical experiments are car-

ried out for the single species transport problem with degradation in liquid phase.

These numerical results are compared with the analytical solution. It is shown that

semi-implicit and fully implicit type schemes are not always unconditionally stable.

A novel numerical technique is used to approximate the reaction term of partial dif-

ferential equation. Taking average for reaction term at different time levels yields

a better approximation for upwind scheme. Further, it is proved that the averaging

technique gives unconditional stability for implicit nature numerical schemes.

Keywords Finite volume method · Weighted average · Contamination transport ·
Stability · Consistency · First-order reaction

1 Introduction

In the modernized society, the use of chemicals becomes inevitable in day-to-day life.

The chemical producing factories are growing like any other industry. The dump-

ing of chemical waste by these factories spoils the surrounding soil of the earth

and groundwater quality. The aquifers beneath the earth surface get contaminated

more and more by reactive substances like petroleum hydrocarbons and chlorinated
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solvents. The chemical particles in the waste react with other minerals and metals

beneath the surface. These reactions in the aquifers may pose great danger to nature.

Therefore, there is a need to study reactive transport in a porous medium. Further,

the study about contamination discharge is very important to protect groundwater,

oil, and metals.

Analytical solutions for species transport models have been developed since 1971.

Cho [1] described the analytical solution for the transport of ammonium with sequen-

tial first-order kinetic reaction. This is considered to be a pioneer paper in species

transport. At the end of twentieth century, Sun and Clement [2] and Sun et al. [3]

have developed a transport model involving the retardation factor. Latter, Bauer et al.

[4] and Clement et al. [5] found an analytical solution for multi species transport with

first-order sequential reaction involving distinct retardation factors. The analytical

solutions are derived with the main assumption that the data set is continuous. But in

many real-life problems, the data varies drastically. Therefore, analytical solutions

are not so beneficial and hence computationally simulated solutions with the past

information are useful for many physical problems.

The computational aspect purely depends on numerical techniques. There are

various numerical techniques like finite difference, finite element, and finite volume

used to solve equations arising from physical phenomena. A few well-known numer-

ical techniques are listed below in the arena of species transport models. Clement [6]

has applied finite difference method for the transport model and then developed a

software RT3D. Many available groundwater simulating software like, MODFLOW,

PLASAM, AQUIFEM, and FEFLOW are developed from either finite difference or

finite element discretization. There are drawbacks in implementing these methods

for property transport problems. The finite difference method is not advisable for

complex geometry and flux boundary conditions. The finite element method has the

global mass conservation property but not locally. The mass conservation principle

is pretty important in any transport problem. The finite volume technique takes care

of physical and chemical phenomena of the problem under consideration with its

local mass conservation principle. In this article, an attempt has been made to study

finite volume formulation for transport equation.

2 Governing Equation

The partial differential equation with the appropriate initial and boundary conditions

which describes the single species transport in x-direction in a saturated porous

medium is given below (see, [4]).

PDE:

R
∂c

∂t
+ v

∂c

∂x
− D

∂2c

∂x2
= −kc 0 < x < ∞, t > 0 (1)

Type of boundary conditions:
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c(0, t) = C0 t > 0 (2)

c(0, t) = f (t) t > 0 (3)

lim
x→∞

c(x, t) = 0 t > 0 (4)

Type of initial conditions:

c(x, 0) = 0 0 < x < ∞ (5)

c(x, 0) = (x) wi th lim
x→∞

g(x) = 0 (6)

Here, c is the concentration of species [ML−3]; R, the retardation factor; v, the

prescribed constant transport velocity in x direction [LT−1]; k, the first-order con-

taminant destruction rate constant [T−1]; and D, the dispersion coefficient [L−1T−1].

The problem is to find the concentration of a species c(x, t) at any distance x

measured from the origin in any time t satisfying above PDE, initial, and boundary

conditions. The boundary condition (2) represents the source of constant dumping

of chemical wastage, whereas (3) represents the varying dumping in time t . The

condition (4) indicates the zero concentration of species at the farther end at infinity.

Similarly, the initial condition (5) represents that there is no sign of species concen-

tration (i.e., contamination) at the initial time. The alternate condition (6) indicates

the initial presence of contamination.

The kinetics of reaction is assumed to be of first order. The radioactive decay is an

example for a true first-order process. Also chemical and biological transforms can be

approximately treated as first-order reaction. Equation (1) assumes that degradation

occurs only in the liquid phase.

The above transport equation (1) is used for solving different types of environ-

mental problems. Bauer et al. [4] utilized to model transport of decay chain in homo-

geneous porous media. Clement et al. [5] applied the generalized form to model

multi-species transport coupled with first-order reaction network with distinct retar-

dation factors. The similar kind of equations are employed to model the fate and

transport of chlorinated solvent plumes by Clement et al. [7, 8]. Cho [1] used it to

model the fate and transport of nitrate species in soil–water systems; Van Genuc-

then [9] applied it for modeling radionuclide migration. Elango et al. [10] used for

groundwater flow and radionuclide decay-chain transport modeling around a pro-

posed uranium tailing pond in India.

Result 2.1

Analytical solution to species transport equation (1) with conditions (2), (4) and (5)

is given by (see, [5]):

c(x, t) =
C0

2
exp

( vx

2D

)

[

exp
(

−
mx

2D

)

er f c

(

Rx − mt
√

4DRt

)

+ exp
(mx

2D

)

er f c

(

Rx + mt
√

4DRt

)]

,

(7)

where m =
√

u2 + 4k D.
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3 Derivation of the Numerical Scheme

In this section, a finite volume formulation is presented for the transport equation

(2.1) described in previous section. The computational domain is discretized by non

overlapping control volumes. The control volume (CV) is given in Fig. 1.

