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Bacterial cancer therapy: A turning point
for new paradigms
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Cancer treatments have advanced considerably in recent years, appreciably enhancing the quality of
life and survival of cancer patients. However, standard cancer treatments still have limitations that
must be improved. In recent years, bacteria-based cancer therapy has gained much more attention
owing to its unique properties that are unachievable with standard therapeutics. Bacteria species such
as Salmonella, Clostridium, and Listeria have been shown to control tumor growth with improved
prognosis in experimental animal models and clinical settings.

Keywords: Anticancer; Bacterial-mediated; Tumor targeting; Payload delivery; Engineered bacteria; Tumor
microenvironment
Introduction: need for alternative cancer
treatments
Cancer is one of the most common causes
of human death worldwide. In 2018, 18.1
million new cancer cases and 9.6 million
new cancer deaths were reported. Accord-
ing to the American Cancer Society, there
will be �17 million deaths from cancer
annually by 2030. Although several thera-
1 These authors made equal contributions.
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peutic advances and cancer controls are
still emerging, challenges among the
tumor resistance to chemo- and radio-
therapy need to be revised. Evidence sug-
gests that the tumor microenvironment
(TME) plays a crucial part in regulating
the initial tumor response to treatments
such as chemo-, immune- and radio-
therapies, and surgery. Apart from the
TME, tumor physiology, including its size,
volume, location and metastasis, is
another challenge in the treatment.
Besides, emerging drug resistance against
cancer cells can also occur owing to the
poor efficacy in radiotherapy, chemother-
apy and immunotherapy, resulting in an
uncontrolled tumor, leading to fatality
arising during the treatment.1,2 These
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factors highlight the importance of seek-
ing novel and more-successful therapies.3,4

Drug discovery against cancer results in
several clinical drugs being produced at
various stages of clinical drug develop-
ment. Site-targeted drug delivery vehicles
steer the compounds to their necessary tar-
get sites, which are detrimental to cancer
cells. Such interesting properties always
inspire the study of different delivery parti-
cles for cancer therapy.5 Therapeutic bacte-
ria are one such strategy that can resolve
the barriers discussed previously.
Bacterial-mediated tumor therapy presents
an exciting avenue to treat various cancers.
When genetically modified, bacteria can
selectively reach the tumor, colonize
within the TME, resulting in immune cell
infiltration, and deliver payloads in the
tumor-site-blocking disease pathways,
leading to the complete elimination of
the tumor cell population.6

Bacterial clearance by immune cells is
limited, and available nutrients promote
their growth in the TME. When compared
with normal tissue, bacteria can harbor
tumor sites in a 10 000:1 ratio. The bacte-
rial flagella enable active transmission
between cells and penetrate tumor sites
far from the vasculature, which is unavail-
able for passive chemotherapy. This
unique phenomenon can help the bacte-
rial targeting of tumor sites after loading
them with therapeutic drugs, resulting in
high therapeutic efficacy without adverse
effects. Apart from delivering chemo
drugs, genetically modified bacteria such
as Escherichia coli and Staphylococcus aureus
can release cytotoxic proteins such as cyto-
lysin A, a-hemolysin, immunomodulatory
proteins, antigens, cytokines and prodrug-
cleaving enzymes.7–9 The fundamental
advantages of using modified bacteria in
bacterial-mediated cancer therapy are that
it effectively reaches the hypoxic TME,
populates and penetrates the tissue, and
secretes tumor-cytotoxic enzymes such as
lipases and proteases10 as an essential tool
for treating cancer. However, owing to the
potent challenges against cancer therapy,
the innovative attempts to harness the
ability of bacteria to cure cancer are evolv-
ing. Over the past decades, significant
numbers of reports on the utilization of
bacterial anticancer therapies have
emerged, and the application of bacteria
as an anticancer paradigm is discussed in
this review (Table 1).
2044 www.drugdiscoverytoday.com
Bacteria as tumoricidal agents
Advances in synthetic biology favor genet-
ically modified bacteria for tumor therapy
to overcome the disadvantages of conven-
tional treatments and their pharmacoki-
netic failures. William B. Coley was the
first to report a remarkable experimental
success on a bacterial tumoricidal effect
to cure patients with deadly cancers.11

