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ABSTRACT In this work, the problem of finite-time asynchronous fault detection filter design is
investigated for conic-type nonlinear semi-Markovian jump systems with time delay, missing measurements
and randomly jumping fault signal. In particular, the transition probability of the semi-Markov process is
considered as time-varying along with lower and upper bounds of the transition rate. Besides, the asyn-
chronous fault detection filter is developed for semi-Markovian jump systems with specific time-varying
transition probability satisfying semi-Markov process. To quantify the effects of missing measurements
a stochastic variable that satisfies Bernoulli’s distribution is adopted. Furthermore, a set of sufficient
conditions is derived in terms of linear matrix inequalities (LMIs) by constructing proper mode-dependent
Lyapunov-Krasovskii functional such that the augmented asynchronous fault detection filtering error system
is stochastically finite-time bounded with prescribed strictly (Q,S,R)− γ dissipative performance. Finally,
the provided filter designs applicability and usefulness has been verified with two numerical examples.

INDEX TERMS Semi-Markovian jump system; Conic-type nonlinearity; Missing measurements; Asyn-
chronous fault detection filter; Stochastic finite-time boundedness.

I. INTRODUCTION

MARKOVIAN Jump Systems (MJSs) are certain kind
of hybrid dynamical systems which can be used to

successfully model many practical systems such as in e-
conomic systems, aircraft control, robotics, power systems,
chemical process and so on [1], [2]. Besides, MJSs are
more desirable to specify the dynamical systems with random
instantaneous changes in their structure due to parameter
shifting, environmental variations, abrupt faults or failures in
components and so on. MJSs consist of a group of subsys-
tems with the transitions between the models regulated by a
Markov chain with constant transition rates. Recently, MJSs
have intensively been investigated and many fruitful results
are proposed, see for example [3]–[12]. The dissipativity-
based asynchronous filter was designed in [4] for a class of
discrete-time uncertain fuzzy nonhomogeneous Markovian
jump systems, where the fuzzy asynchronous full-order filter
is designed to ensure the dissipative performance of the
filtering error system using a triple-parameterized matrix
inequality and relaxation technique. Furthermore, in [6], the

authors investigated the robustness of the constructed filter
with H∞ performance for Markovian jump systems with
quantized output and unknown transfer probabilities. In [7],
a novel summation inequality is adapted to design an H∞
control for Markovian jump systems with time delay.

The Semi-Markovian Jump Systems (SMJSs) are modified
MJSs in which the transfer probability rate is determined by
the sojourn time which is time-varying, in contrast with fixed
transition probability rate in MJSs. It should be mentioned
that when dealing with MJSs, the elements of the transi-
tion rate matrix are considered as a constant forever. This
condition may not be satisfied for certain real-time systems
modeled in the framework of MJSs since the transition rate
matrix can even be time-variant in practice. As compared to
other approaches, SMJSs have a great number of applications
due to the unpredictable condition on the probability dis-
tribution. Nowadays, a huge deal of consideration has been
paid to the study of SMJSs [13]–[15]. The authors in [13]
addressed the problem of stochastic stability and stabilization
for a class of semi-Markovian jump systems where the jump
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parameters obey the semi-Markovian process. Moreover, by
the virtue of relaxation approach and sojourn-time-dependent
matrix inequalities, the sufficient conditions are obtained in
the form of LMIs for the stabilization of the considered
system. In [14], a reliable filtering problem is investigated
for SMJSs subject to time delay, uncertainties, and sensor
failures, where the considered filter design ensures mixed
passivity and H∞ filtering for error system performances.

While modeling the system, certain environmental vari-
ables such as nonlinearities, uncertainties, time delays, mod-
eling errors, external disruptions and faults may often cause
various challenges for the stabilization of dynamic systems.
The conic-type nonlinearity is a type of nonlinear factor that
occurs within a hypersphere, where the center is a linear
system and the radius is a supplement linear system bounded
by the norm. In a conic-type nonlinear model, rather than
knowing the exact dynamics, it is sufficient to know a dynam-
ic bound of the system nonlinearities. In addition it makes the
modeling of practical nonlinear systems simple and better.
The study of conic-type nonlinearities for dynamical sys-
tem are addressed in [16]–[19]. An asynchronous filtering
problem for T-S fuzzy Markovian jump system subject to
nonhomogeneous transition probability is reported in [18].
On the other hand, faults in any dynamical systems are in-
evitable and will influence the systems stability. The primary
goal of fault detection scheme is to detect a fault signal
effectively for getting the desired performance. For this to be
achieved, a residual signal is supposed in the filter system to
point out the deviation between nominal and faulty system
operation. Furthermore, a determined threshold is used to
compare the generated residual evaluation function. Further,
it may be deduced that the fault has occurred if the residual
evaluation function crosses the threshold. In accordance with
its significance, great number of findings are provided in
the literature regarding fault detection techniques for dynam-
ical systems [20]–[23]. By deploying stochastic analysis
methods, optimization techniques and cone complementarity
linearization technique, a fault detection filter is designed
for underactuated manipulators based on Markovian jump
model in [20]. Similarly, fault detection filtering technology
is recognized as a valid research topic due to its significant
impact on a wide range of applications.

In general, for MJSs two standard forms of filters are de-
signed such as mode-independent and mode-dependent. The
mode-dependent filter is designed under the assumption that,
the system mode is accessible to the filter at any instant of
time. Nevertheless, for practical systems the above consider-
ation is usually challenging to be assured due to the existence
of network-induced imperfections. Hence, it is obvious that
the design of mode-dependent filter has several constraints.
As a consequence, in recent times the mode-independent
filter has been developed to overcome the limitations of
mode-dependent filter. It should be mentioned that, the mode-
independent filter is appropriate for systems where the in-
formation about mode transition is absolutely unavailable.
However, these kind of filters have difficulty while handling

the asynchronous phenomenon among the system and filter
modes since it ignores all the accessible mode information.
To tackle this issue, an asynchronous filter is structured and
some interesting results have been provided [24]–[28]. The
authors in [25] investigated an asynchronous H∞ filter for a
class of discrete-time T-S fuzzy MJSs such that the resulting
filtering error system satisfies H∞ disturbance attenuation
performance and finite-time boundedness. It should be noted
that, the existence of some unexpected errors during the
implementation of designed filter are inevitable. Therefore,
the non-fragile filter is assumed to ensure the robustness
subject to filter gain fluctuations. In recent years, enormous
number of the resilient based filter design have been recorded
[29], [30].

