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1. Introduction

Stochastic differential equations (SDEs) captures the disturbance from random
factors. By the interaction of stochastic process into mathematic models yields a
better understanding of the corresponding real-world system [8]. Several systems are
modelled using stochastic functional differential equations with impulses. In general,
impulses appears at random time points, i.e., the impulse time and the impulsive
function are random variables. Sanz-Serna et al. [11] investigated the ergodicity of
dissipative differential equations subject to random impulses. The random impulsive
differential equations with the existence, uniqueness and stability of solutions is stud-
ied (see [3, 5, 13, 14, 19] and the reference therein). Random impulsive stochastic
differential equations are widely used in the fields of medicine, biology, economics,
finance and so on. For example, the classical stock price model see [15]. However, the
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Hyers-Ulam stability problem of SDEs have not been used in many articles. Only few
works have been reported in the Hyers-Ulam stability for SDEs, refer to [2, 9, 18].

To the best of our knowledge, there has not been much of a study relating to Ulam-
Hyers stability for SDEs with random impulses has not been investigated. Motivated
by the above studies, in this paper, we investigate the Hyers-Ulam stability for d-
dimensional random impulsive stochastic functional integrodifferential equations of
the form:

d [u(t)] =
[
f(t, ut) +

∫ t

0

P(t, s, us)ds
]
dt+ g(t, ut)dw(t), t ≥ t0, t ̸= ζk, (1.1)

u(ζk) = bk(τk)u(ζ
−
k ), k = 1, 2, ..., (1.2)

ut0 = ζ = {ζ(θ) : −τ ≤ θ ≤ 0} , (1.3)

where τk is a random variable defined from Ω to Dk
def
= (0, dk) for k = 1, 2, ..., where

0 < dk < +∞. Suppose that τi and τj are independent of each other as i ̸= j for i, j =
1, 2, ..., Here, f : [t0, T ]×C → Rd, g : [t0, T ]×C → Rd×m, P : [t0, T ]× [t0, T ]×C → Rd

and bk : Dk → Rd×d be Borel measurable functions, and ut is Rd-valued stochastic
process such that

ut = {u(t+ θ) : −τ ≤ θ ≤ 0} , ut ∈ Rd.

The impulsive moments ζk from a strictly increasing sequence, i.e. ζ0 < ζ1 < ζ2 <
· · · < ζk < · · · < limk→∞ ζk = ∞, and u(ζ−k ) = limt→ζk−0 u(t). We assume that
ζ0 = t0 and ζk = ζk−1+τk for k = 1, 2, ...Obviously, {ζk} is a process with independent
increments. We suppose that {N(t), t ≥ 0} is the simple counting process generated

by {ζk}, and {W(t), t ≥ 0} is a given m-dimensional Wiener process. We denote F
(1)
t

the σ-algebra generated by {N(t), t ≥ 0}, and denote F
(2)
t the σ-algebra generated by

{W(s), s ≤ t}.

2. Preliminaries

Let (Ω,F , P) is a probability space with filtration {Ft}, t ≥ 0 satisfying Ft =

F
(1)
t ∨F

(2)
t . Let Lp(Ω, Rd) be the collection of all strongly measurable, p-th integrable,

Ft measurable, Rd-valued random variables x with norm ∥u∥Lp = (E ∥u∥p)
1
p , Let

τ > 0 and denote the Banach space of all piecewise continuous Rd-valued stochastic
process

{
ζ(t), t ∈ [−τ, 0]

}
by

C ([−τ, 0],L(Ω, Rd)) equipped with the norm

∥ψ∥C = sup
θ∈[−τ,0]

(E ∥ψ(θ)∥p)
1
p .