After his findings, researchers discovered
that several facultatively anaerobic bacte-
ria such as Listeria, Bifidobacterium,
Clostridium, Escherichia and Salmonella
spp. demonstrate natural tumor-targeting
and killing potencies owing to their rapid
penetration and proliferation in the
hypoxic tumor site,12 resulting in the
emerging interest of investigating the
specific anti-cancer therapeutic approach
of utilizing facultatively anaerobic bacteria
in the hypoxic areas of neoplastic tissues.13

The mechanism of action can be exerted
via direct toxicity to tumor cells, enabling
a nonspecific immune response, the dete-
rioration of essential nutrients required
for tumor cells and the changes in the
abundance of components of the microen-
vironment by bacteria colonization.14

Listeria monocytogenes is a Gram-positive
bacteria that can directly infect antigen-
presenting cells, dendritic cells (DCs), neu-
trophils or macrophages, and myeloid-
derived suppressor cells (MDSCs), and has
been widely employed in cancer
immunotherapies as a delivery vehicle for
tumor-specific antigens.15 Listeria residing
in MDSCs is protected from immune clear-
ance through this unique mechanism,
whereas Listeria cells in healthy tissue mili-
eus are rapidly eliminated. Listeria-based
immunotherapies are known to induce a
robust immune response andmemorywith
a capacity to stimulate innate and adaptive
immunity. A novel immunotherapeutic
agent called AXAL that uses Listeria for its
construction is currently under clinical tri-
als for treating metastatic cervical cancer.16

Recent reports on bacterial-mediated
cancer therapy show attenuated bacterial
strains to suppress tumor progression
through colonization. Unlike non-
uniform distribution and limited infiltra-
tion of a chemotherapeutic agent in solid
tumors, bacteria are complex organisms
that can draw energy from their environ-
ment; hence, their migration in deep tissue
or solid tumors can be unlimited.17 Besides,
bacteria should proliferate and distribute
evenly to exert optimal tumor therapy in
tumor tissues, inducing tumor regression
via a series of molecular mechanisms. Sal-
monella typhimurium A1-R or VNP20009
act by infection, colonizing and stimulat-
ing apoptosis or autophagy, such as toxin
production or depletion of nutrients.18 L.
monocytogenes induces tumor suppression
via the initiation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase
because of increased intracellular popula-
tions, leading to high reactive oxygen spe-
cies (ROS) levels.19 After infection,
Clostridium spp. can kill the tumor cells
by producing bacterial toxins such as
hemolysins and phospholipases, compro-
mising the cellular membrane structure
and intracellular functions. Likewise, infec-
tions by Salmonella spp., Listeria spp. and
Clostridium spp. colonization can promote
tumor elimination with the help of cytoki-
nes and chemokines.20

In addition, we cannot rule out the ben-
eficial effects of the gut microbiome in
cancer prevention. Probiotic bacteria such
as Lactobacillus, Bifidobacteria and Strepto-
coccus spp. found in natural foods or
ingested fermented foods help with cancer
prevention.21 The probiotic live Lactobacil-
lus casei BL23 bacteria was reported to have
cell proliferation reduction and apoptosis
induction when administered orally to
C57BL6 6–8 week-old female mice. Jacou-
ton et al. used this bacteria to modulate
gut microbiota composition, which plays
a pivotal part in the carcinogenesis of col-
orectal cancer. L. casei BL23 mediates
immunomodulatory potential through
interleukin (IL)-22 cytokine downregula-
tion, and an antiproliferative property
was mediated through Bik, caspase-7 and
caspase-9 upregulation.22 In another
study, Kumar et al. reported that the probi-
otic bacteria Lactobacillus plantarum could
dimmish a potent carcinogen: 1,2-
dimethylhydrazine, in a 1,2-
dimethylhydrazine-induced colon tumor
in male albino Wistar rats, modulating
the 1,2-dimethylhydrazine-free-radical-in
duced rat colon carcinogenesis develop-
ment through the antioxidant-dependent
mechanism.23

Genetically engineered bacteria for
cancer imaging and therapy
Engineered bacteria can be tumor-specific
therapy vectors by arming them with ther-
apeutic proteins (Fig. 1). However, their



TABLE 1

Recent and ongoing clinical trials with live or engineered bacteria or their targeting components in cancer therapy.