Time delay is commonly encountered in various dynamics
systems and it is regarded as the main source for instabil-
ity or poor performance of the systems. To overcome the
shortcomings of the time delay, many techniques have been
employed and numerous investigation on delay-dependent
stability condition have been reported in literature [31]–
[33]. Further, the transmitted measurements may be lost or
partially communicated because of sudden failures or fault-
s of system components. Therefore, the filtering problems
with missing measurements have gained significant research
attention in recent years [34], [35]. It is important to point
out that, in the study of system stability or stabilization, the
dissipative theory plays a crucial role. Moreover, dissipative
performance is more general when comparing with H∞ and
passivity performances. Also, it provides a less conservative
and more flexible filter design since it manages a better trade-
off between the gain and phase performances (see for exam-
ple [36]–[38]). Moreover, it is practically important to study
the state responses within a finite period of time. Therefore,
the concepts of finite-time stability and finite-time bound-
edness have become active research fields in the past few
decades [39]. As a consequence of the preceding discussion,
in this paper, a finite-time non-fragile asynchronous fault
detection filter with dissipative performance for conic-type
nonlinear SMJSs with time delay, missing measurements and
random jumping fault signal is examined. The main concerns
of this work are as follows:

• A finite-time asynchronous fault detection filter design
problem is investigated for conic-type nonlinear SMJSs
with time delay, missing measurements and random
jumping fault signal.

• A stochastic variable is considered for describing the
missing measurement phenomena which is assumed to
follow Bernoulli distributed white sequence. Further,
a jumping mode is provided to describe the random
occurrence of fault signal.

• The residual signal is used to solve the asynchronous
fault detection filtering problem. In addition, a residual
error is produced by measuring the difference between
the residual signal and the measured output. Moreover,
the fault is detected when the obtained residual evalua-
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tion functional crosses the predefined threshold value.
• By using Lyapunov stability theory along with time-

varying transition rate, a new group of sufficient con-
ditions in the form of LMIs is established to ensure the
finite-time boundedness and dissipative performance of
the asynchronous fault detection filtering error system.

Finally, a Pulse-Width-Modulation-driven boost converter
model and R-L-C circuit model are given to show the ef-
ficiency of the proposed asynchronous fault detection filter
design in the existence and non-existence of time delay,
respectively.
Notation: On the whole, the following notations have func-
tioned in this paper. E{·} represents the mathematical ex-
pectation. The n- dimensional Euclidean space is denoted by
Rn. N−1 and NT indicate the inverse and the transpose of
the matrix N , respectively. For a vector, ‖ · ‖ indicates its
Euclidean norm. P > 0 means that P is a positive definite
matrix. I and 0 illustrates the identity and zero matrices
with suitable dimension, respectively. The symbol ′∗′ is used
in matrix terms to represent the transpose elements in the
symmetric position.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a class of discrete-time conic-type nonlinear SMJSs
with time delay and random jumping fault signal in the
following form:

x(k + 1) =f(x(k), x(k − d), w(k), f̃(k)) +B%(k)u(k),

y(k) =α(k)C%(k)x(k) +D%(k)w(k) +H%(k)f̃(k),
(1)

x(k) =x(j), −∞ < j ≤ 0,

where x(k) ∈ Rn is the state vector, y(k) ∈ Rb is
the measured output, u(k) ∈ Ra is the controlled input,
w(k) ∈ Rw is the disturbance input which belongs to
l2[0,∞), f(x(k), x(k− d), w(k), f̃(k)) is an unknown non-
linear function. d > 0 is the constant time delay term, x(j)
is the initial condition. B%(k), C%(k), D%(k) and E%(k) are
appropriate dimensioned known matrices.α(k) is the random
variable that indicates the missing measurement phenomena
and designed as Bernoulli distributed white sequence. In
addition, it satisfies the distribution law by taking values 0
or 1 with Pr{α(k) = 1} = E{α(k)} = ᾱ, Pr{α(k) =
0} = E{α(k)} = 1 − ᾱ. Let {%(k), k > 0} be the discrete-
time semi-Markov process taking its values in a finite set
M1 = {1, 2, · · · , S} along with transition probability as
follows:

Pr{%(k + 1) = n, Tk+1 = τ̃ |%(k) = m} = πmn(k), (2)

where πmn(k) ≥ 0 is the transition probability from mode
m at time k to n at time k+1 and

∑M1

n=1 πmn(k) = 1, ∀m ∈
M1, Tk+1 = n −m represent the sojourn time begins with
kth jump and ends with k+1th jump. Specifically, πmn is the
transition with lower and upper bounds as π−mn ≤ πmn(k) ≤
π+
mn. For the purpose of accessibility, we denote %(k) = m.

Moreover, we have described the fault signal with the random

jump in the following form:

f̃(k) = ς(k)f̂(k), (3)

where f̂(k) be the deterministic fault signal and ς(k) is the
random jumping signal which consists of two values either 1
or 0.

In this paper, the unknown nonlinear function f(x(k), x(k−
d), w(k), f(k)) along with conic-type sector is described as

‖f(x(k), x(k − d), w(k), f(k))− (Amx(k)

+Admx(k − d) + Emw(k) + Fmf̃(k))‖
≤ ‖Gmx(k) +Gdmx(k − d) +Gwmw(k) + Lmf̃(k)‖,

(4)

where Am, Adm, Em, Fm, Gm, Gdm, Gwm and Lm
are known matrices with suitable dimensions. Further,
for our convenience we take ζ(k) = ‖f(x(k), x(k −
d), w(k), f(k)) − (Amx(k) + Admx(k − d) + Emw(k) +
Fmf̃(k)‖ then we obtain

ζT (k)ζ(k) ≤(Gmx(k) +Gdmx(k − d) +Gwmw(k) + Lmf̃(k))T

(Gmx(k) +Gdmx(k − d) +Gwmw(k) + Lmf̃(k)).
(5)

Remark 1: It is worthy to mention that the non-linear part
of SMJSs (1) studied in this paper satisfies conic condition.
Thus, the non-linear function f(x(k), x(k − d), w(k), f(k))
lies in an n-dimensional hyperspace whose center is a linear
system represented byAmx(k)+Admx(k−d)+Emw(k)+
Fmf̃(k) and whose radius is bounded by another linear
system Gmx(k) + Gdmx(k − d) + Gwmw(k) + Lmf̃(k),
which is ensured in inequality (4).

Then, system (1) can be rewritten in the following form:

x(k + 1) =Amx(k) +Admx(k − d) + Emw(k)

+ Fmf̃(k) +Bmu(k),

y(k) =α(k)Cmx(k) +Dmw(k) +Hmf̃(k), (6)
x(k) =x(j), −∞ < j ≤ 0.

On the other hand, to detect the fault, we are interested
in synthesizing the non-fragile asynchronous fault detection
filter design with the residual signal as follows:

xf (k + 1) =Āfθ(k)xf (k) + B̄fθ(k)y(k),

µ̃(k) =Cfθ(k)xf (k), (7)

where Āfθ(k) = Afθ(k) + ∆Afθ(k) and B̄fθ(k) = Bfθ(k) +
∆Bfθ(k); xf (k) ∈ Rd is the filter state; y(k) is the filter
input vector; µ̃(k) is the residual signal. Afθ(k), Bfθ(k),
Cfθ(k) are the filter gain matrices to be determined later. The
terms ∆Afθ(k)(k) and ∆Bfθ(k)(k) represent the filter gain
perturbations with the structure

∆Afθ(k)(k) = Maθ(k)∆(k)Naθ(k) and
∆Bfθ(k)(k) = Mbθ(k)∆m(k)Nbθ(k), (8)

where Maθ(k), Mbθ(k), Naθ(k) and Nbθ(k) are appropriate
dimensional known real matrices and ∆(k) is an unknown
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time-varying matrix function satisfying ∆T (k)∆(k) ≤ I .
The parameter θ(k) (k ∈ Z+) serves as a discrete-time
semi-Markov process which depends on %(k + 1) and by
taking the values from the finite setM2 = {1, 2, · · · ,M2}.
Moreover, the corresponding transition probability is given
as Pr{θ(k + 1) = q, Tk+1 = τ̂ |θ(k) = p} = φnpq(k) ≥ 0

for every p, q ∈ M2 with
M2∑
q=1

φnpq(k) = 1. Specifically,

the process %(k) is pretended to be independent on F(k −
1) = σ{θ(1), θ(2), · · · , θ(k − 1)}, where F(k − 1) is the
σ-algebra produced by {θ(1), θ(2), · · · , θ(k − 1)}. Let us
denote the notation θ(k) = p in the rest of this paper for
our convenience.