Here, ∆V = A∆x . Where A is cross-sectional area and ∆x is the spatial dis-

cretization length. W, P and E are western, present and eastern nodal points. w and

e are western and eastern faces of control volume. Though the control volume is in

three-dimensional space, only one-dimensional (i.e., x-direction) transport problem

is considered in this paper. Therefore, the other two dimensions are assumed to be

negligible.

The vector form of (1) is given by

R
∂c

∂t
= ∇ · (∇ Dc) − v · ∇(c) − kc. (8)

Integrating the above PDE over the control volume in the interval (t, t + ∆t) with

time step ∆t and then applying Gauss divergence theorem, we obtain

R

∫ t+∆t

t

∫

CV

∂c

∂t
dV dt =

∫ t+∆t

t

∫

CV

∇ · (∇ Dc)dV dt −
∫ t+∆t

t

∫

CV

v · ∇(c)dV dt

−
∫ t+∆t

t

∫

CV

kcdV dt.

R

∫

CV

(cn+1 − cn)dV =
∫ t+∆t

t

∫

S

−→
n · ∇(Dc)d Sdt −

∫ t+∆t

t

∫

S

−→
n · (cv)d Sdt

−Cavgk

∫

CV

dV

∫ t+∆t

t

dt,

where
−→
n is the outward normal to the surface S (cross-sectional area A) and Cavg

is the average concentration c inside CV. One-dimensional formulation of above

integral is given by

R

∫

CV

(cn+1 − cn)dV =
∫ t+∆t

t

∫

S

−→
n · i

∂(Dc)

∂x
d Sdt −

∫ t+∆t

t

∫

S

−→
n · i(cv)d Sdt

−Cavgk A∆x∆t,

Fig. 1 Control volume (CV)

e wPE W
A

x

x

2

x-Direction
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where Cn
P be the approximation of c(x, t) at the nodal point (x p, tn). The parameters

D and v are assumed to be constants. Using weighted average for the time integration

to obtain

R(Cn+1
P − Cn

P )∆x =

[

(1 − θ)

[(

∂c

∂x

)n

e

−
(

∂c

∂x

)n

w

]

+ θ

[

(

∂c

∂x

)n+1

e

−
(

∂c

∂x

)n+1

w

]]

D∆t

−
[

(1 − θ)[cn
e − cn

w] − θ[cn+1
e − cn+1

w ]
]

v∆t − Cavgk∆x∆t.

Using the following central difference approximation for the derivative term

(

∂c

∂x

)n

e

≈
Cn

E − Cn
P

∆x

(

∂c

∂x

)n

w

≈
Cn

P − Cn
W

∆x
,

we obtain

R(Cn+1
P − Cn

P )∆x = (1 − θ)
D∆t

∆x

[

Cn
W − 2Cn

P + Cn
E

]

+ θ
D∆t

∆x

[

Cn+1
W − 2Cn

P + Cn+1
E

]

− (1 − θ)v∆t
[

cn
e − cn

w

]

− θv∆t
[

cn+1
e − cn+1

w

]

− Cavgk∆x∆t. (9)

4 Various Numerical Schemes

The following 12 different numerical schemes are derived for different values of θ
and different approximations to Cavg and CFace.

θ-values CAverage CFace Scheme

θ = 0 Cavg = Cn
P Cn

e = Cn
E +Cn

P

2
, Cn

w = Cn
P +Cn

W

2
Scheme 1

Cn
e = Cn

P , Cn
w = Cn

W Scheme 3

Cavg = Cn
P +Cn+1

P

2
Cn

e = Cn
E +Cn

P

2
, Cn

w = Cn
P +Cn

W

2
Scheme 2

Cn
e = Cn

P , Cn
w = Cn

W Scheme 4

θ = 1
2

Cavg = Cn
P Cn

e = Cn
E +Cn

P

2
, Cn

w = Cn
P +Cn

W

2
Scheme 5

Cn
e = Cn

P , Cn
w = Cn

W Scheme 7

Cavg = Cn
P +Cn+1

P

2
Cn

e = Cn
E +Cn

P

2
, Cn

w = Cn
P +Cn

W

2
Scheme 6

Cn
e = Cn

P , Cn
w = Cn

W Scheme 8

θ = 1 Cavg = Cn
P Cn

e = Cn
E +Cn

P

2
, Cn

w = Cn
P +Cn

W

2
Scheme 9

Cn
e = Cn

P , Cn
w = Cn

W Scheme 11

Cavg = Cn
P +Cn+1

P

2
Cn

e = Cn
E +Cn

P

2
, Cn

w = Cn
P +Cn

W

2
Scheme 10

Cn
e = Cn

P , Cn
w = Cn

W Scheme 12
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The approximations Cn
e = Cn

P , Cn
w = Cn

W and Cn
e = Cn

P , Cn
w = Cn

W are called

central difference and upwind, respectively. The average of concentration Cavg =
Cn

P +Cn+1
P

2
at n and n + 1 time level is justified because the control volume is fixed.

Following explicit schemes are obtained by substituting θ = 0.

Explicit type schemes (θ = 0)

Scheme 1

Cn+1
P =

[

D∆t

R∆x2
+

v∆t

2R∆x

]

Cn
W +

[

1 −
2D∆t

R∆x2
−

k∆t

R

]

Cn
P +

[

D∆t

R∆x2
−

v∆t

2R∆x

]

Cn
E . (10)

Scheme 2

[

1 +
k∆t

2R

]

Cn+1
P

=
[

D∆t

R∆x2
+

v∆t

2R∆x

]

Cn
W +

[

1 −
2D∆t

R∆x2
−

k∆t

2R

]

Cn
P +

[

D∆t

R∆x2
−

v∆t

2R∆x

]

Cn
E .