Name of bacteria Type of cancer Mode of action Phase Refs

Salmonella typhimurium
VNP20009

Cancer, neoplasm,
neoplasm metastasis

Targeted tumor and cancer cell infection I 49

S. typhimurium VNP20009 Metastatic melanoma;
metastatic renal cell
carcinoma

Target to tumor and inhibit tumor growth I 50

S. typhimurium VNP20009 Melanoma Targeted tumor and cancer cell infection I 51

S. typhimurium VNP20009
expressing TAPET-CD
(cytosine deaminase)

Head and neck or
esophageal
adenocarcinoma

Convert 5-FC to 5-FU and inhibit tumor growth I 52

S. typhimurium expressing
human IL-2

Liver cancer Increase splenic, hepatic NK cell populations and inhibit
metastatic tumor

I https://
www.clinicaltrials.gov/
ct2/show/
NCT01099631

S. typhimurium Ty21a VXM01 Pancreatic cancer Through VEGFR2-specific T cell response I 53

Clostridium novyi-NT Colorectal cancer Destruction of hypoxic and necrotic parts of the tumors I https://
www.clinicaltrials.gov/
ct2/show/
NCT00358397

Listeria monocytogenes Cervical cancer Stimulation of innate and E7 antigen-specific adaptive
immune responses

II 16

Dietary supplement: probiotic Operable stage I–III breast
adenocarcinoma
tumors � 1.0 cm

Inducing significant tumor reduction owing to the
induction of the defense system

NA https://
www.clinicaltrials.gov/
ct2/show/
NCT03 35851 1

C. novyi-NT spores Treatment refractory solid
tumor malignancies

Infecting tumors and destroying them I 54

MRx0518 a live biotherapeutic
product

Resectable pancreatic
cancer

Stimulating the immune function and improving the
therapeutic effect of hypofractionated preoperative
radiation

I https://
www.clinicaltrials.gov/
ct2/show/
NCT04 19390 4

ADXS11-001 (ADXS-HPV) Head and neck cancer
Squamous cell carcinoma
of the head and neck
HPV-positive
oropharyngeal squamous
cell carcinoma

Stimulating the body’s immune system against HPV-
positive oropharyngeal squamous cell carcinoma
before transoral surgery

II https://
www.clinicaltrials.gov/
ct2/show/
NCT02 00218 2

APS001F Advanced solid tumors
Metastatic solid tumors

Targeting cancer cells and producing cytotoxic cytosine
deaminase (CD)

I/II https://
www.clinicaltrials.gov/
ct2/show/
NCT01 56262 6

Clostridium butyricum CBM
588 probiotic strain

Hematopoietic and
lymphoid cellneoplasm

Increasing gut bacteria biodiversity and preventing
recurrent symptoms of gastrointestinal toxicity

I 55

Typhoid vaccine Recurrent breast
carcinoma

Stimulating the immune system to respond to a tumor NA https://
www.clinicaltrials.gov/
ct2/show/
NCT02 41538 7

JNJ-64041809 Metastatic castration-
resistant prostate cancer

Vaccines for cancer therapy I 56

BacTRL-IL-12 Solid tumors Colonizing solid tumor tissues and delivering genetic
material encoding the proinflammatory transgene
interleukin- 12 (IL-12)