Here, the residual error e(k) = µ̃(k)− y(k) is introduced
to improve the sensibility of faults. Then, we consider the
augmented asynchronous fault detection filtering error sys-
tem in the following form

η(k + 1) =Āmpη(k) + α̃(k)Ãmη(k) + Ādmη(k − d)

+ B̄mpν(k) + ζ̄(k),

e(k) =C̄mpη(k) + α̃(k)C̃mη(k) + D̄mν(k), (9)

where

ηT (k) =
[
x(k) xf (k)

]T
, ν(k) =

[
u(k) w(k) f̃(k)

]
,

ζ̄(k) =

[
ζ(k)

0

]
, Āmp =

[
Am 0

ᾱB̄fpCm Āfp

]
,

Ãm =

[
0 0

B̄fpCm 0

]
, Ādm =

[
Adm 0

0 0

]
,

B̄mp =

[
Bm Em Fm
0 B̄fpDm B̄fpHm

]
, C̄mp =

[
ᾱCm −Cfp

]
,

C̃m =
[
Cm 0

]
, D̄m =

[
0 Dm Hm

]
, α̃(k) = α(k)− ᾱ,

E{α̃(k)} = 0, E{α̃2} = ᾱ(1− ᾱ) = Θ2
α

The residual evaluation function Je(k) =

√
k0+L∑
k=k0

eT (k)e(k)

and the threshold Jth = sup
w 6=0, u 6=0, f=0

Je(k) are chosen to

detect the fault, where L is the finite time length of evaluation.
Thus, the detection of the fault can be measured by compar-
ing the evaluation function and the threshold according to the
following laws:

Je(k) > Jth =⇒ with− fault,
Je(k) ≤ Jth =⇒ without− fault.

To obtain the main results, we now address the following
Assumptions.

Assumption 1: The disturbance input vector ν(k) is time-

varying and satisfies
N∑
k=0

νT (k)ν(k) ≤ ϕ, where ϕ > 0.

Assumption 2: The time-varying transition probability
πmn(k) is bounded and satisfies the following assumption

as

πmn(k) =
H∑
h=1

λhπmn,h,
H∑
h=1

λh = 1, λh ≥ 0,H ≥ 1,

where

πmn,h =

{
π−mn + (h− 1)

π+
mn−π

−
mn

H−1 , m 6= n

π−mn − (h− 1)
π+
mn−π

−
mn

H−1 , m = n.

Lemma 1: [37] Let G, H and F (k) be real matrices of
appropriate dimensions with FT (k)F (k) ≤ I . Then there
exists a constant ε > 0 such that the inequality GF (k)H +
HTFT (k)GT ≤ εGGT + ε−1HTH holds.
Definition 1: [36] Given positive scalars C1, C2 with C2 > C1
and a symmetric matrix J , the augmented fault detection
filtering residual error system (9) is said to be finite-time
stochastic bounded with respect to (C1, C2,N , γ,J , ϕ), if
for the disturbance input ν(k) satisfies Assumption 1, it
holds that E{ηT (k1)J η(k1)} ≤ C1 =⇒ E{ηT (k2)J η(k2)}
< C2,∀ k1 ∈ {−ς2,−ς2+1, . . . , 0}, ς2 = max{τ̄ , d̄}, k2 =
{1, 2, . . . , N̄ }.
Definition 2: [36] For a given scalar γ > 0 and matrices Q, S
and R with Q and R are real symmetric, then the system (1)
is strictly (Q,S,R)-γ dissipative if for every N̄ > 0 under
zero initial state condition satisfies

E
{ N∑
k=0

[eT (k)Qe(k) + 2eT (k)Sν(k) + νT (k)[R]ν(k)]
}

≥ γ
N̄∑
k=0

νT (k)ν(k).

Also, for convenience, it is assumed that Q ≤ 0.

III. MAIN RESULTS
In this section, we aim to establish some sufficient conditions
for the existence of non-fragile asynchronous fault detection
filter design that ensure the stochastic finite-time bounded-
ness of the augmented asynchronous fault detection filtering
error system (9) with strictly (Q,S,R) − γ dissipative per-
formance. Moreover, the desired non-fragile asynchronous
fault detection filter system will be established in the form of
(7) such that system (9) is stochastically finite-time bounded
with strictly (Q,S,R) − γ dissipative performance even in
the presence of time delay, missing measurements and the
random jumping fault signal.

In the following theorem, the stochastic finite-time bound-
edness along with strictly (Q,S,R) − γ dissipative perfor-
mance of system (9) with known filter gain parameters is
examined.
Theorem 1: Let Assumption 1 holds. Let d, µ, a, b, ε1, C1 > 0
be known positive scalars and Q ≤ 0, S, R = RT , J ≥ 0
be known constant matrix. The augmented asynchronous
fault detection filtering error system (9) is stochastically
finite-time bounded with strictly (Q,S,R) − γ dissipative
performance subject to (C1, C2,N , γ,J , ϕ) if there exist
positive definite matrices Pm, P̄m, Q1 and positive scalars
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χa (a = 1, 2, 3) such that the following LMIs hold for any
m,n ∈M1, p, q ∈M2:

[Ψ]8×8 < 0, (10)[
−P̄m P̄m
∗ −a3 I

]
< 0, (11)

υC1 + χ
W
ϕ < C2χ1

µ−k, (12)

χ
1
I ≤ P̂m ≤ χ2

I, 0 < Q̂1 < χ
3
I, (13)

where

Ψ1,1 = −Pm +Q1, Ψ1,4 =
√

3ĀTmp,Ψ1,5 = ΘαÃ
T
mp,

Ψ1,6 =

√
−ε−11 ĀTdm,Ψ1,7 = bḠTm +

√
ε1Ḡ

T
m,

Ψ1,8 = C̄Tmp
√
−Q + ΘαC̃

T
m

√
−Q, Ψ2,2 = −µdQ1,

Ψ2,4 = 2ĀTdm, Ψ2,7 = (
√
ε1 + b)ḠTdm, Ψ3,3 = −R + γI

− 2D̃T
mS, Ψ3,4 = 2B̄Tmp, Ψ3,7 = (

√
ε1 + b)L̄Tm,

Ψ4,4 = −P̄−1m , Ψ5,5 = −P̄−1m , Ψ6,6 = −I, Ψ7,7 = −I,

Ψ8,8 = −I, P̄m =
∑
n∈M1

∑
q∈Mq

πmn(k)φnpq(k)Pn,

υ = χ
2

+ dχ
3
.

