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Abstract: In this paper, a new technique for localization of fault detection and diagnosis in the interconnects and logic 

blocks of an arbitrary design implemented on a Field-Programmable Gate Array (FPGA) using BIST is presented. This 

technique can uniquely identify any single bridging, open or stuck-at fault in the interconnect as well as any single functional 

fault, a fault resulting a change in the truth table of a function, in the logic blocks. The test pattern generator and output 

response analyzer are configured by existing CLBs in FPGAs; thus, no extra area overhead is needed for the proposed BIST 

structure. The scheme also rests on partitioning of rows and columns of the memory array by employing low cost test logic. It 

is designed to meet requirements of at-speed test thus enabling detection of timing defects. Experimental results confirm high 

diagnostic accuracy of the proposed scheme and its time efficiency. 

Keywords: Fault Diagnosis, Built-in Self-Test (BIST), Configurable Logic Block (CLB),  

Field-Programmable Gate Array (FPGA), Testing 

 

1. Introduction 

Field-Programmable Gate Arrays (FPGAs) are 2-D arrays 

of Configurable Logic Blocks (CLBs) and programmable 

switch matrices, surrounded by programmable input/output 

blocks on the periphery. FPGAs are widely used in many 

applications such as networking, storage systems, 

communication, and adaptive computing, due to their 

reprogrammability, flexibility, and reduced time-to-market. 

The reprogrammability of FPGAs results in faster design and 

debug cycle compared to Application-Specific Integrated 

Circuits (ASICs). However, once the design is finalized and 

fixed, the programmability becomes useless and costly, if 

infield further customization and reprogrammability are not 

required. In order to reduce the manufacturing costs 

associated with FPGAs, application-specific FPGAs have 

been introduced in the FPGA industry which restricts the use 

of the FPGA device for only one application (design). 

Xilinx’s Easy path solution is an example [1]. The cost 

reduction is mainly due to using devices that may contain 

defects in the areas not used by the particular application. 

This, in turns, increases the manufacturing yield compared to 

the traditional scenario in which any defective device is 

thrown away.  

During the system operation, application-dependent test 

and diagnosis are very crucial in online self-repair schemes 

for fault tolerant applications [2]. In these applications, the 

existence of faults in the system is first identified and then 

the faulty resources are precisely diagnosed. After that, the 

design is remapped to avoid the faulty resources occurring in 

it. Because of that the test and diagnosis procedures are 

performed during the system operation (online), the number 

of test vectors and configurations must be minimized. Note 

that the test time is dominated by loading the exact test 

configurations rather than applying test vectors. Compared to 

application-independent test and diagnosis, application-

dependent test and diagnosis provides faster test and 

diagnosis time while achieving a higher diagnosis resolution 

over a more comprehensive fault list. This is because 

application-dependent test and diagnosis focus only on the 

FPGA resources used for that particular design, rather than 

all FPGA resources. 

For interconnect diagnosis, the configuration of used logic 

blocks is modified, and the configuration of the interconnects 

remains unchanged. Any single fault (open, stuck-at, or 

bridging fault) in the interconnects can be uniquely identified 
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in a small number of test configurations. For logic diagnosis, 

a Built-in Self Diagnosis (BISD) method is presented in 

which the configuration of used logic blocks remains 

unchanged while the configurations of the interconnect 

resources and unused logic blocks are modified. Any single 

functional fault, inclusive of all stuck-at faults, in logic 

blocks is precisely diagnosed in only one test configuration. 

The use of memory cores in SOC designs is rising quickly. 

As memory cores are dominating the silicon area of typical 

SOC designs, and the density of memory circuits is normally 

higher than logic circuits, the chip yield is mainly determined 

by the memory yield. To improve the chip yield, whether by 

process enhancement or design improvement, diagnosis of 

the memory cores after testing is necessary. Embedded 

memory testing is normally done by Built-in Self-Test 

(BIST) [3, 4]. A BIST scheme that also collects and exports 

the diagnostic data for subsequent online or offline analysis 

has been called a Built-in Self-Diagnosis (BISD) scheme [5, 

6]. 

Just as test data compression for logic circuits, memory 

test data compression has also received attention recently. In 

[7], the bit-maps for large memories are compressed by using 

fail patterns. Another work considers the compression of the 

output response of the BIST circuit [8]–[10]. The method is 

similar to signature analysis in logic BIST. The BIST circuit 

may export the test information, called fault-syndrome, to 

test for failure analysis. The size of fault-syndrome affects 

total test cost directly. 

