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GLOBAL EXISTENCE AND CONTROLLABILITY TO A STOCHASTIC
INTEGRO-DIFFERENTIAL EQUATION WITH POISSON JUMPS

A. ANGURAJ∗, K. RAMKUMAR

Department of Mathematics, PSG College of Arts and Science, Coimbatore, 641 046, India

Abstract. In this paper, we prove global existence and uniqueness results for a stochastic integro-differential equation with
poisson jumps in Frechet spaces. The main results are obtained based on a resolvent operator combined with a nonlinear
alternative of Leray-schauder type. As an application, we study the controllability of the corresponding control system.
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1. INTRODUCTION

The problem of controllability of linear deterministic systems is well documented. It is well known
that controllability of deterministic equations are widely used in analysis and the design of control sys-
tem. Any control system is said to be controllable if every state corresponding to this process can be
affected or controlled in respective time by some control signals. In many dynamical systems, it is pos-
sible to steer the dynamical system from an arbitrary initial state to an arbitrary final state using the set
of admissible controls, that is, there are system which are completely controllable.

Stochastic differential and integro-differential equations have attracted much interest due to their ap-
plications in characterizing many problems in physics, biology, mechanics and so on. Qualitative proper-
ties, such as, existence, uniqueness and stability for various stochastic differential and integro-differential
systems have been extensively studied by many researchers; see, for instance, [1, 2, 3, 4, 5, 6] and the
references therein. The theory of nonlinear functional integro-differential equations with resolvent op-
erators serves as an abstract formulation of partial integro-differential equations which arises in many
physical phenomena [6, 7, 8, 9, 10]. As pointed out by Ouahab in [11], the investigation of many prop-
erties of solutions for a given equation, such as, stability, oscillation, often needs to guarantee its global
existence. Thus it is of very importance to establish sufficient conditions for global existence results
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for functional differential equations. The existence of unique global solutions for deterministic func-
tional differential evolution equations with infinite delays in Frechet spaces were studied by Baghli et al.
[12, 13] and Benchohra et al. [14]. Our approach here is based on a recent Frigon and Granas nonlin-
ear alternative of the Leray-Schauder type in Frechet spaces [15] combined with the resolvent operators
theory.

In this paper, we consider the uniqueness of mild solutions on a semi-infinite positive real interval
J = [0,+∞) for a class of stochastic integro-differential equations with poisson jumps in the abstract
form

dx(t) = [Ax(t)+
∫ t

0
B(t− s)x(s)ds]dt + f (t,x(t))dw(t)+

∫
Z

h(t,x(t),v)Ñ(dt,dv), t ∈ J, (1.1)

x(0) = x0 (1.2)

where A : D(A)⊂H→H, B(t) : D(B(t))⊂H→H, t ≥ 0 are linear, closed, and densely defined operators
in a Hilbert spaces H, f : J×H→ LQ(K,H) and h : J×H×Z→ H are appropriate functions specified
later and w(t), t ≥ 0 is a given K-valued Brownian motion, which will be defined in Section 2. The initial
data x0 is an F0-adapted, H-valued random variable independent of the Wiener process w. Further, as an
applications, we study the controllability results with one parameter.

2. PRELIMINARIES

This section is concerned with some basic concepts, notations, definitions, lemmas and preliminary
facts which are used throughout this paper. For more details on this section, we refer the reader to [4, 16]
and the references therein. Throughout the paper,(H,‖·‖ ,〈·, ·〉) and (K,‖·‖K ,〈··〉K) denote two real
separable Hilbert spaces. Let (Ω,F ,P) be a complete probability space equipped with some filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-null sets). Let
{ei}∞

i=1 be a complete orthonormal basis of K. We denote by {w(t), t ≥ 0} a cylindrical K valued

Wiener process with a finite trace nuclear covariance operator Q > 0, denote Tr(Q) =
∞

∑
i=1

λi = λ < ∞,

which satisfies that Qei = λiei, i = 1,2, .... Actually, w(t) is defined by

w(t) =
∞

∑
i=1

√
λiwi(t)ei, t ≥ 0,

where {wi(t)}∞

i=1 are mutually independent one-dimensional standard Wiener processes. We then let
Ft = σ {w(s) : 0≤ s≤ t} be the σ algebra generated by w. Let L(K,H) denote the space of all linear
bounded operators from K into H, equipped with the usual operator norm ‖.‖L(K,H). For φ ∈ L(K,H),
we define

‖φ‖2
Q = Tr(φQφ

∗) =
∞

∑
i=1

∥∥∥√λiφei

∥∥∥2
.