The initial data

ut0 = ζ = {ζ(θ) : −τ ≤ θ ≤ 0} (2.1)

is an Ft0 measurable, [−τ, 0] to Rd-valued random variable such that E ∥ζ∥p <∞.
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Definition 2.1. For a given T ∈ (t0,+∞), a Rd-valued stochastic process u(t) on
t0 − τ ≤ t ≤ T is called a solution to (1.1)-(1.3) with the initial data (2.1) if for every
t0 ≤ t ≤ T , ut0 = ζ, {ut}t0≤t≤T is Ft-adapted and

u(t) =
+∞∑
k=0

[
k∏

i=1

bi(τi)ζ(0) +
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

f(s, us)ds+

∫ t

ζk

f(s, us)ds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

P(s, r, ur)drds+

∫ t

ζk

∫ s

0

P(s, r, ur)drds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

g(s, us)dw(s) +

∫ t

ζk

g(s, us)dw(s)

]
I(ζk,ζk−1](t) a.s. (2.2)

where
∏k

j=i bj(τj) = bk(τk)bk−1(τk − 1) · · · bi(τi), and IG(·) is the index function, i.e.

IG(t) =

{
1, if t ∈ G,

0, if t /∈ G.

Definition 2.2. Hyers-Ulam stability: Suppose that v(t) is a Rd-valued stochastic
process. If there exists a real number M > 0, such that for arbitrary ϵ ≥ 0, satisfying

E

∥∥∥∥∥v(t)−
+∞∑
k=0

[
k∏

i=1

bi(τi)ζ(0) +
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

f(s, vs)ds+

∫ t

ζk

f(s, vs)ds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

P(s, r, vr)drds+

∫ t

ζk

∫ s

0

P(s, r, vr)drds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

g(s, vs)dw(s) +

∫ t

ζk

g(s, vs)dw(s)

]
I(ζk,ζk−1](t)

∥∥∥∥∥
p

≤ ϵ.

For each solution u(t) with the initial value vt0 = ut0 = ζ, if there exists a solution
u(t) of Equation (1.1)-(1.3) with

E ∥v(t)− u(t)∥p ≤ Mϵ, ∀t ∈ (t0 − τ, T ).

Then Equation (1.1)-(1.3) has the Hyers-Ulam stability.

Lemma 2.3. [3] Let ϕ, φ ∈ C ([a, b], Rd) be two functions. We suppose that ϕ(t) is
nondecreasing. If u(t) ∈ C ([a, b], Rd) is a solution of the following inequality

u(t) ≤ ϕ(t) +

∫ t

a

φ(s)u(s)ds, t ∈ [a, b],

then u(t) ≤ ϕ(t) exp(
∫ t

a
φ(s)ds).

Lemma 2.4. [8] For any p ≥ 1 and for any predictable process u ∈ Lp
d×m[0, T ], the

inequality holds,

sup
s∈[o,t]

E ∥u(t)dw(t)∥p ≤ (p/2(p− 1))p/2(

∫ t

0

(E ∥u(s)∥p)2/pds)p/2, t ∈ [0, T ].
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3. Main Results

Here, we will consider the existence results for system (1.1)-(1.3). Now we introduce
the following hypotheses used in our discussion:

(H1) The function f : [t0, T ]×C → Rd satisfies the following conditions: there exist
positive constant L1, L2 > 0 such that, for all t ∈ [t0, T ] and ψ1, ψ2 ∈ C

E ∥f(t, ψ1)− f(t, ψ2)∥p ≤ L1 ∥ψ1 − ψ2∥pC ,

E ∥f(t, ψ)∥p ≤ L2 (1 + ∥ψ∥pC ) .

(H2) For the continuous function g ∈ Lp([t0, T ]×C : Rd×m), there exists a constant
L3, L4 > 0 such that, for all t ∈ [t0, T ] and ψ1, ψ2 ∈ C

E ∥g(t, ψ1)− g(t, ψ2)∥p ≤ L3 ∥ψ1 − ψ2∥pC ,

E ∥g(t, ψ)∥p ≤ L4 (1 + ∥ψ∥pC ) .