Proof: Let us first define the Lyapunov-Krasovskii functional
to prove the required results as follows:

V(k) = ηT (k)Pmη(k) +

k−1∑
s=k−d

µk−s−1ηT (k)Q1η(k).

(14)

Then, by calculating the differences of V(k) along with the
trajectories of system (9) and taking mathematical expecta-
tion, we obtain

E{∆V(k)− (µ− 1)V(k)} = E
{
ηT (k + 1)(

∑
n∈M1

∑
q∈Mq

× πmn(k)φnpq(k)Pn)η(k + 1)− µηT (k)Pmη(k)

+

k∑
s=k+1−d

µk−sηT (s)Q1η(s)−
k−1∑
s=k−d

µk−s−1ηT (s)Q1η(s)
}

=E
{

[Āmpη(k) + α̃(k)Ãmη(k) + Ādmη(k − d) + B̄mpν(k)

+ ζ̄(k)]T P̄m[Āmpη(k) + α̃(k)Ãmη(k) + Ādmη(k − d)

+ B̄mpν(k) + ζ̄(k)]− µηT (k)Pmη(k)

+ ηT (k)Q1η(k)− µdηT (k − d)Q1η(k − d)
}

≤E
{
ηT (k)(Āmp + α̃(k)Ãm)T P̄m(Āmp + α̃(k)Ãm)η(k)

+ 2ηT (k)(Āmp + α̃(k)Ãm)T P̄mĀdmη(k − d) + 2ηT (k)

× (Āmp + α̃(k)Ãm)T P̄mB̄mpν(k) + 2ηT (k)(Āmp

+ α̃(k)Ãm)T P̄mζ̄(k) + ηT (k − d)ĀTdmP̄mĀdmη(k − d)

+ 2ηT (k − d)ĀTdmP̄mB̄mpν(k) + 2ηT (k − d)ĀTdmP̄mζ̄(k)

+ νT (k)B̄TmpP̄mB̄mpν(k) + 2νT (k)B̄TmpP̄mζ̄(k) + ζ̄T (k)

× P̄mζ̄(k)− µηT (k)Pmη(k) + ηT (k)Q1η(k)

− µdηT (k − d)Q1η(k − d)
}
. (15)

Now, by implementing Lemma 1 in [16] and [17], we obtain

2ηT (k − d)ĀTdmP̄mζ̄(k) ≤ ε−1
1 ηT (k − d)Ādmη(k − d)

+ ε1ζ̄
T (k)ζ̄(k),

ηT (k)ĀTmpP̄mĀdmη(k − d) ≤ ηT (k)ĀTmpP̄mĀmpη(k)

+ ηT (k − d)ĀTdmP̄mĀdmη(k − d).

Further, by using similar analysis for the remaining term in
(15), we obtain

E{∆V (k)− (µ− 1)V (k)} ≤ ηT (k)[4ĀTmpP̄mĀmp + Θ2
αÃ

T
mP̄m

× Ãm − µPm + ε1Ḡ
T
mḠm]η(k)

+ ηT (k − d)[3ĀTdmP̄mĀdm + ḠTdm

× Ḡdm]η(k − d) + νT (k)[4B̄TmpP̄m

× B̄mp + ε1L̄
T
mL̄m]ν(k)

+ 3ζ̄T (k)P̄mζ̄(k). (16)

Besides, to demonstrate strictly (Q,S,R) − γ dissipative
performance of the system (9), we define performance index
in the following form

J =E
{ N∑
k=0

[eT (k)Qe(k) + 2eT (k)Sν(k)

+ νT (k)[R− γI]ν(k)]
}
. (17)

Then, by combining the inequalities (16) and (17) together
with Schur complement, we have

E{∆V (k)− (µ− 1)V (k)− J} ≤ J̃ =

[
Ξ −3ζ̄T (k)P̄m
∗ −3P̄m

]
,

(18)

where

Ξ =4ηT (k)ĀTmpP̄mĀmpη(k) + Θ2
αη

T (k)ÃTmP̄mÃmη(k)

− µηT (k)Pmη(k) + ε1η
T (k)ḠTmḠmη(k)

− ηT (k)C̄TmpQC̄mpη(k)−Θ2
αη

T (k)C̃TmQC̃mη(k)

− 2ηT (k)C̄TmpSν(k) + 3ηT (k − d)ĀTdmP̄mĀdmη(k − d)

+ ηT (k − d)ḠTdmḠdmη(k − d) + ηT (k)Qη(k)

− µdηT (k − d)Qη(k − d) + 4νT (k)B̄TmpP̄mB̄mpν(k)

− νT (k)[R− I]ν(k) + ε1ν
T (k)L̄TmL̄mν(k)

+ 2νT (k)D̄T
mSν(k).

On the other hand, by considering two non-negative scalars
a and b with a− b < 0, the following formula is established

−2bζ̄T (k)ζ̄(k) + aζ̄T (k)ζ̄(k) < 0. (19)

Using Schur complement lemma in (19), we have[
−2bζ̄T (k)ζ̄(k) 0

∗ −9a−1P̄ 2
m

]
<

[
0 3ζ̄T (k)p̄m
∗ 0

]
. (20)

From the inequality (18), we have J̃ < 0, that is[
Ξ 0
∗ −3P̄m

]
<

[
0 −3ζ̄T (k)P̄m
∗ 0

]
, (21)

5
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which is assured by[
Ξ 0
∗ −3P̄m

]
<

[
−2bζ̄T (k)ζ̄(k) 0

∗ −9a−1P̄ 2
m

]
. (22)

Then, inequality (22) can be modified as[
Ξ1 0
∗ Ξ2

]
< 0, (23)

where

Ξ1 = Ξ + 2bζ̄T (k)ζ̄(k) < 0, (24)

Ξ2 = −3P̄m + 9a−1P̄ 2
m < 0. (25)

Thus, LMI (11) holds, by implementing Schur complement
to inequality (25). Moreover, from inequality (24) along with
Schur complement lemma, we get

E{∆V (k)− (µ− 1)V (k)− J} ≤ ψT (k)Ψψ(k), (26)

where ψT (k) =
[
ηT (k) ηT (k − d) νT (k)

]T
and the

components of Ψ are defined in theorem statement. There-
fore, the matrix terms in (26) are equivalent to inequality
(10). Hence, if the inequality (10) holds, it is clear that

E{∆V (k)− (µ− 1)V (k)− νT (k)Wν(k)} ≤ 0,

E{V (k + 1)− V (k)} ≤ (µ− 1)E{V (k)}+ E{νT (k)Wν(k)},
E{V (k + 1)} ≤ µE{V (k)}+ χW E{νT (k)ν(k)}, (27)

where χ
W

= χmax(W ). In addition, there exists µ ≥ 1
which would be a non negative scalar and from Assumption
1, it can be observed that

E{∆V (k)} ≤ µkE{V (0)}+ χ
W
E
{ k−1∑
s=0

µk−s−1νT (s)ν(s)
}

≤ µkE{V (0)}+ µkχ
W
ϕ. (28)

Moreover, from the Lyapunov-Krasovskii functional (14), we
obtain

V (0) =E{ηT (0)Pmη(0)}+ E
{ −1∑
s=−d

µ−s−1ηT (0)Q1η(0)
}
.