If φ 2
Q < ∞, then φ is called a Q-Hilbert-Schmidt operator. Let LQ (K,H) denote the space of all Q-

Hillbert-Schmidt operator φ :K→H. The completion LQ (K,H) of L(K,H) with respect to the topology
induced by the norm ‖.‖Q, where ‖φ‖2

Q = 〈φ ,φ〉 is a Hillbert space with the above norm topology.
The collection of all strongly measurable, square integrable, H-valued random variables, denoted by
L2(Ω,H), is a Banach space equipped with norm ‖x‖L2(Ω;H) = (E ‖x‖2)

1
2 , where E[x] =

∫
Ω

x(w)dP(w).
An important subspace is given by L0

2(Ω,H) = { f ∈ L2(Ω,H) : f is F0−measurable}. Let CFt(J,H)

denote the space of all continuous and Ft-adapted measurable processes from J into H. A measurable
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function x : [0,+∞)→H is Bochner integrable if ‖x‖ is Lebesgue integrable. Let L1([0,+∞),H) be the
space of measurable functions x : [0,+∞)→H, which are Bochner integrable, equipped with the norm

‖x‖L1 =
∫ +∞

0
‖x(t)‖dt.

Let q = (q(t)), t ∈ Dq, be a stationary Ft-Poisson point process with characteristic measure λ . Let
N(dt,dv) be the Poisson counting measure associated with q, i.e., N(t,Z) = ∑s∈Dq,s≤t IZ(q(s)) with mea-
surable set Z ∈ B̄(y−0), which denotes the Borel σ -field of Y−{0}. Let Ñ(dt,dv)=N(dt,dv)−dtλ (dv)
be the compensated Poisson measure that is independent of w(t). Let P2([0,+∞))×Z;H be the space
of all predictable mappings h : [0,+∞)×Z×Ω→ H for which

∫ t
0
∫

Z E ‖h(t,v)‖2
H dtλ (dv) < ∞. Then,

we can define the H-valued stochastic integral
∫ t

0
∫

Z h(t,v)Ñ(dt,dv), which is a centred square-integral
martingale. Consider the space

B+∞ =
{

x : J→H ∈CFt (J,H) : x0 ∈ L0
2(Ω,H)

}
.

From now on, A : D(A)⊂H→H is the infinitesimal generator of a resolvent operator R(t), t ≥ 0 in the
Hilbert space H and B(t) :D(B(t)) ⊂ H→ H ,t ≥ 0 is a bounded linear operator. To obtain our results,
we assume that the abstract Cauchy problem

dx(t) =

[
Ax(t)+

∫ t

0
B(t− s)x(s)ds

]
dt, t ≥ 0, (2.1)

x(0) = x0 ∈H, (2.2)

has an associated resolvent operator of bounded linear operators R(t), t ≥ 0 on H.

Definition 2.1. A family of bounded linear operators R(t), t ≥ o from H into H is a resolvent operator
family for problem (2.1)-(2.2) if the following conditions are verified.
1. R(0) = I (the identity operator on H) and the map t→ R(t)x is a continuous function on [0,+∞)→H
for every x ∈H.
2. AR(·)x ∈C([0,∞],H) and R(·)x ∈C1([0,∞],H) for every x ∈ D(A).
3. For every x ∈ D(A) and t ≥ 0,

d
dt

R(t)x = AR(t)x+
∫ t

0
B(t− s)R(s)xds,

d
dt

R(t)x = R(t)Ax+
∫ t

0
R(t− s)B(s)xds.

For more details on the semigroup theory and resolvent operators, we refer to [6, 10, 17] and the
references therein. Let X be a Frechet space with a family of semi-norms ‖·‖nn∈N . Let Y ⊂ X . We say
that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn, ∀y ∈ Y.

With X , we associate a sequence of Banach spaces (Xn,‖·‖n) as follows: For every n ∈ N, we consider
the equivalence relation x∼n y if and only if ‖x− y‖n = 0 for all x,y ∈ X . We denote Xn = (X |∼n ,‖·‖n)

the quotient space, the completion of Xn with respect to ‖·‖. To every y ⊂ X , we associate a sequence
the {Y n} of subsets Y n ⊂ Xn as follows: For every x ∈ X , we denote [x]n the equivalence class of x of
subset Xn and we define Y n = {[x]n : x ∈ Y} . We denote Y n, intn(Y n) and ∂nY n, respectively, the closure,
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the interior and the boundary of Y n with respect to ‖.‖n in Xn. We assume that the family of semi-norms
{‖.‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ · · ·, ∀x ∈ X .