(H3) The function P : [t0, T ]× [t0, T ]× C → Rd, there exists a constant L5, L6 > 0
such that, for all t ∈ [t0, T ] and ψ1, ψ2 ∈ C

∫ t

0

E ∥P(t, s, ψ1)− P(t, s, ψ2)∥p ≤ L5 ∥ψ1 − ψ2∥pC ,∫ t

0

E ∥P(t, s, ψ)∥p ≤ L6 (1 + ∥ψ∥pC ) .

(H4) The condition E
{
maxi,k

{∏k
j=i ∥bj(τj)∥

p
}}

< ∞. That is, there is a con-

stant B > 0 such that

E

(
max
i,k

{ k∏
j=i

∥bj(τj)∥
})p

≤ B.

Theorem 3.1. Suppose that the assumptions (H1)-(H4) are satisfied. Then the sys-
tem (1.1)-(1.3) has a unique solution in B.

Proof. Let B be the space B = C ([t0 − τ, T ],Lp(Ω, Rd)) endowed using the norm

∥u∥pB = sup
t∈[t0,T ]

∥ut∥pC ,

where ∥ut∥C = sup−τ≤s≤t E ∥u(s)∥p. Denote Br = {u ∈ B; ∥u∥pB ≤ r}, which is the
closed ball with center u and radius r > 0. For any initial value (t0, u0)t0 ≥ 0 and
u0 ∈ Br.
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Now, We define the operator Θ : B → B by

(Θu)(t) =
+∞∑
k=0

[
k∏

i=1

bi(τi)ζ(0) +
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

f(s, us)ds+

∫ t

ζk

f(s, us)ds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

P(s, r, ur)drds+

∫ t

ζk

∫ s

0

P(s, r, ur)drds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

g(s, us)dw(s) +

∫ t

ζk

g(s, us)dw(s)

]
I(ζk,ζk−1](t).

The continuity of Θ can be proved easily. Now, we claim that Θ maps B into itself.

E ∥(Θu)(t)∥p

≤ 4p−1 max
k

E

{
k∏

i=1

∥bi(τi)∥p
}
∥u0∥p

+ 4p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p[ ∫ t

t0

∥f(s, us)∥ dsI(ζk,ζk+1](t)

]p

+ 4p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p[ ∫ t

t0

∫ s

0

∥P(s, r, ur)∥ drdsI(ζk,ζk+1](t)

]p

+ 4p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p[ ∫ t

t0

∥g(s, us)∥ dw(s)I(ζk,ζk+1](t)

]p
≤ 4p−1BE ∥x0∥p + 4p−1 max(1, B)(t− t0)

p−1L2

∫ t

t0

E(1 + ∥us∥pC )ds

+ 4p−1 max(1, B)(t− t0)
p−1L6

∫ t

t0

E(1 + ∥us∥pC )ds

+ 4p−1 max(1, B)(t− t0)
p
2−1cpL4

∫ t

t0

E(1 + ∥us∥pC )ds.

Thus

sup
s∈[t−τ,t]

E ∥(Θu)(t)∥p ≤ 4p−1BE ∥u0∥p +
[
4p−1 max(1, B)(t− t0)

p−1L2

+ 4p−1 max(1, B)(t− t0)
p
2−1cpL4

+ 4p−1 max(1, B)(t− t0)
p−1L6

]
(t− t0) sup

s∈[t−τ,t]

E(1 + ∥us∥pC ).
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Therefore Θ maps B into itself.
Now, we have to prove that Θ is a contraction mapping

E ∥(Θu)(t)− (Θv)(t)∥p

≤ 3p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p[ ∫ t

t0

E ∥f(s, us)− f(s, vs)∥ ds
]p

+ 3p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p[ ∫ t

t0

∫ s

0

E ∥P(s, r, ur)− P(s, r, vr)∥ drds
]p

+ 3p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p[ ∫ t

t0

E ∥g(s, us)− g(s, vs)∥ dw(s)
]p

≤ 3p−1 max {1, B} (t− t0)
pL1 ∥us − vs∥pC

+ 3p−1 max {1, B} (t− t0)
pL5 ∥us − vs∥pC

+ 3p−1 max {1, B} cp(t− t0)
p
2L3 ∥us − vs∥pC

≤ 3p−1 max
1,B

[
L1(t− t0)

p + L5(t− t0)
p

+ cpL3(t− t0)
p
2

]
sup

θ∈[−τ,0]