By letting P̂m = J−1/2PmJ−1/2 and Q̂ =
J−1/2Q1J−1/2, we have

V (0) ≤ E{ηT (0)J 1/2P̂mJ 1/2η(0)}

+ E
{ −1∑
s=−d

µ−s−1ηT (0)J 1/2Q̂1J 1/2η(0)
}

≤ {χ
2

+ χ
3
d}C1 ≤ υC1, (29)

where χ
1

= χmin{Pm}, χ2
= χmax{Pm} and χ

2
=

χmax{Q}. Moreover, it follows from (14) that E{V (k)} ≥
E{ηT (k)Pmη(k)} ≥ E{ηT (k)J 1/2P̂mJ 1/2η(k)} ≥
χ

1
E{ηT (k)J η(k)}. Then, it is clear to get that

E{ηT (k)J η(k)} ≤ (υC1+χW
ϕ)µk

χ
1

. Furthermore, from in-
equality (12), it is obvious that E{ηT (k)J η(k)} < C2 for
every k ∈ {1, 2, . . . ,N}. Thus, by the Definition 1 in [25]
we conclude that the augmented asynchronous fault detection

filtering error system (9) is stochastically finite-time bounded
with strictly (Q,S,R)− γ dissipative performance subject to
(C1, C2,N , γ,J , ϕ). This completes the proof. �

The derived constrains in Theorem 1 shows the stochastic
finite-time boundedness with strictly (Q,S,R) − γ dissipa-
tive performance of system (9). Furthermore, the following
theorem ensures that the system (9) with unknown filter gain
parameters is stochastically finite-time boundedness with
strictly (Q,S,R)− γ dissipative performance.

Theorem 2: Let Assumption 1 holds. Let d, µ, a, b, ε1, C1 > 0
be known positive scalars and Q ≤ 0, S, R = RT , J ≥ 0
be known constant matrix, then the augmented asynchronous
fault detection filtering error system (9) is stochastically
finite-time bounded with strictly (Q,S,R) − γ dissipative
performance subject to (C1, C2,N , γ,J , ϕ) if there exist pos-
itive definite matrices P1m, P2m, P3m, P̄1m, P̄2m, P̄3m,Q11,
Q12, Q22, Y1, Y2, Y3 and positive scalars χa (a = 1, 2, 3)
such that below mentioned LMIs hold together with (12) for
any m,n ∈M1, p, q ∈M2:


[Ψ̂]16×16 β1N T

ap Ma β2N T
bp Mb

∗ −β1 0 0 0
∗ ∗ −β1 0 0
∗ ∗ ∗ −β2 0
∗ ∗ ∗ ∗ −β2

 < 0, (30)


−P̄1m −P̄2m P̄1m P̄2m

∗ −P̄3m P̄T2m P̄3m

∗ ∗ −a3 I 0
∗ ∗ ∗ −a3 I

 < 0, (31)

where

Ψ̂1,1 = −µP1m +Q11, Ψ̂1,2 = −µP2m +Q12,

Ψ̂1,5 = −ᾱCTmS, Ψ̂1,8 = 2ATmY
T
1 + ᾱCTmBTfp,

Ψ̂1,9 = 2ATmY
T
3 + ᾱCTmBTfp, Ψ̂1,10 = ΘαC

T
mBTfp,

Ψ̂1,11 = ΘαC
T
mBTfp, Ψ̂1,12 =

√
ε−11 ATdm,

Ψ̂1,14 = (
√
ε1 + b)GTm, Ψ̂1,15 = ᾱCTm

√
−Q,

Ψ̂1,16 = ΘαC
T
m

√
−Q, Ψ̂2,2 = −µP3m +Q22,

Ψ̂2,5 = CTfpS, Ψ̂2,8 = 2ATfp, Ψ̂2,9 = 2ATfp,

Ψ̂2,15 = −CTfp
√
Q, Ψ̂3,3 = −Q11, Ψ̂3,4 = −Q12,

Ψ̂3,8 =
√

3ATdmY
T
1 , Ψ̂3,9 =

√
3ATdmY

T
3 ,

Ψ̂3,14 = (
√
ε1 + b)GTdm, Ψ̂4,4 = −Q22, Ψ̂5,5 = −R + γI,

Ψ̂5,8 = 2BTmy
T
1 , Ψ̂5,9 = 2BTmy

T
3 , Ψ̂6,6 = −R + γI − 2GTwmS,

Ψ̂6,8 = 2ETmY
T
1 +DT

mBTfp, Ψ̂6,9 = 2ETmY
T
3 +DT

mBTfp,

Ψ̂6,14 = (
√
ε1 + b)GTwm, Ψ̂6,15 = DT

m

√
−Q,

Ψ̂7,7 = −R + γI − 2LTmS, Ψ̂7,8 = 2FTmY
T
1 +HT

mBTfp,
Ψ̂7,9 = 2FTmY

T
3 +HT

mBTfp, Ψ̂7,14 = (
√
ε1 + b)LTm,

Ψ̂7,15 = DT
m

√
−Q, Ψ̂8,8 = P̄1m − Y T1 − Y1,

Ψ̂8,9 = P̄2m − Y T3 − Y2, Ψ̂9,9 = P̄3m − Y T2 − Y2,

6
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Ψ̂10,10 = P̄1m − Y T1 − Y1, Ψ̂10,11 = P̄2m − Y T3 − Y2,
Ψ̂11,11 = P̄3m − Y T2 − Y2, Ψ̂12,12 = Ψ̂13,13 = Ψ̂14,14 = −I,
Nap = [0 2Nap 0 0 0 0 0 0 0 · · · 0︸ ︷︷ ︸

5

],

Ma = [0 · · · 0︸ ︷︷ ︸
7

MT
apY

T
2 MT

apY
T
2 0 · · · 0︸ ︷︷ ︸

7

]T ,

Nbp = [(ᾱ+ Θα + 1)NbpCm 0 · · · 0︸ ︷︷ ︸
4

NbpDm NbpHm 0 · · · 0︸ ︷︷ ︸
9

],

Mb = [0 · · · 0︸ ︷︷ ︸
7

MT
apY

T
2 MT

apY
T
2 MT

apY
T
2 MT

apY
T
2 0 · · · 0︸ ︷︷ ︸

7

]T .