(11)

Scheme 3

Cn+1
P

=
[

D∆t

R∆x2
+

v∆t

R∆x

]

Cn
W +

[

1 −
2D∆t

R∆x2
−

v∆t

R∆x
−

k∆t

R

]

Cn
P +

[

D∆t

R∆x2

]

Cn
E . (12)

Scheme 4

[

1 +
k∆t

2R

]

Cn+1
P

=
[

D∆t

R∆x2
+

v∆t

R∆x

]

Cn
W +

[

1 −
2D∆t

R∆x2
−

v∆t

R∆x
−

k∆t

2R

]

Cn
P +

[

D∆t

R∆x2

]

Cn
E .

(13)

For θ = 1
2
, we have the following schemes.

Semi-implicit type schemes (θ = 1
2
)

Scheme 5

−
[

D∆t

2R∆x2
+

v∆t

4R∆x

]

Cn+1
W +

[

1 +
D∆t

R∆x2

]

Cn+1
P −

[

D∆t

2R∆x2
−

v∆t

4R∆x

]

Cn+1
E

=
[

D∆t

2R∆x2
+

v∆t

4R∆x

]

Cn
W +

[

1 −
D∆t

R∆x2
−

k∆t

R

]

Cn
P +

[

D∆t

2R∆x2
−

v∆t

4R∆x

]

Cn
E .

(14)

Scheme 6

−
[

D∆t

2R∆x2
+

v∆t

4R∆x

]

Cn+1
W +

[

1 +
D∆t

R∆x2
+

k∆t

2R

]

Cn+1
P −

[

D∆t

2R∆x2
−

v∆t

4R∆x

]

Cn+1
E

=
[

D∆t

2R∆x2
+

v∆t

4R∆x

]

Cn
W +

[

1 −
D∆t

R∆x2
−

k∆t

2R

]

Cn
P +

[

D∆t

2R∆x2
−

v∆t

4R∆x

]

Cn
E .

(15)
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Scheme 7

−
[

D∆t

2R∆x2
+

v∆t

2R∆x

]

Cn+1
W +

[

1 +
D∆t

R∆x2
+

v∆t

2R∆x

]

Cn+1
P −

[

D∆t

2R∆x2

]

Cn+1
E

=
[

D∆t

2R∆x2
+

v∆t

2R∆x

]

Cn
W +

[

1 −
D∆t

R∆x2
−

v∆t

2R∆x
−

k∆t

R

]

Cn
P +

[

D∆t

2R∆x2

]

Cn
E .

(16)

Scheme 8

−
[

D∆t

2R∆x2
+

v∆t

2R∆x

]

Cn+1
W

+
[

1 +
D∆t

R∆x2
+

v∆t

2R∆x
+

k∆t

2R

]

Cn+1
P

−
[

D∆t

2R∆x2

]

Cn+1
E

=
[

D∆t

2R∆x2
+

v∆t

2R∆x

]

Cn
W +

[

1 −
D∆t

R∆x2
−

v∆t

2R∆x
−

k∆t

2R

]

Cn
P +

[

D∆t

2R∆x2

]

Cn
E . (17)

Implicit type schemes (θ = 1)

Scheme 9

−
[

D∆t

R∆x2
+

v∆t

2R∆x

]

Cn+1
W

+
[

1 +
2D∆t

R∆x2

]

Cn+1
P

−
[

D∆t

R∆x2
−

v∆t

2R∆x

]

Cn+1
E

=
[

1 −
k∆t

R

]

Cn
P .

(18)

Scheme 10

−
[

D∆t

R∆x2
+

v∆t

2R∆x

]

Cn+1
W +

[

1 +
2D∆t

R∆x2
+

k∆t

2R

]

Cn+1
P −

[

D∆t

R∆x2
−

v∆t

2R∆x

]

Cn+1
E

=
[

1 −
k∆t

2R

]

Cn
P . (19)

Scheme 11

−
[

D∆t

R∆x2
+

v∆t

R∆x

]

Cn
W +

[

1 +
2D∆t

R∆x2
+

v∆t

R∆x

]

Cn
P −

[

D∆t

R∆x2

]

Cn
E =

[

1 −
k∆t

R

]

Cn
P . (20)

Scheme 12

−
[

D∆t

R∆x2
+

v∆t

R∆x

]

Cn
W +

[

1 +
2D∆t

R∆x2
+

v∆t

R∆x
+

k∆t

2R

]

Cn
P −

[

D∆t

R∆x2

]

Cn
E =

[

1 −
k∆t

2R

]

Cn
P .

(21)
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5 Stability Analysis

In this section, we shall discuss the stability of general form of the explicit, semi-

implicit, and implicit finite difference schemes. The general form of explicit, semi-

implicit, and implicit schemes are given below:

Cn+1
m = pCn

m−1 + qCn
m + rCn

m+1 (22)

− pCn+1
m−1 + qCn+1

m − rCn+1
m+1 = pCn

m−1 + sCn
m + rCn

m+1 (23)

− pCn+1
m−1 + qCn+1

m − rCn+1
m+1 = sCn

m (24)

Definition 5.1 A scheme U n+1
m = G(U n

m−k, ..., U n
m, ...U n

m+p) is called monotone

scheme if G is non-decreasing function of each of its argument.

i.e., ∂G
∂Ui

(U−k, ..., U0, ...Up) ≥ 0, i = −k, ..., p.

Theorem 5.1 Let Cn+1
m = pCn

m−1 + qCn
m + rCn

m+1 be the general form of explicit

finite difference scheme for the linear time-dependent partial differential equation

(1). If p ≥ 0, q ≥ 0 and r ≥ 0 and satisfy (p + q + r)2 ≤ 1 + 4q(p + r), then the

scheme is stable and monotone.