E ∥u(t+ θ)− v(t+ θ)∥p

≤ 3p−1 max
1,B

[
L1(t− t0)

p + L5(t− t0)
p

+ cpL3(t− t0)
p
2

]
sup

s∈[t−τ ],t

E ∥u(s)− v(s)∥p .

Taking the supremum over t, we obtain

∥(Θx)(t)− (Θy)(t)∥pB ≤ Q(T )E ∥u− v∥pB ,

where Q(T ) = 3p−1 max
1,B

(
L1(t − t0)

p + L5(t − t0)
p + cpL3(t − t0)

p/2

)
. By selecting

a suitable 0 < T1 < T sufficiently small enough such that Q(T ) < 1, thus Θ is a
contraction mapping. Θu = u is a unique solution of Equation (1.1)-(1.3) by Banach
fixed point theorem. □

4. Stability

Here, we will study the stability of the system (1.1)-(1.3) by the continuous depen-
dence of solutions with initial condition.

Definition 4.1. A mild solution u(t) of the system (1.1) and (1.2) with initial value
ζ satisfies (2.2) is said to be stable in the mean square if for all ϵ > 0, there exists
δ > 0 such that

E ∥u(t)− v(t)∥p ≤ ϵ whenever E ∥u− v∥p < δ, for all t ∈ [t0, T ].

where v(t) is another mild solution of the system (1.1) and (1.2) with initial value ζ̂
defined in (3).
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Theorem 4.2. The hypotheses of Theorem 3.1 gets satisfied when the solution of the
system (1.1)-(1.3) is stable in the mean square provided u(t) and v(t) being the mild
solutions of the system (1.1)-(1.3) whose initial values being ζ1 and ζ2.

Proof. Let u and v be the two solutions of the system (1.1)-(1.3) with initial values
ζ1 and ζ2 respectively, then

E ∥u(t)− v(t)∥p

≤ 4p−1 max
k

{
k∏

i=1

∥bi(τi)∥p
}
E ∥ζ1 − ζ2∥p

+ 4p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p [∫ t

t0

E ∥f(s, us)− f(s, vs)∥ ds
]p

+ 4p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p [∫ t

t0

∫ s

0

E ∥P(s, r, ur)− P(s, r, vr)∥ drds
]p

+ 4p−1E
[
max
i,k

{
1,

k∏
j=i

∥bj(τj)∥
}]p [∫ t

t0

E ∥g(s, us)− g(s, vs)∥ dw(s)
]p

≤ 4p−1BE ∥ζ1 − ζ2∥p +
[
4p−1 max(1, B)(t− t0)

p−1L1

+ 4p−1 max(1, B)(t− t0)
p−1L5

+ 4p−1 max(1, B)cp(t− t0)
p
2−1L3

] ∫ t

t0

sup
s∈[t−τ,t]

E ∥u(s)− v(s)∥p .

Using Grownwall’s inequality, we have

sup
s∈[t−τ,t]

E ∥u(t)− v(t)∥p ≤ 4p−1BE ∥ζ1 − ζ2∥p exp
[
4p−1 max(1, B)(t− t0)

p−1L1

+ 4p−1 max(1, B)(t− t0)
p−1L5

+ 4p−1 max(1, B)cp(t− t0)
p
2−1L3

]
≤ ΓE ∥ζ1 − ζ2∥p ,

where

Γ = 4p−1B exp
[
4p−1 max(1, B)(t− t0)

p−1L1 + 4p−1 max(1, B)(t− t0)
p−1L5

+ 4p−1 max(1, B)cp(t− t0)
p
2−1L3

]
Given ϵ > 0, determine δ = ϵ

Γ such that E ∥ζ1 − ζ2∥p < δ. Then

sup
s∈[t−τ,t]

E ∥u(t)− v(t)∥p ≤ ϵ.

