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Abstract: Let 𝑮 = (𝑽, 𝑬)  be a graph. The binary numbers 0 and 1 have been allotted to 

the edges of the graph G through the evaluating functions defined on V and E by ensuring 

the cordiality conditions. This has been obtained through the prime and the Narayana 

numbers. Any graph G which admits this labeling is known as Narayana prime cordial 

graph. In this research paper , we compute the Narayana prime cordial labeling of Twig 

graphs. 
 

1.  Introduction 
 

Graph labeling is the process of assigning labels to the vertices in the vertex set V and 

to the edges in the edge set E of the given graph G [1,12]. The applications of  graph 

labeling can be found in [10] . In the year 1987, Cahit [6] discussed the cordial labeling of 

graphs. The Narayana prime cordial labeling of graphs is a recent development in graph 

theory which was introduced by B.J Murali et. al [11] . The terminologies and concepts 

used in this paper have been referred to Harary [8]. The developments in graph labeling 

have been updated by Gallian [7].The study of Narayana prime cordial labeling for 

various classes of graphs are found in [2,3,4,13] . 

In this research article we discuss the existence of the Narayana prime cordial labeling 

of grid graphs and triangular grid graphs. 

2.  Preliminaries  
 

The Narayana numbers , closely related to Catalan numbers [9]  are defined as follows. 

 

Definition 2.1 

“ Let 𝑁0 be the set of non negative integers and let 𝑘, 𝑛 ∈ 𝑁0 

N(𝑛,k) is the kth Narayana number for a given n is defined  as    

 

𝑁(𝑛, 𝑘) =
1

𝑛
(
𝑛

𝑘
) (

𝑛

𝑘 + 1
) , 0 ≤ 𝑘 ≤ 𝑛  𝑤ℎ𝑒𝑟𝑒 (

𝑛

𝑘
) =

𝑛!

(𝑛 − 𝑘)! 𝑘!
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Narayana numbers  𝑁(𝑛, 𝑘) for each  n=1,2,…7 ,k=1,2,…7  are tabulated below for 

quick reference: 

 

k      

n 

1 2 3 4 5 6 7 

1 1       

2 1 1      

3 1 3 1     

4 1 6 6 1    

5 1 10 20 10 1 

 

  

6 1 15 50 50 15 1  

7 1 21 105 175 105 21 1 

 

Properties 2.2 

 
The divisibility of Narayana numbers depends on the properties[5]: 

(i)Let p be prime and let 𝑛 = 𝑝𝑚 − 1 for some 𝑚 ∈ 𝑁0. Then for all𝑘 , 1 ≤ 𝑘 ≤ 𝑛 − 1,
𝑝 ∤ 𝑁(𝑛, 𝑘) and 

(ii)Let p be prime and let 𝑛 = 𝑝𝑚for some𝑚 ∈ 𝑁0. Then for all𝑘 , 1 ≤ 𝑘 ≤ 𝑛 − 2, 𝑝 ∕
𝑁(𝑛, 𝑘).” 

 

Definition 2.3 

 
The graph obtained from a path by attaching exactly two pendant edges to each 

internal vertex of the path is called a Twig Graph. 

3.  Narayana Prime Cordial Labeling of Twig Graphs 
 

We recall the definitions of the Narayana prime cordial labeling of graph and the 

Narayana prime cordial graph. 

 

Definition 3.1 
 

“Let 𝐺 = (𝑉, 𝐸) be a graph. An injective function f: 𝑉 → 𝑁0   is said to be a Narayana 

prime cordial labeling of the Graph G, if the induced edge function  𝑓∗: 𝐸 → {0,1}  
satisfies the following conditions: 

(i) For every𝑢𝑣 ∈ 𝐸 

𝑓∗(𝑢𝑣) = 1 𝑖𝑓 𝑝 𝑁(𝑓(𝑢), 𝑓(𝑣))⁄ , 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑢) > 𝑓(𝑣) 𝑎𝑛𝑑 𝑓(𝑢) = 𝑝𝑚 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈  𝑁0 ; 1 ≤ 𝑓(𝑣) ≤ 𝑓(𝑢) − 2 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

     = 1 𝑖𝑓 𝑝 𝑁(𝑓(𝑣), 𝑓(𝑢))⁄ , 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑣) > 𝑓(𝑢) 𝑎𝑛𝑑 𝑓(𝑣) = 𝑝𝑚 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈  𝑁0 ; 1 ≤ 𝑓(𝑢) ≤ 𝑓(𝑣) − 2 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