Proof Let Cn+1
m = pCn

m−1 + qCn
m + rCn

m+1 be the general form of explicit finite dif-

ference numerical scheme. Let Cn
m = Bξ neimθ . The von Neumann stability analysis

for the above difference scheme implies,

ξ = pe−iθ + q + reiθ = q + (p + r)(cos θ) + i(r − p) sin θ.

The numerical scheme (22) is stable only when |ξ | ≤ 1 which is equivalently |ξ |2 ≤ 1

(Smith, [11]). Therefore,

q2 + (p + r)2 cos2 θ + 2q(p + r) cos θ + (r − p)2 sin2 θ ≤ 1

⇔ p2 + q2 + r2 + 2pr(cos2 θ − sin2 θ) + 2q(p + r) cos θ ≤ 1

⇔ (p + q + r)2 − 2q(p + r)(1 − cos θ) − 2pr(1 − cos 2θ) ≤ 1

⇔ (p + q + r)2 ≤ 1 + 4b(p + r) sin2 θ

2
+ 4pr sin2 θ

⇔ (p + q + r)2 ≤ 1 + 4q(p + r) sin2 θ

2
+ 16pr sin2 θ

2
cos2 θ

2

⇔ (p + q + r)2 + 16pr sin4 θ

2
≤ 1 + 4q(p + r) sin2 θ

2
+ 16pr sin2 θ

2
.

Maximizing the trigonometric functions in above inequality with respect to their

argument, we obtain
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(p + q + r)2 ≤ 1 + 4q(p + r). (25)

Let us assume that p, q and r are greater than or equal to zero (p, q, r ≥ 0). Let

G(Cn
m−1, Cn

m, Cn
m+1) = pCn

m−1 + qCn
m + rCn

m+1 be the function. From (22), Cn+1
m =

G(Cn
m−1, Cn

m, Cn
m+1). By Definition (5.1) ∂G

∂Ci
(C−1, C0, C1) ≥ 0, i = −1, 0, 1, which

implies that the scheme is monotone. Therefore, the monotone scheme which satisfies

(25) is stable.

Theorem 5.2 Let −pCn+1
m−1 + qCn+1

m − rCn+1
m+1 = pCn

m−1 + sCn
m + rCn

m+1 be the

general form of semi-implicit finite difference scheme for the time-dependent linear

partial differential equation (1). If q + s > 0, q ≥ s and satisfy 2(p + r) ≤ q − s,

then the scheme is stable.

Proof Let −pCn+1
m−1 + qCn+1

m − rCn+1
m+1 = pCn

m−1 + sCn
m + rCn

m+1 be any general

semi-implicit scheme. Let Cn
m = Bξ neimθ . The von Neumann stability condition

|ξ | ≤ 1 implies

| s + (p + r)(cos θ) + i(r − p) sin θ | ≤ | q − (p + r)(cos θ) + i(p − r) sin θ |
s2 + 2s(p + r) cos θ ≤ q2 − 2q(p + r) cos θ

2(q + s)(p + r) cos θ ≤ q2 − s2

2(q + s)(p + r) cos θ ≤ (q + s)(q − s)

Let us assume that p + r ≥ 0, (q + s) ≥ 0 and q ≥ s. Maximizing with respect to

θ , we obtain

2(p + r) ≤ q − s (26)

Therefore, any semi-implicit numerical scheme is of the form (23) which satisfies

the condition (26) is stable.

Theorem 5.3 Let −pCn+1
m−1 + qCn+1

m − rCn+1
m+1 = sCn

m be the general form of

implicit finite difference scheme for the linear time-dependent partial differential

equation (1). If s2 ≤ (p + q + r)2 − 4q(p + r), then the scheme is stable.

Proof Let −pCn+1
m−1 + qCn+1

m − rCn+1
m+1 = sCn

m be the general form of implicit finite

difference numerical scheme. Let Cn
m = Bξ neimθ . The von Neumann stability anal-

ysis for the above difference scheme implies

ξ(−pe−iθ + q − reiθ ) = s.

s2 ≤ (p + r)2 cos2 θ − 2q(p + r) cos θ + q2 + (p − r)2 sin2 θ

⇔ s2 ≤ p2 + q2 + r2 + 2pr(cos2 θ − sin2 θ) − 2q(p + r) cos θ

⇔ s2 ≤ p2 + q2 + r2 + 2pr(2 cos2 θ − 1) − 2q(p + r) cos θ

⇔ s2 ≤ (p + q + r)2 + 4pr(cos2 θ − 1) − 2q(p + r)(1 + cos θ)
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⇔ s2 + 4pr + 2q(p + r)(1 + cos θ) ≤ (p + q + r)2 + 4pr cos2 θ

Maximizing the trigonometric functions in above inequality with respect to their

argument, we obtain

s2 ≤ (p + q + r)2 − 4q(p + r). (27)

Therefore, any implicit numerical scheme is of the form (24) which satisfies the

condition (27) is stable.

Stability for explicit schemes

Comparing Scheme 1 (10) with general form of explicit schemes (22), we have

p =
D∆t

R∆x2
+

v∆t

2R∆x
q = 1 −

2D∆t

R∆x2
−

k∆t

R
r =

D∆t

R∆x2
−

v∆t

2R∆x

p + q + r = 1 −
k∆t

R
4q(p + r) =

8D∆t

R∆x2
−

16D2∆t2

R2∆x4
−

8Dk∆t2

R2∆x2

Stability condition (25) implies

∆t ≤
R(8D + 2k∆x2)∆x2

16D2 + k2∆x4 + 8Dk∆x2
(28)

The above condition is independent of velocity term v. Therefore, the stability behav-

ior of central difference scheme can not judged. It should be noted that the condition

(28) coincides with CFL condition for pure diffusion (i.e., v = 0 and k = 0) process.