Which complete the proof. □

5. Hyers-Ulam stability

Here, we will prove the Hyers-Ulam stability of Equation (1.1)-(1.3) with the as-
sumptions (H1)-(H4).
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Theorem 5.1. If the hypotheses of Theorem 3.1 are satisfied. Then Equation (1.1)-
(1.3) has the Ulam-Hyers stability.

Proof. We know that, x(t) is the solution of Equation (1.1)-(1.3).

u(t) =
+∞∑
k=0

[
k∏

i=1

bi(τi)ζ(0) +
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

f(s, us)ds+

∫ t

ζk

f(s, us)ds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

P(s, r, ur)drds+

∫ t

ζk

∫ s

0

P(s, r, ur)drds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

g(s, us)dw(s) +

∫ t

ζk

g(s, us)dw(s)

]
I(ζk,ζk−1](t).

It follows from the condition that

E

∥∥∥∥∥v(t) −
+∞∑
k=0

[
k∏

k=0

bi(τi)ζ(0) +

k∑
i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

f(s, vs)ds+

∫ t

ζk

f(s, vs)ds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

P(s, r, vr)dw(s) +

∫ t

ζk

∫ s

0

P(s, r, vr)drds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

g(s, vs)dw(s) +

∫ t

ζk

g(s, vs)dw(s)

∥∥∥∥∥
p

≤ ϵ.
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When t ∈ [t0 − τ, t0], we have, E ∥v(t)− u(t)∥p = 0. And when t ∈ [t0, T ], we have

E ∥v(t)− u(t)∥p

≤ 2p−1E

∥∥∥∥∥v(t)−
+∞∑
k=0

[
k∏

k=0

bi(τi)ζ(0)

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

f(s, vs)ds+

∫ t

ζk

f(s, vs)ds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

P(s, r, vr)drds+

∫ t

ζk

∫ s

0

P(s, r, vr)drds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

g(s, vs)dw(s) +

∫ t

ζk

g(s, vs)dw(s)

]
I(ζk,ζk−1](t)

∥∥∥∥∥
p

+ 2p−1E

∥∥∥∥∥
+∞∑
k=0

[
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

[f(s, us)− f(s, vs)]ds

+

∫ t

ζk

[f(s, us)− f(s, vs)]ds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

[P(s, r, ur)− P(s, r, vr)]drds

+

∫ t

ζk

∫ s

0

[P(s, r, ur)− P(s, r, vr)]drds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

[g(s, us)− g(s, vs)]dw(s)

+

∫ t

ζk

[g(s, us)− g(s, vs)]dw(s)

]
I(ζk,ζk−1](t)

∥∥∥∥∥
p

≤ 2p−1ϵ+ 2p−1G.
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where

G = E

∥∥∥∥∥
+∞∑
k=0

[
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

[f(s, us)− f(s, vs)]ds

+

∫ t

ζk

[f(s, us)− f(s, vs)]ds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

[P(s, r, ur)− P(s, r, vr)]drds

+

∫ t

ζk

∫ s

0

[P(s, r, ur)− P(s, r, vr)]drds

+
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

[g(s, us)− g(s, vs)]dw(s)

+

∫ t

ζk

[g(s, us)− g(s, vs)]dw(s)

]
I(ζk,ζk−1](t)

∥∥∥∥∥
p

≤ 3p−1 (A+B+ C) .