I https://
www.clinicaltrials.gov/
ct2/show/
NCT04 02530 7
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toxicity and targeting efficiency are vari-
able depending on tumor types. To over-
come this, it was found to be necessary to
enhance the bacterial targeting efficiency
through bacterial surface engineering to
express specific desirable factors.24 Geneti-
cally engineered bacteria can significantly
increase tumors than in normal tissue
and ensure an immunogenic anticancer
response by expressing and releasing more
reporter genes, anticancer agents, cyto-
toxic proteins and antigens while tailoring
their metabolic pathways.10,25 When
administered in tumor-bearing mice,
attenuated bacteria resulted in tumor
regression, shrinkage and even complete
elimination. For example, intracranially
injected attenuated DppGpp S. typhimur-
ium in orthotopic glioma mouse models
acted as a vector for the targeted delivery
of tissue inhibitor metalloproteinase
(TIMP)-2-encoding plasmid. Genetically
engineered, high proliferating bacteria
applied at the tumor site resulted in
in situ overexpression of TIMP-2, thus
inhibiting matrix metalloproteinase
(MMP)-2 in the TME.26
www.drugdiscoverytoday.com 2045
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FIGURE 1
Schematic summary of the diverse bacteria, bacterial components and engineered bacteria utilized in cancer therapy.
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However, an engineered Clostridium
strain has effectively upregulated anti-
cancer activity by converting prodrugs
into active cytotoxic drugs, particularly at
the tumor site, by expressing prodrug-
converting enzymes.13 Recent studies
reveal that bacteria can produce antibodies
that bind to important tumor develop-
ment transcription factors [hypoxia-
inducible factor (HIF)-1] to treat cancer.
Clinical trials have also proved that genet-
ically engineered S. typhimurium and
Clostridium novyi can produce promoters
such as HlyE or Stx2 and toxins such as
recA. These can trigger the host immune
system and induce cytokines such as IL-2,
IL-4, IL-8 and CC chemokine-21, leading
to tumor regression.10 During in vivo imag-
ing of tumor colonization, genetically
engineered bacteria were actively studied
as a new therapeutic approach for solid
tumors. From a bacterial-mediated cancer
2046 www.drugdiscoverytoday.com
therapy study, 18F-FDS PET (fluo-
rodeoxysorbitol positron emission tomog-
raphy) can be a valuable tool to semi-
quantitatively visualize the tumor-
targeting bacteria with genetically engi-
neered E. coli K-12 (MG1655).27 Wu et al.
also reported that live S. aureus effectively
involved in vivo imaging of tumor colo-
nization against CT26 cells injected in
mouse.9
Bacteria as living microrobots to fight
cancer
In recent years, scientists designed and
developed microscopic and nanoscale sys-
tems as the earliest prototypes of nanoro-
bots for more-effective in vivo diagnostic
and therapeutic applications, especially
in the context of cancer.28 However, pre-
cise navigation to tumor sites remains
the ideal goal of nanorobot R&D. Interest-
ingly, bacteria can swim spontaneously
through fluids, driven by a molecular
motor that spins the cilia or flagella in a
corkscrew-like manner. For example,
researchers have invented helical and
magnetic fluxes that a rotating magnetic
field can carry forward. However, bacteria,
especially in cancer treatment, are a
model for efficient swimming; they can
also sense biochemical references and
adjust their metabolic pathways accord-
ingly, much like board computation.29

Genetically modified Salmonella enterica
can lyse at a synchronous population
density and release genetically encoded
cargo. After quorum lysis, a small popula-
tion of surviving bacteria reseeds the
growing population and they multiply
until they reach the critical threshold.
This circuit could enable new drug deliv-
ery approaches via modulation of the
population frequency and amplitude over
time in in vivo environments.30
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Bacteriobots containing S. typhimurium
and Cy5.5-fluorescence-coated polystyrene
(PS)microbeads havebeen reported to com-
bat cancer. Fluorescence emission from
Cy5.5 was measured only in the tumors
from bacteriobot-injected mice but not
detected in the control mice injected only
with unstained bacteriobots or bacteria
after the three days of intravenous injection
in CT-26 tumor-inducedmice. This bacteri-
orobot canalsobe anewparadigm incancer
therapy.25 Zheng et al. reported the anti-
cancer activity of novel bacteria micro-
robots prepared by attaching S. enterica to
poly-L-lysine (PLL)-coated hyaluronic acid
(HA).31 HA acted as a motility steering fac-
tor, presenting a promising tumor-
targeting therapeutic strategy for the
future. The drug delivery system based on
TABLE 2

Current bacterial-mediated treatment strateg

Treatment process Bacterial strain Canc

Immunotherapeutic
agents

Salmonella
typhimurium A1-R

Mam

Bacillus Calmette-
Guerin (BCG)