It is assumed that the coefficients of explicit schemes are greater than or equal to

zero. Therefore, the coefficient r ≥ 0 which is eventually

v∆x

D
≤ 2 (29)

The left-side quantity in above is nothing but the Peclet number. Therefore, the central

difference scheme is stable for Peclet number less than or equal 2. For a pure reaction

process (i.e., D = 0 and v = 0), the numerical scheme (10) becomes Euler method

for first-order differential equation

Cn+1 =
[

1 −
k∆t

R

]

Cn.

And the stability condition (28) coincides with absolutely stable condition for Euler

method which is given by
∣

∣

∣

∣

1 −
k∆t

R

∣

∣

∣

∣

≤ 1
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The above condition may lead to produce negative result in the concentration profile

in the explicit scheme (10). The positivity of the solution is important. Therefore, it

should satisfy

0 ≤ 1 −
k∆t

R
≤ 1

i.e.,
k∆t

R
≤ 1 (30)

for (10). The conditions (28) and (30) combined together will produce stable and

positive solution for (10). Similarly, the stability condition for (11) is given by

p =
D∆t

R∆x2 + v∆t
2R∆x

1 + k∆t
2R

q =
1 − 2D∆t

R∆x2 − k∆t
2R

1 + k∆t
2R

r =
D∆t

R∆x2 + v∆t
2R∆x

1 + k∆t
2R

∆t ≤
R(8D + 4k∆x2)∆x2

16D2 + 8Dk∆x2
. (31)

v∆x

D
≤ 2

and

0 ≤ 1 −
k∆t

2R
≤ 1

i.e.,
k∆t

R
≤ 2.

The stability conditions for (12) and (13) can be derived in the similar manner. The

conditions for Scheme 3 is given by

∆t ≤
R(8D + 4v∆x + 2k∆x2)∆x2

16D2 + 16Dv∆x + 8Dk∆x2 + 4vk∆x3 + 4v2∆x2 + k2∆x4
. (32)

The above condition satisfies the CFL condition for pure diffusion and advection pro-

cess. Also it satisfies absolute stability condition for Euler method for pure reaction

process. The condition for Scheme 4 is given by

∆t ≤
R(8D + 4v∆x + 4k∆x2)∆x2

16D2 + 16Dv∆x + 8Dk∆x2 + 4vk∆x3 + 4v2∆x2
. (33)

In general, the first-order reaction co-efficient (k) is very small. Therefore, the con-

tribution of k in the stability of explicit schemes is negligible. One must ensure that
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k∆t
R

≤ 1 for scheme 1 and scheme 3 and k∆t
R

≤ 2 for scheme 2 and scheme 4 before

implementation.

Stability for semi-implicit schemes

The semi-implicit type schemes scheme 5, 6, 7 and 8 satisfy the condition (26).

However the assumptions in Theorem 5.2 are not satisfied by all schemes. Only the

two schemes, namely, scheme 6 and scheme 8 satisfy all assumptions. Therefore, they

are unconditionally stable. Scheme 5 and scheme 7 satisfy all assumptions except

q + s ≥ 0. The condition q + s ≥ 0 implies that

k∆t

R
≤ 2.

Therefore, scheme 5 and scheme 7 are conditionally stable.

Stability for implicit schemes

Comparing Scheme 9 (18) with general form of implicit schemes (24), we have

p =
D∆t

R∆x2
+

v∆t

2R∆x
q = 1 +

2D∆t

R∆x2
r =

D∆t

R∆x2
−

v∆t

2R∆x
s = 1 −

k∆t

R
.

Stability condition (27) implies that

(

1 −
k∆t

R

)2

≤
(

1 +
4D∆t

R∆x2

)2

− 4

(

1 +
2D∆t

R∆x2

) (

2D∆t

R∆x2

)

(

1 −
k∆t

R

)2

≤ 1

−1 ≤ 1 −
k∆t

R
≤ 1.

Therefore, Scheme 9 is stable if k∆t
R

≤ 2. Similarly, Scheme 11 is also stable if
k∆t

R
≤ 2. The stability condition for Scheme 10 is given by

p =
D∆t

R∆x2
+

v∆t

2R∆x
q = 1 +

2D∆t

R∆x2
+

k∆t

2R
r =

D∆t

R∆x2
−

v∆t

2R∆x
s = 1 −

k∆t

2R
.

Stability condition (27) implies that

(

1 −
k∆t

2R

)2

≤
(

1 +
4D∆t

R∆x2
+

k∆t

2R

)2

− 4

(

1 +
2D∆t

R∆x2
+

k∆t

2R

) (

2D∆t

R∆x2

)

(

1 −
k∆t

R

)2

≤
(

1 +
k∆t

R

)2

0 ≤
4k∆t

R
.
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Therefore, Scheme 10 is unconditionally stable. Similarly, Scheme 12 is also uncon-

ditionally stable.

6 Truncation Error and Consistency

The truncation error Ti, j at interior nodal point (xi , t j ) is defined by

Ti, j = pC
j+1

i−1 + qC
j+1

i + rC
j+1

i+1 − aC
j

i−1 − bC
j

i − dC
j

i+1

where C
j

i is the solution at (xi , t j ). Following the usual procedure to obtain the

truncation error, we replace numerical solution by exact solution

Ti, j = pc
j+1

i−1 + qc
j+1

i + rc
j+1

i+1 − aC
j

i−1 − bC
j

i − dC
j

i+1

= pc(xi − ∆x, t j + ∆t) + qc(xi , t j + ∆t) + rc(xi + ∆x, t j + ∆t)

−ac(xi − ∆x, t j ) − bc(xi , t j ) − dc(xi + ∆x, t j ).