However, except diagnosis data compression, using a 

redundancy repair approach to enhance memory yield is the 

other important issue in recent years. It has become 

imperative to deploy effective means for testing and 

diagnosing non-volatile memory failures. A functional model 

employed for these memories remains similar to that of 

RAMs with relevant fault types such as stuck-ats and bridges 

being tackled through functional test algorithms [11]. Also, 

all addressing malfunctions are covered by memory cell 

stuck-at fault tests as there are no overwrites in the mission 

mode. Typically, the basic test reads successive memory 

cells, and processes output responses by performing a 

polynomial division to compute a cyclic redundancy code 

(signature). The same procedure can be used to detect certain 

classes of dynamic faults provided memory cells are 

designed with additional DFT features [12]. 

A novel BIST design with comprehensive on-the-fly 

exhaustive redundancy search and analysis method is 

presented in [13], which allows on-chip optimal redundancy 

allocation without having to construct the complete failed 

bitmap. It however has high hardware overhead for a 

reasonably big number of spare (redundant) elements. We 

find the failure patterns into three types: faulty words, faulty 

rows, and faulty columns. The faulty row/column is the 

continuous faults on the same row/column. Different fail 

patterns exhibit different syndrome characteristics. The built-

in syndrome compressor is designed to efficiently compress 

the fault syndromes. Our approach reduces the amount of 

data that needs to be transmitted from the chip under test.  

Moreover, the proposed method does not increase the test 

time for the fault-free memories. It results in a much shorter 

diagnosis time than the conventional BISD schemes. 

Simulation results for memories under various fault pattern 

distributions show that in most cases the data can be 

compressed to less than that of its original size. Furthermore, 

based on fail pattern identification technique, the faulty 

row/column can be replaced by redundancy row/column. 

Therefore, the complexity of RA algorithms can be reduced. 

An acceptable RA algorithm for BIST implementation 

should be considered not only for the repair efficiency but 

also the hardware overhead of the BISR circuit. 

2. Basic BIST Architecture 

A representative architecture of the BIST circuitry as it 

might be incorporated into the CUT is illustrated in the 

Figure 1. This BIST architecture also includes two essential 

functions as well as two additional functions that are 

necessary to facilitate execution of the self-testing feature 

within the system. 

 

Figure 1. Basic BIST Architecture. 

The two essential functions include the Test Pattern 

Generator (TPG) and Output Response Analyzer (ORA). 

While the TPG produces a sequence of patterns for testing 

the CUT, the ORA compacts the output responses of the 

CUT into some type of Pass/Fail indication. The other two 

functions needed for system-level use of the BIST include 

the test controller (or BIST controller) and the input isolation 

circuitry. Aside from the normal system I/O pins, the 

incorporation of BIST may also require additional I/O pins 

for activating the BIST sequence (the BIST Start control 

signal), reporting the results of the BIST (the Pass/Fail 

indication), and an optional indication (BIST Done) that the 

BIST sequence is completed and that the BIST results are 

valid and can be read to determine the fault-free/faulty status 

of the CUT. 

3. FPGA Fault Detection 

The interconnected resources in FPGAs can be categorized 

as inter-CLB and intra-CLB resources. Inter-CLB routing 

resources provide interconnections among CLBs. Inter-CLB 

resources include programmable switch blocks and wiring 

channels connecting switch blocks and CLBs. Intra-CLB 

resources are located inside each CLB. Intra-CLB 

interconnects include programmable multiplexers and wires 

inside CLBs. Diagnosing faults in inter-CLB routing 
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resources are addressed in this section. For inter-CLB 

interconnect test and diagnosis, the configuration of routing 

resources remains unchanged while the configuration of logic 

resources are modified. 

 

Figure 2. FPGA Architecture. 

Test and diagnosis of intra-CLB interconnects along with 

logic resources are also discussed. For this purpose, the 

configuration of used logic resources (inclusive of intra-CLB 

interconnects) is kept unchanged whereas the configuration 

of inter-CLB interconnects as well as unused logic resources 

are changed. The separation between inter-CLB and intra-

CLB is made because in contemporary FPGAs the 

programmable logic resources are not limited to lookup 

tables (LUTs); other logic resources such as carry 

generation/propagation logic and cascade chains are included 

in CLBs. For inter-CLB interconnect test and diagnosis, these 

logic elements, if used in the original configuration, will be 

bypassed. 