Blad

Listeria
monocytogenes

Brea
cervi

Clostridium novyi-
NT

Solid

Salmonella enterica
Serovar
typhimurium

Mela

Bacterial toxins/
enzymes

S. typhimurium AR-1 Mela
canc

Corynebacterium
diphtheria

Adre
brea

Pseudomonas
aeruginosa

Brea
canc

Escherichia coli
DH5a

Colo

Streptomyces
verticillus

Head
cell c
canc

Clostridium difficile Brea

Clostridium
botulinum

Brea

Fusarium culmorum
ASP-87

Leuk

Lactobacillus
plantarum

Oral

Bacterial vector/
spores

S. typhimurium
DppGpp/pBAD-
ClyA

Colo

C. novyi-NT and S.
typhimurium

Solid

Bifidobacterium
longum-C-CPE-PE23

Brea
genetically modified Modestobacter marinus
bacteria MC-1 can be used to deliver the
SN-38 drug-loaded liposomes into the
hypoxic regions of HCT116 colorectal
xenografts in animals.32
Bacteria as immunotherapeutic agents to
fight cancer
Cancer immunotherapy is a treatment
that involves triggering a specific immune
response in patients leading to different
types of host immune systems attacking
the tumor cells (Table 2).33 The activated
and stimulated host immune cells [mainly
activated and induced by tumor-antigen-
specific CD8+ lymphocytes, CD4+ lympho-
cytes, and natural killer (NK) cells] can rec-
ognize and eliminate tumor cells.34 C.
novyi infection can lead to the production
ies and related reports in cancer therapy.

er type Treatment approach

mary carcinoma Induced brain 4T1 metasta
treated via tail vein bacter
injection

der cancer Vaccine

st cancer, melanoma,
cal cancer

L. monocytogenes vaccinati

tumors Single intratumoral injectio

noma cancer Injection with triptolide

noma cancer, colorectal
er, pancreatic cancer

Intravenous administration

nocortical carcinoma,
st cancer

Direct inoculum to the cell

st cancer, epithelial
er, melanoma, leukemia

Locally administration

n carcinoma Subcutaneous injection

and neck squamous
arcinoma, ovarian
er

Inoculated with HeLa cells

st cancer Subcutaneous injection

st cancer Direct inoculums to the ce

emia T cell inoculated with L-
asparaginase

cancer Human KB cells co-incubat
with the probiotics

n tumor Intravenous injection

cancer Intravenous injection

st cancer Subcutaneous injection
of heat shock protein (Hsp)70, released
from necrotic cells upon illness or tissue
injury. Pathogen-associated molecular pat-
terns (PAMPs) released from bacteria bind
to and activate Toll-like receptor (TLR),
which regulates the production of proin-
flammatory cytokines like IL-12 and other
constitutive molecules such as CD40. Sub-
sequently, these mediators produce inter-
feron (IFN)-c and initiate the Th1-
dependent cell-mediated response, essen-
tially mediated by CD8+ effector cells.35 It
is well established that nonpathogenic-C.-
novyi-activated CD8+ lymphocytes recog-
nize and remove tumor cells in a mouse
model by stimulating acquired immu-
nity.36 The use of live tumor-targeting bac-
teria as distribution vectors can exceed
penetration limits and can increase the
Evidence Refs