Definition 2.2. A function f : J×H→ LQ(K,H) is said to be an L2- Caratheodory function if it satisfies:
1. for each t ∈ J the function f (t, .) : H→ LQ(K,H) is continuous;
2. for each x ∈H the function f (.,x) : J→ LQ(K,H) is Ft- measurable;
3. for every positive integer k there exists αk ∈ L1

loc(J,R+) such that

E ‖ f (t,x)‖2 ≤ αk(t),∀E ‖x‖2 ≤ k

and for almost all t ∈ J.

Definition 2.3. [15] A function G : X → X is said to be a contraction if for each n ∈ N there exists
kn ∈ (0,1) such that

‖G(x)−G(y)‖n ≤ kn ‖x− y‖n , ∀x,y ∈ X .

Definition 2.4. [15] Let X be a Frechet space and Y ⊂X a closed subset and let N :Y→X be a contraction
such that N(Y ) is bounded. Then one of the following statements hold:
(C1) N has a unique fixed point;
(C2) There exists λ ∈ [0,1), n ∈ N and x ∈ ∂nY n such that ‖x−λN(x)‖n = 0.

3. MAIN RESULTS

In this section, we prove that there is a unique global mild solution for the problem (1.1)-(1.2). We
begin introducing the following concepts of mild solutions.

Definition 3.1. An Ft -adapted stochastic process x : [0,+∞)→H is called a mild solution of (1)-(2) if
x(0) = x0 ∈ L0

2(Ω,H),x(t) is continuous and satisfies the following integral equation

x(t) = R(t)x0 +
∫ t

0
R(t− s) f (s,x(s))dw(s)

+
∫ t

0
R(t− s)

∫
Z

h(s,x(s),v)Ñ(ds,dv), for each t ∈ [0,+∞).

Let us list the following assumptions:
(H1) A is the infinitesimal generator of a resolvent operator R(t), t ≥ 0 in the Hilbert space H and there
exists a constant M > 0 such that

‖R(t)‖2 ≤ M, t ≥ 0.

(H2) The function f : J×H→ LQ(K,H) is L2- Caratheodory and satisfies the following conditions:
(i) There exists a function p ∈ L1

loc(J,R+) and a continuous nondecreasing function ψ : J → (0,+∞)

such that

E ‖ f (t,u)‖2 ≤ p(t)ψ(E ‖u‖2), for a.e. t ∈ J and each u ∈H.

(ii) For all ℜ > 0, there exists a function lℜ ∈ L1
loc(J,R+) such that

E ‖ f (t,u)− f (t,v)‖2 ≤ lℜ(t)E ‖u− v‖2 ,
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for all u,v ∈H with E ‖u‖2 ≤ℜ and E ‖v‖2 ≤ℜ.
(H3) The function h : J×H× z→H is Boral measurable function and satisfies the following conditions:
(i) There exists a function p ∈ L1

loc(J,R+) and a continuous nondecreasing function ψ : J → (0,+∞)

such that

a).
∫ t

0

∫
Z
‖h(t,x,v)−h(t,y,v)‖2

λ (dv)ds∨
(∫ t

0

∫
Z
‖h(t,x,v)−h(t,y,v)‖4

λ (dv)ds
) 1

2

≤
∫ t

0
lℜ(t)E ‖x− y‖2 ,

b).
∫ t

0

∫
z
‖h(t,x,v)‖2

λ (dv)ds≤
∫ t

0
p(t)ψ(E ‖x‖2),

c).
(∫ t

0

∫
Z
‖h(t,x,v)‖4

λ (dv)ds
) 1

2

≤
∫ t

0
p(t)ψ(E ‖x‖2),

Theorem 3.2. Assume the conditions (H1)− (H3) are satisfied. For each n ∈ N,∫ +∞

cn

ds
ψ(s)

> 3M [Tr(Q)+2]
∫ n

0
p(s)ds, (3.1)

where cn = 3ME ‖x0‖2. Then problem (1.1)-(1.2) has a unique mild solution on J.