A single-term function F is a logic function which has only 

one minterm or only one maxterm. In other words, the truth 

table of a single-term function consists of only one minterm 

or one maxterm. The input pattern corresponding to that 

minterm (or maxterm) of function F is called Activating 

Input (AIF). 

 

Figure 3. Single-term Function with Activating Input Pattern. 

A single-term function can be viewed as an AND (OR) 

function with possible inversions at the inputs and/or output. 

For a single-term function, if the applied input vector is the 

activating input, all sensitized faults are detected. An 

example is shown in Figure 3, which has only one maxterm.  

Since the activating input (0101) is applied, A/1 (A stuck-

at 1 fault), B/0, C/1 and D/0 are detected. Moreover the 

bridging faults between A and B are also detected. It should 

be noted that if a bridging fault is sensitized, i.e., two nets 

have opposite values, detection under various bridging fault 

models, namely wired-OR, wired-AND, and dominant, is 

guaranteed. This is because the value of at least one of the 

signals is modified and the condition of single-term function 

and activating inputs guarantee the propagation of faulty 

value(s) to the reachable primary output(s).  

Detection of feedback bridging faults requires logic-level 

sensitization and propagation of the fault. In addition to that, 

depending on the polarity of feedback path, which may result 

in oscillation, some extra timing conditions must be satisfied. 

The use of single term functions guarantees the logic-level 

requirements of such detection. 

Single-term functions guarantee the detection of all 

sensitized faults. However, some mechanism is required to 

sensitize all faults in the fault list. We implement single-term 

functions in all used LUTs in the design. By implementing 

different single-term functions in used logic blocks such that 

each fault in the fault list is sensitized in at least one test 

configuration, all faults can be detected. Since these test 

configurations target faults in inter-CLB interconnect, all 

additional logic resources in CLBs, if used, will be bypassed. 

Hence, CLBs are configured as LUTs followed by flip-flops. 

The following subsections describe the proposed diagnosis 

procedures based on various fault models. 

(1) Diagnosis of Stuck-At Faults: A circuit with ‘n’ nets 

has 2n stuck-at faults. Based on the above assumption, in 

order to uniquely identify any single stuck-at fault at least 

log22n = 1 + log2n test configurations are required. 

(2) Diagnosis of Open Faults: An open fault on a net can 

be detected by applying a sequence of stuck-at fault tests for 

that net. Since an open fault can behave either as stuck-at-1 

or stuck-at-0 faults, it is required to test for both stuck-at 

faults to guarantee the detection of open faults. If the logic 

behavior of an open is equivalent to a stuck-at-1 (or stuck-at-

0) fault, then the diagnosis procedure identifies the open as a 

stuck-at-1 (or stuck-at-0) fault due to fault equivalency. 

(3) Diagnosis of Bridging Faults: The bridging fault list for 

‘n’ a circuit with net contains n(n-1)/2 distinct pair-wise 

bridging faults. Hence, at least log2 [n(n-1)]/2 = 2log2 n-1 test 

configurations are required for single bridging fault 

diagnosis. 

The number of test configurations for bridging fault 

diagnosis can be reduced if a smaller fault list is used. Note 

that a considerable number of n(n-1)/2 bridging faults (in a 

design with ‘n’ nets) cannot happen based on physical layout 

information using inductive fault analysis (IFA) techniques 

[14]. If such faults are removed from the fault list, the 

number of test configurations can be reduced in a logarithmic 

scale. After faulty nets are diagnosed, if the exact failing 

interconnect resources (line segment, programmable switch, 

or multiplexer) within the faulty nets are required to be 

identified, high resolution interconnect diagnosis methods 

similar to those presented in [15] can be exploited afterwards. 

Consider an FPGA with N LUTs, such that each LUT has 

K inputs. The maximum number of nets for any designs to be 

mapped into this FPGA is N x (K+1). This means that one 

separate net is associated with every input and the output of 
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each LUT in the FPGA. 