sis
ia

Inhibition of breast cancer
brain metastasis with increased
survival

57

Internalization of BCG and
stimulating the immune system

58,59

on Regression growth all types of
tumors

60

n Local tumor destruction with
tumor-specific immune
response

61,15

Enhanced bacteria infiltration
caused antitumor effect

62

Cell cycle arrest with
recombinant L-methionine

63

s Inhibit the growth, reduce the
angiogenesis

64

Immunotoxin induced anti-
tumor response

65,66

Prodrug activation suppresses
the tumor growth

67,68

Influence oxygen and metal ion
dependent cleaving of DNA

69

Inhibit proliferation, induce
necrosis and apoptosis

70

lls Receptor to neurotoxin
interaction causes anticancer
activity

71

Induction of apoptosis by cell
cycle inhibitors

72

ed Inhibit the cancer by
decreasing the MAPK gene
expression

73

Combined radiation therapy
inhibits tumor

74

Targeting the most resistant
regions in human solid cancer

75

Suppress the tumor growth 76
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anticancer activity of the chemotherapeu-
tic drug while reducing systemic toxicity
to the host. In support of this hypothesis,
a previous study showed that IL-18-
producing S. Typhimurium inhibits the
growth of primary subcutaneous tumors
and lung metastases by increased infiltra-
tion of leucocyte and NK and CD4+ cell
accumulation in immunocompromised
mice without any direct toxicity to the
normal tissues.37 Wang et al. demonstrated
that the administration of an IL-24-
expressing genetically engineered Bifi-
dobacterium breve strain enhances the anti-
tumor activity in head and neck squamous
cell carcinoma in vivo, mediating a mito-
chondrial control (Bcl2 and Bim) of
caspase-mediated cell death.38

Several attenuated or genetically modi-
fied bacterial species have been explored
for cancer therapy. A strong antiangiogenic
effect, antitumor response induction and
prevention of primary and metastatic
tumors have been reported. Zheng et al.
reported that the heterologous flagellin-
expressing, genetically engineered, attenu-
ated DppGpp S. typhimurium administra-
tion to colon-cancer-bearing mice showed
an enhanced anticancer activity through
the regulation of TLR4 and TLR5 metabolic
pathways.39 This approach also stimulated
an M1 to M2 shift in macrophages and
increased the cellular nitric oxide level in
tumor regions. In a recent study, the
pore-forming cytolysin of listeriolysin-O
(LLO)-expressing L. monocytogenes was
administered to cancer-bearingmice result-
ing in anticancer activity eradicating solid
tumors via the MHC class I pathway.36
Bacterial toxins or enzymes in cancer
therapy
Pathogenic bacteria producing toxins or
enzymes can inhibit the immune system
of the infected organism. The toxins can
enter cells and change their substrates in
the cytosol. Because many of those bacte-
rial toxins have been studied in relevance
to their design, cellular receptors, uptake
pathways and molecular mechanisms are
widely used to analyze cell-specific molec-
ular signaling pathways in cancer ther-
apy.10 S. enterica producing cytotoxic
protein cytolysin A (ClyA) can bind and
form pores in the eukaryotic cell mem-
brane, triggering caspase-mediated pro-
grammed cell death.36
2048 www.drugdiscoverytoday.com
Clostridium perfringens enterotoxin
(CPE) binds directly to the receptors and
inhibits tumor growth by upregulating
CLDN3 and CLDN4 significantly. This
CPE toxin also directly binds with
claudin-3 and/or claudin-4 making a com-
plex protein that leads to the loss of cellu-
lar osmosis and has been used in
colorectal, gastric and ovarian cancer ther-
apy.40 Karpi�nski et al. demonstrated that
Clostridium botulinum expressing botuli-
num neurotoxin A reduced cell prolifera-
tion by inducing a caspase-mediated
apoptotic process in breast cancer
(T47D).41 L. monocytogenes spp. produce
the toxin LLO, which binds to the
cholesterol-binding receptors and stimu-
lates pore formation in the cell membrane
leading to cytolysis and apoptosis caused
by a caspase-mediated signaling pathway
in breast cancer cell lines MDA-MB-231
and MCF-7.42

Bacterial enzymes play a vital part in
depriving the essential amino acids
involved in the uncontrolled and rapid
growth of tumor cells. A recent study
reported that L-asparaginase from E. coli
could cause toxicity to MCF-7, HepG2
and SK-LU-1 cell lines by activating aspar-
agine hydrolysis and reducing its blood
concentration to inhibit the progression
of malignant cells.43 Fiedler et al. studied
that Mycoplasma hominis or M. arginine
produce arginine deaminase enzyme,
which hydrolyses the arginine in tumor
cells, resulting in decreased tumor prolifer-
ation of glioblastoma in vitro and in vivo.44