First,

A = E

∥∥∥∥∥
+∞∑
k=0

[
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

[f(s, us)− f(s, vs)]ds

+

∫ t

ζk

[f(s, us)− f(s, vs)]ds

]
I(ζk,ζk−1](t)

∥∥∥∥∥
p

≤ (Bp + 1)(T − t0)
p−1

∫ t

t0

E ∥f(s, us)− f(s, vs)∥p ds

≤ (Bp + 1)L1(T − t0)
p−1

∫ t

t0

∥us − vs∥p ds.

By (H3), we have

B = E

∥∥∥∥∥
+∞∑
k=0

[
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

∫ s

0

[P(s, r, ur)− P(s, r, vr)]ds

+

∫ t

ζk

∫ s

0

[P(s, r, ur)− P(s, r, vr)]ds

]
I(ζk,ζk−1](t)

∥∥∥∥∥
p

≤ (Bp + 1)(T − t0)
p−1

∫ t

t0

E ∥P(s, r, ur)− P(s, r, vr)∥p ds

≤ (Bp + 1)L5(T − t0)
p−1

∫ t

t0

∥us − vs∥p ds.
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From Lemma 2.4 we have

C = E

∥∥∥∥∥
+∞∑
k=0

[
k∑

i=1

k∏
j=i

bj(τj)

∫ ζi

ζi−1

[g(s, us)− g(s, vs)]ds

+

∫ t

ζk

[g(s, us)− g(s, vs)]ds

]
I(ζk,ζk−1](t)

∥∥∥∥∥
p

≤ (Bp + 1)(p(p− 1))p/2(T − t0)
(p−2)/2

∫ t

t0

E ∥g(s, us)− g(s, vs)∥p ds

≤ (Bp + 1)L3(p(p− 1)/2)p/2(T − t0)
(p−2)/2

∫ t

t0

∥us − vs∥p ds.

Therefore,

H ≤ K

∫ t

t0

∥u(s)− v(s)∥pC ds.

where

K = 3p−1(Bp + 1)(T − t0)
p/2−1

[
L1(T − t0)

p/2 + L5(T − t0)
p/2

+ (p(p− 1)/2)p/2L3

]
.

Then, we obtain that

E ∥u(s)− v(s)∥p ≤ 2p−1ϵ+ 2p−1K

∫ t

t0

∥v(s)− u(s)∥pC ds.

Considering,∫ t

t0

∥v(s)− u(s)∥pC ds =

∫ t

t0

sup
θ∈[−τ,0]

E ∥v(s+ θ)− u(s+ θ)∥p ds

= sup
θ∈[−τ,0]

∫ t

t0

E ∥v(s+ θ)− u(s+ θ)∥p ds

= sup
θ∈[−τ,0]

∫ t+θ

t0+θ

E ∥v(l)− u(l)∥p dl.

Notice that, when t ∈ [t0 − τ, t0],

E ∥v(l)− u(l)∥p = 0.

Therefore, ∫ t

t0

∥vs − us∥pC ds = sup
θ∈[−τ,0]

∫ t+θ

t0

E ∥v(l)− u(l)∥p dl

=

∫ t

t0

E ∥v(l)− u(l)∥p dl.

So, we get

E ∥v(t)− u(t)∥p ≤ 2p−1ϵ+ 2p−1K

∫ t

t0

E ∥v(l)− u(l)∥p dl.
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From Lemma 2.3 we have

E ∥v(t)− u(t)∥p ≤ 2p−1ϵ. exp(2p−1K).

Therefore, there exists M = 2p−1. exp(2p−1K) such that

E ∥v(t)− u(t)∥p ≤ Mϵ.

Thus the proof gets completed. □

6. Conclusion

This manuscript address, we study the existence and Hyers-Ulam stability of ran-
dom impulsive stochastic functional integrodifferential equations with finite delays.
Firstly, we prove the existence of mild solutions to the equations by using Banach
fixed point theorem. In the later case we explore the Hyers Ulam stability results
under the Lipschitz condition on a bounded and closed interval. As further direc-
tion, researchers are invited to investigate the controllability of random impulsive
stochastic functional integrodifferential equations with finite delays.
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