Expanding using Taylor series, we have that

Ti, j =

{

(p + q + r − a − b − d)c + (p + q + r)

[

∆t
∂c

∂t
+

∆t2

2

∂2c

∂t2
+ · · ·

]}

(xi ,t j )

+

{

(r − p − d + a)

[

∆x
∂c

∂x
+

∆x3

6

∂3c

∂x3

]

+ (r + p − d − a)
∆x2

2

∂2c

∂x2

}

(xi ,t j )

+

{

(r − p)

[

∆x∆t
∂2c

∂x∂t
+

∆x∆t2

2

∂3c

∂x∂t2

]

+ (r + p)
∆x2∆t

2

∂3c

∂x2∂t
+ · · ·

}

(xi ,t j )

(34)

Explicit type schemes

Scheme 1

From (10), p = r = 0, q = 1, a + b + d = 1 − k∆t
R

, a − d = v∆t
R∆x

and a + d =
2D∆t
R∆x2 . Using these in (34), We have that
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Ti, j =

[

kc∆t

R
+ ∆t

∂c

∂t
+

∆t2

2

∂2c

∂t2
+

v∆t

R

∂c

∂x
−

D∆t

R

∂2c

∂x2
+

v∆t∆x2

6R

∂3c

∂x3

]

(xi ,t j )

+ · · ·

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2

]

(xi ,t j )

+

[

∆t

2

∂2c

∂t2
+

v∆x2

6R

∂3c

∂x3

]

(xi ,t j )

+ · · ·

(35)

The first term of right hand side is the given partial differential equation (1) evaluated

at the interior point (xi , t j ). Therefore, we have that

1

∆t
Ti, j =

∆t

2
ct t +

v∆x2

6R
cxxx + · · ·

Hence, the order of truncation error is O(∆t + ∆x2). If ∆t = ∆x2, then the trun-

cation error will be of O(∆x2). There fore, ‖c − Ch‖∞ = O(h2), where h = ∆x is

order and Ch is numerical solution for the mesh length h. For different mesh lengths

h2 and h2, we have that

‖c − Ch1
‖∞

‖c − Ch2
‖∞

≈
(

h1

h2

)2

i.e.,
log

(

‖c−Ch1
‖∞

‖c−Ch2
‖∞

)

log
(

h1

h2

) ≈ 2 (36)

Therefore, the order of convergence of Scheme 1 is two. Let ∆t → 0 and ∆x → 0, the

truncation error (35) Ti, j → 0, the scheme is consistent with the partial differential

equation (1).

Scheme 2

From (11), p = r = 0, q = 1 + k∆t
2R

, a + b + d = 1 − k∆t
2R

, a − d = v∆t
R∆x

and a +
d = 2D∆t

R∆x2 in Eq. (34), We have

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2

]

(xi ,t j )

+

[

k∆t

2R

∂c

∂t
+

v∆x2

6R

∂3c

∂x3

]

(xi ,t j )

+ · · ·

(37)

which implies that
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1

∆t
Ti, j =

k∆t

2R
ct +

v∆x2

6R
cxxx + · · ·

The local truncation error is O(∆t + ∆x2) and its order is two. Also the scheme is

consistent with the partial differential equation (1).

Scheme 3

Substituting p = r = 0, q = 1, a + b + d = 1 − k∆t
R

, a − d = v∆t
R∆x

and a + d =
2D∆t
R∆x2 + v∆t

R∆x
in (34), we get truncation error for Scheme 3

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2

]

(xi ,t j )

+

[

∆t

2

∂2c

∂t2
−

v∆x

2R

∂2c

∂x2

]

(xi ,t j )

+ · · · . (38)

1

∆t
Ti, j =

∆t

2
ct t −

v∆x

2R
cxx + · · ·

Here, the truncation error is of order O(∆t + ∆x). If ∆t = ∆x , then the truncation

error will be of order O(∆x). In a similar manner to central difference scheme, we

have

log
(

‖c−Ch1
‖∞

‖c−Ch2
‖∞

)

log
(

h1

h2

) ≈ 1 (39)

It means that Scheme 3 is of first-order convergence. Also, the truncation error (38)

Ti, j → 0 as ∆t → 0 and ∆x → 0 and the scheme consistent with the partial differ-

ential equation (1).

Scheme 4

Substituting p = r = 0, q = 1 + k∆t
2R

, a + b + d = 1 − k∆t
2R

, a − d = v∆t
R∆x

and a +
d = 2D∆t

R∆x2 + v∆t
R∆x

in (34), we get truncation error

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2

]

(xi ,t j )

+

[

k∆t

2R

∂c

∂t
−

v∆x

2R

∂2c

∂x2

]

(xi ,t j )

+ · · · .(40)

1

∆t
Ti, j =

k∆t

2R
ct −

v∆x

2R
cxx + · · ·

There fore, Scheme 4 is of first-order convergence and the scheme is consistent with

the partial differential equation (1).
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Semi implicit type schemes

Scheme 5

Using p + r + q = 1, a + b + d = 1 − k∆t
R

, a − d = v∆t
2R∆x

, r − p = v∆t
2R∆x

, r +
p = − D∆t

R∆x2 and a + d = D∆t
R∆x2 in Eq. (34), we have that

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

∆t

2

∂2c

∂t2
+

v∆t

2R

∂2c

∂x∂t
−

D∆t

2R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(41)

1

∆t
Ti, j =

(

1

2
ct t +

v

2R
cxt −

D

2R
cxxt

)

∆t +
v∆x2

6R
cxxx + · · ·

Hence, the local truncation error is O(∆t + ∆x2) when ∆t → 0 and ∆x → 0. Also,

the scheme is consistent with the partial differential equation (1).