L-Asparaginase (EC 3.5.1.1) was the first

bacterial enzyme approved for cancer
treatment. This enzyme hydrolyzes the
C–N bond of L-asparagine (ASN), resulting
in aspartic acid and ammonia. L-
Asparagine synthetase (ASNS) is present
in normal cells and catalyzes the reaction
between L-aspartate and L-glutamine to
synthesize ASN. The absence or low
expression of ASNS is the characteristic of
these ASN auxotrophic tumors. L-
Asparaginase targets ASN-deficient tumors
because it reduces the plasmatic ASN
levels, thereby starving the tumor cells
and promoting their apoptosis. Asparagi-
nase is currently used to treat acute lym-
phoblastic leukemia (ALL) in children
worldwide.45 Like other proteins, enzymes
are produced inside cells by ribosomes,
which link amino acids into chains.
Although they are produced by bacteria,
most enzymes are formed precisely as they
are in human cells. Using bacterial
enzymes in cancer therapy enables
enzyme and/or protein engineering, the
term used to modify an enzyme’s structure
and thus alter and improve its function by
changing the catalytic activity of isolated
enzymes to produce new metabolites.
The poor pharmacokinetic and pharmaco-
dynamic properties, high immunogenic-
ity, proteolytic instability, short half-life,
low substrate affinity (high Km) and non-
physiological temperature and pH optima
are the significant challenges in the use
of microbial enzymes as cancer drugs.45

Furthermore, the considerable exploita-
tion of bacterial-mediated therapy opens
a window for developing a new and effec-
tive biocompatible personalized bacterio-
therapy that can translate into clinical
trials.
Challenges in bacterial cancer therapy
The significant adverse effects of fever, sep-
tic shock and death are the main problems
associated with immunity when using bac-
teria against cancer. However, genetic
engineering has led to the use of geneti-
cally modified bacteria, decreasing their
pathogenicity hence can be applied in can-
cer therapy. There are no reports that have
been found on bacterial-mediated com-
plete inhibition of tumor growth through
colonization alone. However, this demon-
strates a vital prospect as an immunostim-
ulator for cancer treatment or a vector for
therapeutic components released inside a
tumor.46 Bacillus Calmette–Guerin (BCG)
is the only FDA-approved live bacteria
available and employed to treat superficial,
non-muscle-invasive bladder cancer
(NMIBC). However, the mechanism of
bacterial therapy of cancer and toxicity
in vivo is not yet clearly understood. Apart
from the beneficial therapeutical potential,
the main challenge is its potential acquisi-
tion of antibiotic resistance or mutations
that would revert the bacteria attenuated
phenotype, which could be a real risk.47

The optimum dosage for therapeutic effi-
cacy could lead to toxicity and therefore
a reduced dose would be needed, resulting
in diminished efficacy, which is the major
problem when bacteria are applied as anti-
cancer agents.48 Live bacterial production
is more complicated than making anti-
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cancer drugs and would be the main chal-
lenge for producing GMP-grade test prod-
ucts. Cultivating, purifying and
harvesting the live bacteria within strict
aseptic protocols with real-time supervi-
sion are practical ways to ensure the qual-
ity of the final products.

Concluding remarks
Conventional therapies play a significant
part in cancer treatment despite patho-
physiological complications but still pro-
duce ineffective treatment results.
Therapeutic bacteria can be considered
for cancer therapy in line with its unique
features publicized by the current research
investigations. Bacterial agents can be a
treatment option for cancer because bacte-
ria can selectively target cancer cells and
proliferate in hypoxic regions of tumors
where inefficiency to withstand hypoxic
conditions tends to be the primary cause
of failed conventional therapies. In con-
trast with conventional treatment, bacte-
rial cancer therapy has gained more
advantages with post-administration con-
trol and direct and selective slaying of can-
cer cells that have fascinated scientists
working on cancer.

Furthermore, most anticancer studies
end up with in vitro studies and only lim-
ited research at the clinical trial phase.
Hence, future research should be designed
toward clinical trials to amend the anti-
cancer activity of ‘smart’ bacteria and bac-
terial agents. However, bacterial-mediated
tumor-targeting and treatment as a novel
cancer therapy to extend patients survival
are promising.
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