4. Configuration Logic Block Detection 

For logic block (including intra-CLB interconnects) 

testing and diagnosis, the configuration of the original used 

logic blocks is preserved while the configuration of 

interconnects and unused logic blocks are changed to 

exhaustively test and diagnose all used logic blocks. This is 

in contrast to the method presented in the previous section for 

interconnects in which the configurations of used CLBs are 

replaced by appropriate single-term functions. 

 

Figure 4. Application-dependent Self-test Architecture for Logic Blocks (a) 

Original Configuration (b) BIST Configuration. 

The idea of application-dependent logic block testing is 

presented in [16]. In this BIST scheme, each used logic block 

is exhaustively (or super-exhaustively, i.e., all possible 

transitions) tested while all these logic blocks are tested 

concurrently. The global interconnect is reprogrammed in 

such a way that the test signals are routed to each logic block. 

A Linear Feedback Shift Register (LFSR) or a binary counter 

for generating test vectors is connected to the inputs of all 

used logic blocks. The logic block outputs are observed 

through an internal response compactor (e.g., an XOR tree). 

The response compactor can be combined with a response 

(parity) predictor, as will be explained shortly, such that a 

unique pass/fail signal can be generated. The LFSR and the 

XOR tree are implemented in the available unused logic 

blocks. Since the LFSR or binary counter generates all 

possible patterns (2
n
 patterns for an-input logic block) and 

the XOR tree propagates any single fault to its output, any 

single functional fault in the used logic blocks are propagated 

to the output of the XOR tree and is detected. Functional 

faults is any fault that changes the truth-table of an LUT, 

including stuck-at faults. 

Figure 4 shows an example of this scheme. In Figure 4(a) 

the original design, with used logic blocks F1 to F9 with 

original interconnections, is shown. In the BIST 

configuration, the original interconnections are modifies such 

that LFSR outputs, implemented in unused blocks, are 

connected to the inputs of all used blocks F1-F9 in parallel. 

The outputs of used blocks along with the parity predictor 

block are connected to the response compactor, which is also 

implemented in the available unused resources. The classical 

XOR tree does not provide any diagnosis capability. In order 

to improve the diagnostic resolution of this scheme, a 

combinational compactor based on error correcting schemes 

can be exploited instead of the XOR tree. If a compactor with 

more than one output is used and logic block outputs are 

selectively connected to the compactor outputs (through the 

network of XOR gates), the failing pattern at the outputs of 

the compactor can identify failing logic block(s). Test 

patterns generators (TPGs), such as LFSR, and Output 

Response Analyzers (ORAs) have been used in the context of 

FPGA BIST [17, 18, 19, 20, 21]. However, the use of 

parity/checksum precomputation (which requires only one 

LUT/block rather than a full XOR-tree) and response 

comparator which uniquely codes the failing block(s), 

particularly in the context of application-dependent 

diagnosis, is novel. 

5. Fail Pattern Identification in Memory 

In this work, the BIST and BISR design are based on fail 

pattern identification, and this section describes the fail-

pattern identification scheme in detail. A defect in different 

parts of the memory may lead to different faults and/or fail 

patterns [22, 23, 24]. Fault identification is not trivial, and 

can be aided by using the fail pattern information. We will 

describe the approach to distinguish the fail patterns during 

the test process. 

 

Figure 5. Memory Cell Array Being Tested. 

Figure 5 shows the memory cell array being tested. The 

shaded region represents the Word Under Test (WUT). If the 

WUT has a different output than the expected value when we 

read it, then the word fails and a fault is detected. In a typical 

BISD design, when a fault is detected the test process pauses, 

and the fault data is either registered or shifted out before the 

test process resumes. However, whether it is shifted out 

immediately or registered and then shifted out later, the cost 

(time complexity and ATE capture memory size) can be high 

if there are many faults. We use a more advanced approach, 

i.e., identify the faulty rows, faulty columns, and faulty 

words simultaneously during the test process. 

1. Faulty Row: When the WUT is faulty, we test the next 

word in the same row, i.e., Word 1 as shown in Figure 

1. If Word 1 is also faulty, we continue to test the next 

word in the same row until we reach a fault-free word 

or the end of the row. 