Scheme 6

Substituting p + r + q = 1 + k∆t
2R

, a + b + d = 1 − k∆t
2R

, a − d = v∆t
2R∆x

, r − p =
v∆t

2R∆x
, r + p = − D∆t

R∆x2 and a + d = D∆t
R∆x2 in Eq. (34), we have

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

k∆t

2R

∂c

∂t
+

v∆t

2R

∂2c

∂x∂t
−

D∆t

2R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(42)

1

∆t
Ti, j =

(

k

2R
ct +

v

2R
cxt −

D

2R
cxxt

)

∆t +
v∆x2

6R
cxxx + · · ·

The scheme is consistent with the partial differential equation (1) and the local trun-

cation error is given by O(∆t + ∆x2).

Scheme 7

Using p + q + r = 1, a + b + d = 1 − k∆t
R

, a − d = v∆t
2R∆x

, r − p = v∆t
2R∆x

, r + p =
− D∆t

R∆x2 − v∆t
2R∆x

and a + d = D∆t
∆x2 + v∆t

2R∆x
in (34), in Eq. (34), we have

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

∆t

2

∂2c

∂t2
+

v∆t

2R

∂2c

∂x∂t
−

D∆t

2R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(43)

1

∆t
Ti, j =

(

1

2
ct t +

v

2R
cxt −

D

2R
cxxt

)

∆t −
v∆x

2R
cxx + · · ·



Weighted Average Approximation in Finite Volume Formulation … 475

Therefore, the scheme is consistent with the partial differential equation (1) and the

order of truncation error is O(∆t + ∆x).

Scheme 8

Using p + q + r = 1 + k∆t
2R

, a + b + d = 1 − k∆t
2R

, a − d = v∆t
2R∆x

, r − p = v∆t
2R∆x

,

r + p = − D∆t
R∆x2 − v∆t

2R∆x
and a + d = D∆t

∆x2 + v∆t
2R∆x

in Eq. (34), We have that

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

k∆t

2R

∂c

∂t
+

v∆t

2R

∂2c

∂x∂t
−

D∆t

2R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(44)
1

∆t
Ti, j =

(

k

2R
ct +

v

2R
cxt −

D

2R
cxxt

)

∆t −
v∆x

2R
cxx + · · ·

Hence, it will be of first-order convergence. Also the scheme is consistent with the

partial differential equation (1).

Implicit type schemes

Scheme 9

Substituting p + q + r = 1, a = 1 − k∆t
R

, b = d = 0, p − r = − v∆t
R∆x

and p + r =
− 2D∆t

R∆x2 in Eq. (34), We get

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

∆t

2

∂2c

∂t2
+

v∆t

R

∂2c

∂x∂t
−

D∆t

R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(45)
1

∆t
Ti, j =

(

1

2
ct t +

v

R
cxt −

D

R
cxxt

)

∆t +
v∆x2

6R
cxxx + · · ·

The scheme is consistent with the partial differential equation (1). If ∆t = ∆x2,

then the truncation error will be of O(∆x2).

Scheme 10

Using p + q + r = 1 + k∆t
2R

, a = 1 − k∆t
2R

, b = d = 0 p − r = − v∆t
R∆x

and p + r =
− 2D∆t

R∆x2 in Eq. (34), we have that

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

k∆t

2R

∂c

∂t
+

v∆t

R

∂2c

∂x∂t
−

D∆t

R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(46)
1

∆t
Ti, j =

(

k

2R
ct +

v

R
cxt −

D

R
cxxt

)

∆t +
v∆x2

6R
cxxx + · · ·

The local truncation error is O(∆t + ∆x2) and the scheme is consistent with the

partial differential equation (1).
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Scheme 11

Substituting p + q + r = 1, a = 1 − k∆t
R

, b = d = 0, p − r = − v∆t
2R∆x

and p + r =
− 2D∆t

R∆x2 − v∆t
2R∆x

in Eq. (34), We have that

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

∆t

2

∂2c

∂t2
+

v∆t

R

∂2c

∂x∂t
−

D∆t

R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(47)

1

∆t
Ti, j =

(

1

2
ct t +

v

R
cxt −

D

R
cxxt

)

∆t −
v∆x

2R
cxx + · · ·

Hence, the order of truncation error is O(∆t + ∆x). Also the scheme is consistent

with the partial differential equation (1).

Scheme 12

Using p + q + r = 1 + k∆t
2R

, a = 1 − k∆t
2R

, b = d = 0, p − r = − v∆t
2R∆x

and p + r =
− 2D∆t

R∆x2 − v∆t
2R∆x

in Eq. (34), We have that

1

∆t
Ti, j =

[

kc

R
+

∂c

∂t
+

v

R

∂c

∂x
−

D

R

∂2c

∂x2
+

k∆t

2R

∂c

∂t
+

v∆t

R

∂2c

∂x∂t
−

D∆t

R

∂2c

∂x2∂t
+ · · ·

]

(xi ,t j )

(48)
1

∆t
Ti, j =

(

k

2R
ct +

v

R
cxt −

D

R
cxxt

)

∆t −
v∆x

2R
cxx + · · ·

There fore, the scheme is consistent with the partial differential equation (1) and the

order of truncation error is O(∆t + ∆x).

7 Results and Discussion

The parameters used in Cho [1], Bauer et al. [4] and Clement et al.[5] are consid-

ered for the computation of concentration of species by various numerical schemes

presented in Sect. 4. The boundary conditions (2.2), (2.4) and the initial condition

(2.5) with f (t) = C0 (a constant dumping) are considered for the test problems.