Moreover, the gain matrices of the non-fragile asynchronous
fault detection filter are given as Afp = Y −12 Afp, Bfp =
Y −12 Bfp and Cfm = Cfp.
Proof: To ensure the required results, we consider

the matrices in the form as P̄m =

[
P̄m1 P̄m2

P̄Tm2 P̄m3

]
,

Pm =

[
P1m P2m

PT2m P3m

]
, Y =

[
Y1 Y2
Y3 Y2

]
and Q =[

Q11 Q12

∗ Q22

]
. Further, by letting Afm = Afmy

T
2 , Bfm =

BfmY
T
2 and Cfm = Cfm, using the above given partition

matrices P̄m,Pm,Q, Y and Lemma 2 in [11] to the inequality
(10) along with the parameter uncertainties defined in (8), we
have

Ψ̃ = Ψ̂11×11 + β1N T
ap∆(k)Ma + β2MT

b ∆(k)Nbp, (32)

where the factors of Ψ̂11×11, Nap, Nbp, Ma and Mb are
defined in Theorem 2. On the other hand, by implementing
Lemma 1 , the terms in (32) can be rewritten as

Ψ̃ =Ψ̂11×11 + β1N T
apNap + β1MaMT

a+

β2N T
bpNbp + β2M2MT

2 . (33)

The expression in (33) appears equivalent to the matrix terms
in (30). Thus, from (31) we accomplish that Y is non-
singular. Therefore, system (9) is stochastically finite-time
bounded with strictly (Q,S,R) − γ dissipative performance
subject to (C1, C2,N, γ,J , ϕ), if the LMIs in (30) hold to-
gether with (12). Hence, proof of this theorem is completed.
�
Remark 2: The main contribution of this paper is to desin
a finite-time dissipative based asynchronous fault detection
filter for conic-type nonlinear semi-Markovian jump systems
with time-delay and random jumping fault signal. As pointed
out in Remark 1, the conic-type nonlinearity is more general
than the global Lipschitz nonlinearities. Besides, it should
be emphasized that in order to overcome the difficulties in
dealing with the conic-type nonlinearity with time-delay,
random jumping fault signal and semi-Markov process in
system (9), a new Lyapunov function (14) is employed to
achieve finite-time dissipative based asynchronous fault de-
tection filter design. In addition, there exist some control
design for conic-type nonlinearities which is addressed in
continuous context [16], [18]. Further, it is noted that the
aforementioned results are based on conic-type nonlinearities

but asynchronous fault detection filter is not reported for
semi-Markovian jump systems.

Here, if we assume the conic-type nonlinear SMJSs (1)
without time delay, then the augmented asynchronous fault
detection filtering error system is given in the following form

η(k + 1) =Āmpη(k) + α̃(k)Ãmη(k) + B̄mpν(k) + ζ̄(k),

e(k) =C̄mpη(k) + α̃(k)C̃mη(k) + D̄mν(k), (34)

Corollary 1: Let Assumption 1 holds. Let d, µ, a, b, ε1, C1 >
0 be known positive scalars and Q ≤ 0, S, R = RT , J ≥ 0
be known constant matrix then the augmented asynchronous
fault detection filtering error system (34) is stochastically
finite-time bounded with strictly (Q,S,R) − γ dissipative
performance subject to (C1, C2,N , γ,J , ϕ) if there exist
positive definite matrices P1m,P2m, P3m, P̄1m, P̄2m, P̄3m,
Y1, Y2, Y3 and positive scalars χa (a = 1, 2) such that below
mentioned LMIs hold for any m,n ∈M1, p, q ∈M2:


[Ψ̂]12×12 β1N̂ T

ap M̂a β2N̂ T
bp M̂b

∗ −β1 0 0 0
∗ ∗ −β1 0 0
∗ ∗ ∗ −β2 0
∗ ∗ ∗ ∗ −β2

 < 0, (35)


−P̄1m −P̄2m P̄1m P̄2m

∗ −P̄3m P̄T2m P̄3m

∗ ∗ −a3 I 0
∗ ∗ ∗ −a3 I

 < 0, (36)

υC1 + χ
W
χ2 < C2χ1µ

−k,
(37)

χ
1
≤ P̂m ≤ χ2

, (38)

where

Ψ̂1,1 = −µP1m, Ψ̂1,2 = −µP2m, Ψ̂1,3 = −ᾱCTmS,
Ψ̂1,6 = 2ATmY

T
1 + ᾱCTmBTfp, Ψ̂1,7 = 2ATmY

T
3 + ᾱCTmBTfp,

Ψ̂1,8 = ΘαC
T
mBTfp, Ψ̂1,9 = ΘαC

T
mBTfp, Ψ̂1,10 = (

√
ε1 + b)GTm,

Ψ̂1,11 = ᾱCTm
√
−Q, Ψ̂1,12 = ΘαC

T
m

√
−Q,

Ψ̂2,2 = −µP3m +Q22, Ψ̂2,3 = CTfpS, Ψ̂2,6 = 2ATfp,

Ψ̂2,7 = 2ATfp, Ψ̂2,11 = −CTfp
√
Q, Ψ̂3,3 = −R + γI,

Ψ̂3,6 = 2BTmy
T
1 , Ψ̂3,7 = 2BTmy

T
3 , Ψ̂4,4 = −R + γI − 2GTwmS,

Ψ̂4,6 = 2ETmY
T
1 +DT

mBTfp, Ψ̂4,7 = 2ETmY
T
3 +DT

mBTfp,

Ψ̂4,10 = (
√
ε1 + b)GTwm, Ψ̂4,11 = DT

m

√
−Q,

Ψ̂5,5 = −R + γI − 2LTmS, Ψ̂5,6 = 2FTmY
T
1 +HT

mBTfp,
Ψ̂5,7 = 2FTmY

T
3 +HT

mBTfp, Ψ̂5,10 = (
√
ε1 + b)LTm,

Ψ̂5,11 = DT
m

√
−Q, Ψ̂6,6 = P̄1m − Y T1 − Y1,

Ψ̂6,7 = P̄2m − Y T3 − Y2, Ψ̂7,7 = P̄3m − Y T2 − Y2,
Ψ̂8,8 = P̄1m − Y T1 − Y1, Ψ̂8,9 = P̄2m − Y T3 − Y2,
Ψ̂9,9 = P̄3m − Y T2 − Y2, Ψ̂10,10 = Ψ̂11,11 = Ψ̂12,12 = −I,

7
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N̂ap = [0 2Nap 0 0 0 0 0 0 · · · 0︸ ︷︷ ︸
5

],

M̂a = [0 · · · 0︸ ︷︷ ︸
5

MT
apY

T
2 MT

apY
T
2 0 · · · 0︸ ︷︷ ︸

5

]T ,

N̂bp = [(ᾱ+ Θα + 1)NbpCm 0 0 NbpDm NbpHm 0 · · · 0︸ ︷︷ ︸
7

],

M̂b = [0 · · · 0︸ ︷︷ ︸
5

MT
apY

T
2 MT

apY
T
2 MT

apY
T
2 MT

apY
T
2 0 · · · 0︸ ︷︷ ︸

3

]T .