2. Faulty Column: Identification of a faulty column, 

assuming the WUT has been tested faulty, consists of 
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several condition-checking steps. 

a. Word 1 is tested fault free, so a faulty row can be 

excluded. 

b. The word above the WUT in the same column (i.e., 

Word 2 as shown in Figure 1) is tested fault free; 

otherwise the WUT has been covered by the previous 

faulty column test. 

c. The word under the WUT in the same column (i.e., 

Word 3 as shown in Figure 1) is tested faulty. We 

continue to test the subsequent words in the same 

column until we reach a fault-free word or the end of 

the column. 

3. Single Faulty Word: When the WUT is faulty but not in 

a faulty row or column, i.e., Word 1, Word 2, and Word 

3 are all tested fault-free, we consider the WUT as a 

single faulty word. 

This process does not increase the test time for a fault-free 

memory, because the test algorithm is the same as in the 

original BIST design. If the memory is faulty, then there will 

be a slight time penalty for fail pattern identification. 

However, compared with original BISD scheme, the size of 

memory diagnosis data to be exported and the total test data 

diagnosis time can be reduced greatly. Considering BISR 

applications, the fail pattern identification approach can 

replace the must-repair phase and the time penalty can be 

compensated by RA time reduction. 

Diagnosis Syndrome Format 

The proposed fault syndromes for the three fail patterns, 

as well as the original syndrome, are shown in Figure 5. 

The original syndrome is composed of three fields-

sessions, address, and word syndrome. The Session field 

records the Read operation that detects the fault. The 

Address field stores the address of the faulty word, so its 

length is equal to the length of a normal word address. 

The Word Syndrome field stores the compressing word 

syndrome of the faulty word at the current state, which 

represent the faulty cells in this word. The proposed 

syndrome for single faulty word has four fields-Syndrome 

ID, Session, Address, and Compressed Word Syndrome. 

The Syndrome IDs are used to distinguish the fail 

patterns: 00, 11, and 01 represent the single faulty word, 

row fault, and column fault, respectively. 

 

Figure 6. Simulation for Single-term Function. 

The Faulty-Row syndrome is composed of four fields. It 

does not include the Word Syndrome, but it needs to 

record the addresses of the first and last faulty words. 

Since the last faulty word has the same row address with 

the first faulty word, we only need to store the column 

address of the last faulty word (the End Column field). 

The Faulty-Column syndrome is similar to the Faulty-Row 

syndrome, except that it has the Compressed Word 

Syndrome field. Since all words are in the same column, 

only the address of the last faulty word in the column is 

recorded in the End Row field. Because the memory is 

word-oriented, the Word Syndrome is needed to locate the 

faulty bits (columns) in the word. It is also compressed by 

the Huffman code. Note that the Faulty-Column syndrome 

may be longer than the original syndrome, but it actually 

represents multiple faulty words in the same column, so it 

still has high compression efficiency. Furthermore, to identify 

more number of fault types, ex. multirow fault or 

multicolumn fault, the number of Syndrome ID may be 

increased. Different memory has different fault types. And 

different fault types require different data format and 

compression method. Moreover, the hardware cost may also 
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increase to identify different fault types. In this manuscript, 

we target on three typical fault types: faulty-row, faulty-

column, and faulty word. 

If the memory is fault-free, the Sequencer will only run in 

the Test Execution states, i.e., BIST Idle, BIST Apply, and 

BIST Done. It will then look like a typical BIST design, and 

in this case the testing time does not increase. 

6. Simulation Result 

Simulation result for the Figure 3 single term function 

without applying the BIST is shown in the Figure 6 same 

thing for the fault detection in the CLBs and also in the 

memory using BIST as shown in the Figure 7 and 8. 

 

Figure 7. Simulation for Fault Detection in FPGA using BIST. 

 

Figure 8. Simulation for Fault Detection in Memory. 
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7. Conclusion 

A new BIST approach for fault detection and 

diagnosis of FPGAs and memory has been proposed in this 

paper. The proposed FPGA BIST structure has high fault 

coverage on the modelled interconnect and CLB faults, 

including short/open and delay faults in wire channels, stuck 

on/off faults in PSs, and stuck-at-0/1 faults in LUTs. The test 

results for various FPGAs have shown that adequate 

performance in fault coverage, test time, and area overhead 

can be achieved by using the proposed BIST structure. The 

proposed FPGA BIST structure possesses the ability to 

simultaneously detect and diagnose faults on both 

interconnect resources and CLBs. For interconnect diagnosis, 

multiple faults (open, stuck-at, or bridging fault) can be 

uniquely identified.  
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