The parameter values used in computation are C0 = 1 mg/l, k = 0.01 h−1, R = 2,

v = 1 cm h−1, T = 50 h and D = 0.18. Analytical solution is obtained from (7).

Table 1 infers the numerical error in maximum norm obtained for various numer-

ical schemes. It is observed that the error in central difference schemes 2, 6, and 10

increases compare to schemes 1, 5, and 9, respectively. The reason for this is that the

source term (Cavg) in (9) is approximated by Cn
P in odd-numbered schemes 1, 3, 5,

7, 9, and 11, while the same source term is approximated by
Cn

P +Cn+1
P

2
(i.e., average
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Table 1 Numerical error

Scheme L∞ error h1 = 0.3, h2 = 0.2, h3 = 0.1 Order of convergence

Central ‖c − Ch1‖∞ ‖c − Ch2 ‖∞ ‖c − Ch3‖∞ log
N1
N2

/ log h1
h2

log N2
N2

/ log h2
h3

Scheme 1 0.0151839 0.0065515 0.0016103 2.0730307 2.0244959

Scheme 2 0.0156539 0.0067565 0.0016613 2.0722254 2.0239634

Scheme 5 0.0037391 0.0016503 0.0004113 2.0171596 2.0044653

Scheme 6 0.0043201 0.0019093 0.0004753 2.0138400 2.0061335

Scheme 9 0.0126231 0.0058558 0.0015083 1.8943574 1.9569428

Scheme 10 0.0130631 0.0059716 0.0015196 1.9305645 1.9744258

Upwind L∞ error h1 = 1, h2 = 0.5, h3 = 0.4 Order of convergence

Scheme 3 0.0879704 0.0541474 0.0454174 0.7001266 0.7878945

Scheme 4 0.0844378 0.0520764 0.0437294 0.6972593 0.7828649

Scheme 7 0.1459378 0.0958983 0.0823154 0.6057765 0.6844476

Scheme 8 0.1429908 0.0941353 0.0808434 0.6031146 0.6821581

Scheme 11 0.1632868 0.1150218 0.1005767 0.5055008 0.6014114

Scheme 12 0.1606958 0.1135018 0.0992857 0.5016170 0.5996907

where N1 = ‖c − Ch1‖∞, N2 = ‖c − Ch2 ‖∞ and N3 = ‖c − Ch3‖∞
Central difference: ∆t = h2 and Upwind: ∆t = h

of CP taken over n and n + 1 time levels) in even-numbered schemes 2, 4, 6, 8, 10,

and 12. In the similar manner, the error in upwind schemes 4, 8, and 12 decreases

compare to upwind schemes 3, 7, and 11, respectively. Hence, averaging the source

term Cavg in (9) at n and n + 1 time level is a good technique for upwind schemes

and a bad choice for central difference schemes.

It is also observed that the implicit type schemes 5, 6, 9, and 10 yield better

result in comparing with explicit nature schemes 1 and 2 as far as central difference

schemes are concerned, but there is a reverse phenomenon in upwind schemes. That

is, the explicit upwind schemes 3 and 4 give better result in comparing with implicit

nature upwind schemes 7, 8, 11, and 12.

Theoretically, second- and first-order convergences are obtained for central dif-

ference and upwind schemes, respectively. This is validated numerically which can

be seen from Table 1. Further, the explicit upwind schemes 3 and 4 converge much

faster than implicit nature upwind schemes 7, 8, 11, and 12. Thus, the averaging

technique for reaction (i.e., source) term and upwinding for the advection term play

a crucial role in numerical schemes for advecton–diffusion–reaction problems.

Table 2 is the summarization of theoretical results from Sects. 5 and 6. In general,

explicit and implicit nature schemes are, respectively, conditionally and uncondi-

tionally stable for time-dependent problems in the absence of reaction (i.e., source)

term. From Table 2, it is clear that the implicit nature schemes 5, 7, 9, and 11 are

conditionally stable, while other implicit nature numerical schemes 6, 8, 10, and 12
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Table 2 Summary of stability condition and order of convergence from theoretical results obtained

from Sects. 5 and 6

Scheme Stability condition Order of error

Scheme 1 ∆t ≤ R(8D+2k∆x2)∆x2

16D2+k2∆x4+8Dk∆x2

v∆x
D

≤ 2, k∆t
R

≤ 1
Second

Scheme 2 ∆t ≤ R(8D+4k∆x2 )∆x2

16D2+8Dk∆x2

v∆x
D

≤ 2, k∆t
R

≤ 2
Second

Scheme 3 ∆t ≤ R(8D+4v∆x+2k∆x2)∆x2

16D2+16Dv∆x+8Dk∆x2+4vk∆x3+4v2∆x2+k2∆x4

k∆t
R

≤ 1
First

Scheme 4 ∆t ≤ R(8D+4v∆x+4k∆x2)∆x2

16D2+16Dv∆x+8Dk∆x2+4vk∆x3+4v2∆x2

k∆t
R

≤ 2
First

Scheme 5 k∆t
R

≤ 2 Second

Scheme 6 Unconditionally stable Second

Scheme 7 k∆t
R

≤ 2 First

Scheme 8 Unconditionally stable First

Scheme 9 k∆t
R

≤ 2 Second

Scheme 10 Unconditionally stable Second

Scheme 11 k∆t
R

≤ 2 First

Scheme 12 Unconditionally stable First

are unconditionally stable for the advection-diffusion–reaction equation (1). This is

due to the fact that, the reaction (i.e., source) term (Cavg) in (9) in schemes 6, 8, 10,

and 12 is approximated by
Cn

P +Cn+1
P

2
, while the same term in schemes 5, 7, 9, and 11

is approximated by Cn
P .
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