Moreover, the gain matrices of the non-fragile asynchronous
fault detection filter are given as Afp = Y −12 Afp, Bfp =
Y −12 Bfp and Cfm = Cfp.
Proof: The proof of this corollary is similar to Theorem 2 and
hence it is neglected. �

IV. VALIDATION
In this section, we present two numerical examples such
as Pulse-Width-Modulation (PWM)-driven boost converter
model and R-L-C circuit model to show the efficiency of pro-
posed non-fragile asynchronous fault detection filter design
for conic-type nonlinear SMJSs with and without time delay,
respectively. For the numerical purpose, we use MATLAB
LMI control toolbox to solve the LMIs obtained in the
previous section.
Example 1: Consider a PWM-driven boost converter model
in FIGURE 1 from [27]. Here, s(t) specifies a switching

FIGURE 1: Pulse-Width-Modulation-driven boost con-
verter model

mode which is operated by a PWM-driven boost converter,
the inductance is denoted by L, C indicates the capacitance,
R denotes the load resistance, the current is represented by
iL(t) over the inductance, es(t) represents the capacitor’s
terminal voltage and every cycle interval is denoted by T
where its switch will occur only once during this period.
Moreover, PWM system manages the switch mode %(k)
and it follows a semi-Markov series. Furthermore, we take
κ = t/T, L1 = I/T and C1 = C/T . Then, PWM-driven
booster model equation is expressed by

ėC(κ) = − 1

RC1
eC(κ) + (1− s(κ))

1

C1
iL(κ) (39)

i̇L(κ) = −(1− s(κ))
1

L1
eC(κ) + s(κ)

1

L1
es(κ). (40)

Now the above equation can be rewritten as

ẋ = Acκx, κ ∈ {1, 2}, (41)

where x = [eC , i
L, 1]T , κ = 1 and κ = 2 represents the

modes 1 and 2, respectively.

AC1 =

− 1
RC1

1
C1

0

− 1
L1

0 0

0 0 0

 , AC2 =

− 1
RC1

0 0

0 0 1
L1

0 0 0


To vouch for the filter design, we assume L = 1H , R =
1Ω, C = 1F and T = 1s, by setting a specific sampling
time Ts = T

10 , then the system matrices can be obtained as
follows:

A1 =

 0.94 0.10 0.06
−0.30 0.95 −0.30
−0.25 −0.06 0.63

 , A2 =

 0.93 0.08 0.07
−0.14 0.66 −0.20
−0.16 −0.40 0.66

 .
In addition to that, we choose other system matrices as

Ad1 =

−0.01 0.056 0.1
0.012 −0.03 0.3
0.2 0.4 0.1

 , Ad2 =

−0.01 −0.02 0.3
−0.01 −0.03 0.01

0.3 0.02 0.03

 ,
B1 =

−0.01508
−0.085
−0.0732

 , B2 =

−0.01045
−0.040
−0.3787

 , C1 =

−0.0472
−0.0277
−0.0157

T ,
C2 =

 −0.012
−0.0611
−0.0379

T , E1 =

0.1
0.4
0.3

 , E2 =

0.1
0.4
0.2

 , F1 =

0.3
0.3
0.2

 ,
F2 =

0.1
0.2
0.1

 , G1 = G2 =

 0.01
−0.01
0.01

T , Gd1 = Gd2 =

−0.01
−0.01

0.1

 ,
D1 = 0.2, D2 = 0.1, Gw1 = Gw2 = 0.1 H1 = 0.5, H2 = 2,

L1 = 0.1, L2 = 0.1.

Moreover, the uncertain parameters are chosen as

Ma1 = Mb1 =

[
−0.01
−0.03

]
, Ma2 = Mb2 =

[
−0.02
−0.01

]
,

Na1 =
[
−0.01− 0.01

]
, Na2 =

[
−0.03− 0.02

]
,

Nb1 = 0.01, Nb2 = 0.04.

Furthermore, we take constant time delay d = 2. Moreover,
the transition probability rates of semi-Markov process %(k)
with λ = 1, 2 are chosen as π11(k) ∈ [0.4 0.6] and
π22(k) ∈ [0.3 0.7]. Also, the transition probability rates
of semi-Markov process θ(k) with λ, n = 1, 2 are assumed
as φn11(k) ∈ [0.34 0.66], φn22(k) ∈ [0.25 0.75]. Fur-
thermore, the other parameters are chosen as Q = −0.1,
S = 0.3, R = 2.2, ᾱ = 0.4, a = 4, b = 5, µ = 1,
ε1 = 0.8 and ∆(k) = 0.03sin(k). Now, by using aforemen-
tioned parameters and solving the LMIs in Theorem 2, the
dissipative performance level γ = 0.4011 is obtained and the
non-fragile asynchronous fault detection filter gain matrices
are calculated as

Af1 =

0.0234 −0.0037 −0.0054
0.0081 0.0178 −0.0072
0.0050 −0.0067 0.0177

 , Bf1 =

−0.1014
−0.1489
−0.0747

 ,

8
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Af2 =

0.0216 −0.0047 −0.0064
0.0085 0.0192 −0.0082
0.0054 −0.0077 0.0193

 , Bf2 =

−0.1003
−0.1472
−0.0739

 ,
Cf1 =

 0.0102
−0.0164
−0.0367

T and Cf2 =

 0.0100
−0.0167
−0.0368

T .

0 10 20 30 40 50
−0.4
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0
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Time (k)

 

 
xf1(k)
xf2(k)

(a)
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−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time (k)

 

 
xf1(k)
xf2(k)

(b)

FIGURE 2: Trajectories of filter states. (a) with random
jumping fault signal, (b) without random jumping fault
signal

We suppose to take the initial condition for the sys-
tem state and filter state as x(0) = xf (0) = [0 0]T .
Further we take the disturbance input as w(k) ={

0.4e(−0.1k)sin(−0.2k) k ≤ 35
0 otherwise

, nonlinear function
as
ζ(k) =

[
0.0000075(|(x1(k) + 1)| − |(x1(k)− 1)|)

0

]
and

fault signal as f̂(k) =

{
1.2 5 ≤ k ≤ 15
0 otherwise

.

Moreover, FIGURE 2 shows the trajectories of the pro-
posed filter states with and without random jumping fault
signal. Further, the responses of the error system with random
jumping fault signal and without random jumping fault signal
are demonstrated in FIGURE 3(a) and FIGURE 3(b), re-
spectively. Also, FIGURE 4(a) exposes the random jumping
fault signal f̃(k) and FIGURE 4(b) shows the fault signal
f̂(k). Furthermore, the evolution of the considered system
mode is plotted in FIGURE 5 and the evolution of the non-

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

Time (k)

 

 
e(k) without fault
e(k) with jumping fault

(a)

0 10 20 30 40 50

0

1

2

3

Time (k)

 

 
e(k) without fault
e(k) without jumping fault

(b)

FIGURE 3: The error responses of the system (9). (a)
with and without random jumping fault signal, (b) with-
out fault and random jumping fault signal

fragile asynchronous fault detection filter mode is expressed
in FIGURE 6. Specifically, FIGURE 7 illustrates the residual
evaluation function. Whilst, we have selected the threshold
value as Jth = 0.0823. The residual evaluation function is

calculated as Je(k) =

√
9∑
k=0

eT (k)e(k) = 2.3879 and it is

obvious that Je(k) is greater then the threshold Jth. On the
whole, the fault is detected within the range.

Finally, the evolution of xT (k)J x(k) is depicted in
FIGURE 8. Based on FIGURE 8, it is easy to accomplish
that the responses of the augmented asynchronous fault
detection filtering error system is within the bound C2.
Hence, the augmented asynchronous fault detection filtering
error system (9) is stochastically finite-time bounded with
strictly (Q,S,R) − γ dissipative performance subject to
(0.2, 8.2049, 50, 0.4011, I, 0.01) under proposed non-fragile
asynchronous fault detection filter design even in the ex-
istence of time delay, missing measurements and random
jumping fault signal.