              = 0 𝑖𝑓 𝑝 ∤ 𝑁(𝑓(𝑢), 𝑓(𝑣)), 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑢) > 𝑓(𝑣) 𝑎𝑛𝑑 𝑓(𝑢) = 𝑝𝑚 − 1 
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𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈  𝑁0 ; 0 ≤ 𝑓(𝑣) ≤ 𝑓(𝑢) − 1 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

              = 0 𝑖𝑓 𝑝 ∤ 𝑁(𝑓(𝑣), 𝑓(𝑢)), 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑣) > 𝑓(𝑢) 𝑎𝑛𝑑 𝑓(𝑣) = 𝑝𝑚 − 1 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑚 ∈  𝑁0 ; 0 ≤ 𝑓(𝑢) ≤ 𝑓(𝑣) − 1 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

 

(ii) |𝑒𝑓∗(0) − 𝑒𝑓∗(1)| ≤ 1  where 𝑒𝑓∗(0)  and 𝑒𝑓∗(1)  denote respectively the 

number of edges with the label 0 and the number of edges  with label 1.” 

 

 
Definition 3.2 

“A graph 𝐺 = (𝑉, 𝐸)which admits a Narayana prime cordial labeling is called a 

Narayana prime cordial graph.” 

 

Theorem:3.3 

The twig graph G admits a Narayana prime cordial labeling. 

Proof: 

Let the vertex set of the Twig graph G be  U ∪ V ∪ W where U = {uj : 1 ≤ j ≤ n − 2},  

V = {vi : 1 ≤ i ≤ n} and W = {wj : 1 ≤ j ≤ n − 2} be the vertex set of G.  

Let E(G) = {vivi+1 : 1 ≤ i ≤ n − 1}∪{v2u1}∪{v2w1}∪{viuj+1 : 3 ≤ i ≤ n−1, 1 ≤ j ≤ n−3, 

 i = j+2}∪{viwj+1 : 3 ≤ i ≤ n−1, 1 ≤ j ≤ n−3, i = j+2} be the edge set of the twig graph G. 

By the definition of an injective function 𝑓: 𝑉 → 𝑁0, the vertices are labelled as follows, 

When n is odd 

                                                             𝑓(𝑣𝑖) = 2
𝑖+1; 𝑖 = 1,3,5, …𝑛  

𝑓(𝑣𝑖) = 2
𝑖+1 − 1; 𝑖 = 2,4,6, … 𝑛 − 1 

When n is even  

                                                                𝑓(𝑣𝑖) = 2
𝑖+1; 𝑖 = 1,3,5, … 𝑛 − 1  

𝑓(𝑣𝑖) = 2
𝑖+1 − 1; 𝑖 = 2,4,6, … 𝑛 

And the labeling of vertices for the remaining vertices are done as 

𝑓(𝑢𝑗) = 2
(𝑛+2𝑗); 𝑗 = 1,2,3, … 𝑛 − 2 

𝑓(𝑤𝑗) = 2
(𝑛+1+2𝑗) − 1; 𝑗 = 1,2,3, … 𝑛 − 2 

By the definition of induced edge function f* and the properties of  Narayana numbers, 

𝑓∗(𝑣𝑖𝑣𝑖+1) = {
1 𝑖𝑓 2𝑝 > 2𝑞 − 1 𝑜𝑟 2𝑝 > 2𝑞

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ; 1 ≤ 𝑖 ≤ 𝑛 − 1 

𝑓∗(𝑢𝑖𝑣𝑖+1) = {
1 𝑖𝑓 2𝑝 > 2𝑞 − 1 𝑜𝑟 2𝑝 > 2𝑞

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ; 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓∗(𝑤𝑖𝑣𝑖+1) = {
1 𝑖𝑓 2𝑝 > 2𝑞 − 1 𝑜𝑟 2𝑝 > 2𝑞

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ; 1 ≤ 𝑖 ≤ 𝑛 − 2 
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 ⌊
3𝑛−5

2
⌋ edges receive 1 and  ⌈

3𝑛−5

2
⌉ receive 0 . i.e it satisfies the condition 

.Therefore  the  twig graph admits Narayana prime cordial 

labeling. 

For illustration the Narayana prime cordial labeling of twig graph with n=8 and n=7 are 

shown in figures 1 & 2. 

 

 

 

 

 

 

 

 

Fig 1.  Narayana Prime Cordial Labeling of Even Twig Graph 

 

 

 

 

 

 

 

 

Fig 2. Narayana Prime Cordial Labeling of Odd Twig Graph 
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