Example:2 We consider a R-L-C circuit model to illustrate
the efficiency of proposed non-fragile asynchronous fault
detection filter problem. Moreover, the modes %(k) and θ(k)
are assumed to obey a semi-Markov process. Specifically, the
system parameters are borrowed from [17] and are given as

9
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FIGURE 4: Trajectories of the fault signal. (a) the ran-
dom jumping fault signal, (b) fault signal
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FIGURE 5: State jumping mode

follows:

A1 =

[
0.5038 0.3171
−0.0051 −0.0032

]
, A2 =

[
0.3326 0.3363
−0.0034 −0.0034

]
.

The other parameters are assumed as

B1 =

[
0.4509
0.0056

]
, B2 =

[
0.6065
0.0041

]
, E1 =

[
0.1
0.4

]
, E2 =

[
0.1
0.3

]
,

C1 =
[
0.2 0.1

]
, C2 =

[
0.2 0.1

]
, F1 =

[
0.3
0.3

]
, F2 =

[
0.1
0.2

]
,

G1 =

[
0.5
−0.2

]T
, G2 =

[
0.5
−0.2

]T
, Gd1 = Gd2 =

[
−0.01
−0.01

]T
,

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

Time (k)

 

 
θ(k)

FIGURE 6: Filter jumping mode

0 10 20 30 40 50
0

1

2

3

4

Time (k)

 

 

with fault
without fault

FIGURE 7: Trajectories of the residual evaluation func-
tion

Gw1 = Gw2 = 0.1 D1 = −0.1, D2 = −0.1, H1 = 2, H2 = 2,

L1 = 0.1, L2 = 0.11.

Besides, the remaining parameters are taken as in Example
IV. Now, by solving the LMIs in Theorem 1 including
the aforementioned parameters, the dissipative performance
level γ = 0.512 is obtained and the non-fragile asynchronous
fault detection filter gain matrices are calculated as

Af1 =

[
0.0162 −0.0011
0.0080 −0.0033

]
, Af2 =

[
0.0164 −0.0013
0.0081 −0.0034

]
,

0 10 20 30 40 50
0

2

4

6

8

10

Time (k)

C2=8.2049

FIGURE 8: Evolution of xT (k)J x(k)
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Bf1 =

[
−0.1053
−0.1802

]
, Bf2 =

[
−0.1056
−0.1801

]
, Cf1 =

[
−0.0126
0.0435

]T
,

Cf2 =

[
−0.0139
0.0433

]T
.
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(b)

FIGURE 9: Trajectories of filter states. (a) with random
jumping fault signal, (b) without random jumping fault
signal

Let us assume the initial conditions as x(0) = xf (0) =
[0 0]T for the system and filter states. Moreover, we choose
the disturbance function as in [17], fault signal f̂(k) ={

1.5 10 ≤ k ≤ 19
0 otherwise

and control input u(k) = 1. The cor-

responding simulation results are exposed in Figs. (9)-(13).
Specifically, FIGURE 9 displays the trajectories of system
(7) wherein FIGURE 9(a) illustrate the trajectories of xf1(k)
and xf2(k) with and without random jumping fault signal
and FIGURE 9(b) displays the trajectories of xf1(k) and
xf2(k) without fault and random jumping fault signal. The
responses of the error system can be viewed in FIGURE 10.
In particular, by using a designed non-fragile asynchronous
fault detection filter, the error response of the considered
system with and without the random jumping fault signal
are displayed in FIGURE 10(a). Furthermore, FIGURE 10(b)
reveals the trajectories of error system without fault and
random jumping fault signal. On the other hand, the fault

0 5 10 15 20 25 30 35
−1
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3

4

5

Time (k)

 

 
e(k) without fault
e(k) with jumping fault

(a)
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0

1

2

3

4

Time (k)

 

 
e(k) without fault
e(k) without random jump

(b)

FIGURE 10: Error responses of the system (9). (a) with
and without random jumping fault signal, (b) without
fault and random jumping fault signal

signal with and without random jump is exposed in FIGURE
11(a) and FIGURE 11(b), respectively. Additionally, the
residual evaluation function is plotted in FIGURE 12. It is
clear from FIGURE 12 that the residual evaluation function

Je(k) =

√
11∑
k=0

eT (k)e(k) = 3.0947 exceeds the selected

threshold Jth = 0.2463 in one time step, wherein the ability
of the recommended non-fragile asynchronous fault detec-
tion filter is precisely displayed. Eventually, the evolution
of xT (k)J x(k) is shown in FIGURE 13. From FIGURE
13, it is recognizable that the responses of the augmented
asynchronous fault detection filtering error system do not
exceed the bound value C2.

TABLE 1: Maximum value of C2 for different values of C1
C1 0.1 0.15 0.2 0.25 0.3
C2 12.6761 13.1250 13.4512 13.8635 14.1671

TABLE 2: Comparison results

Minimum of γ
Ref. [17] 2.1
Our paper 0.512
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FIGURE 11: Trajectories of fault signal.(a) with random
jumping fault, (b) without random jumping fault
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FIGURE 12: Trajectories of residual evaluation function

Moreover, TABLE 1 shows the maximum allowable bound
values of C2 for various values of C1 with the aid of designed
filter. Eventually, from TABLE 2, it is clear to determine
that the proposed filter approach in this work yields less
conservative results than in [17]. Thus from these simulation
results, it can be concluded that the augmented asynchronous
fault detection filtering error system (9) is stochastically
finite-time bounded with strictly (Q,S,R) − γ dissipative
performance subject to (0.1, 12.6761, 35, 0.512, I, 0.02) un-
der proposed non-fragile asynchronous fault detection filter
design.

0 5 10 15 20 25 30 35
0

5

10

15

Time (k)

C2 = 12.6761

FIGURE 13: Evolution of xT (k)J x(k)

V. CONCLUSION
In this paper, the finite-time dissipative based non-fragile
asynchronous filter design problem is examined for conic-
type nonlinear SMJSs with time delay, missing measure-
ments and random jumping fault signal. Specifically, time
delay and random jumping fault phenomena are includ-
ed in conic-type nonlinear term of the considered system.
Preciously, a non-fragile asynchronous fault detection filter
design has been proposed to lead the asynchronous situation
between the state mode and filter mode. Moreover, a group
of sufficient conditions is derived with the aid of mode-
dependent Lyapunov-Krasovskii functional in terms of LMIs
to ensure the stochastic finite-time boundedness with pre-
scribed strictly (Q,S,R) − γ dissipative performance of the
augmented asynchronous fault detection filtering error sys-
tem. Finally, two numerical examples based on PWM-driven
boost converter model and R-L-C circuit model are provided
to prove the efficiency of the proposed filter scheme. In our
future work, we will extend the proposed approach with
some modifications to discuss the robust fault detection filter
design problem for conic-type nonlinear positive SMJSs with
mismatched quantization and random time varying delay as
a potential research direction.
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