Proof. Fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms

‖x‖n = sup
{

e−τL∗n(t)E ‖x(t)‖2 : t ∈ [0,n]
}
,

where L∗n(t) =
∫ t

0 l̄n(s)ds, and l̄n(t) = 2M [Tr(Q)+2] ln(t) and ln is the function from (H2). Then B+∞

is a Frechet space with the family of semi-norms ‖·‖n∈N. We transform (1.1)-(1.2) into a fixed point
problem. Consider the operator Φ : B+∞→ B+∞ defined by

Φ(x)(t) = R(t)x0 +
∫ t

0
R(t− s) f (s,x(s))dw(s)+

∫ t

0
R(t− s)

∫
Z

h(s,x(s),v)Ñ(ds,dv)

for t ∈ J. Clearly fixed points of operator Φ are mild solutions of problem (1.1)-(1.2). For the sake of
convenience, we set, for n ∈ N,

cn = 3ME ‖x0‖2 ,

m(t) = 3M [Tr(Q)+2] p(t).

Let x ∈ B+∞ be a possible fixed point the operator Φ. By hypotheses (H1), (H2) and (H3), we have, for
each t ∈ [0,n],

E ‖x(t)‖2 = 3E ‖R(t)x0‖2 +3E
∥∥∥∥∫ t

0
R(t− s) f (s,x(s))dw(s)

∥∥∥∥2

+ 3E
∥∥∥∥∫ t

0
R(t− s)

∫
Z

h(s,x(s),v)Ñ(ds,dv)
∥∥∥∥2

≤ 3ME ‖x0‖2 +3Tr(Q)M
∫ t

0
E ‖ f (s,x(s))‖2 ds

+ 3M
∫ t

0

∫
Z
‖h(s,x(s),v)‖2

λ (dv)ds

+ 3M
(∫ t

0

∫
Z
‖h(s,x(s),v)‖4

λ (dv)ds
) 1

2

.

≤ 3ME ‖x0‖2 +3M [Tr(Q)+2]
∫ t

0
p(s)ψ(E ‖x(s)‖2)ds.
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We consider the function u defined by

u(t) = sup
{

E ‖x(s)‖2 : 0≤ s≤ t
}
,0≤ t ≤+∞.

Let t∗ ∈ [0, t] be such that u(t) = E ‖x(t∗)‖2 . It follows that

u(t) = 3ME ‖x0‖2 +3M [Tr(Q)+2]
∫ t

0
p(s)ψ(E ‖x(s)‖2)ds.

Let us take the right-hand side of the above inequality as v(t). It follows that u(t)≤ v(t) for all t ∈ [0,n]
and v(0) = cn = 3ME ‖x0‖2 and

v
′
(t) = 3M [Tr(Q)+2] p(t)ψ(u(t)) a.e. t ∈ [0,n].

Using the nondecreasing character of ψ , we get

v
′
(t) = 3 [Tr(Q)+2]Mp(t)ψ(v(t)) a.e. t ∈ [0,n].

This implies, for each t ∈ [0,n], that∫ v(t)

cn

ds
ψ(s)

≤
∫ n

0
m(s)ds <

∫ +∞

cn

ds
ψ(s)

.

By (3.1), for every t ∈ [0,n], there exists a constant ∧n, such that v(t) ≤ ∧n. Hence u(t) ≤ ∧n. Since
‖x‖n ≤ u(t), we have ‖x‖n ≤ ∧n. Set

Ω =
{

x ∈ B+∞ : supE ‖x(t)‖2 : 0≤ t ≤ n≤ ∧n +1 for all n ∈ N
}
.

Clearly, Ω is a closed subset of B+∞.
We next show that Φ : Ω→ B+∞ is a contraction operator. Indeed, we consider x,y ∈ B+∞ based on

(H1), (H2) and (H3) for each t ∈ [0,n] and n ∈ N

E ‖Φ(x)(t)−Φ(y)(t)‖2 = 2E
∥∥∥∥∫ t

0
R(t− s)[ f (s,x(s))− f (s,y(s))]dw(s)

∥∥∥∥2

+ 2E
∥∥∥∥∫ t

0
R(t− s)[

∫
Z

h(s,x(s),v)−h(s,y(s),v)]Ñ(ds,dv)
∥∥∥∥2

≤ 2Tr(Q)M
∫ t

0
E ‖ f (s,x(s))− f (s,y(s))‖2 ds

+ 2M
∫ t

0

∫
Z

E ‖h(s,x(s),v)−h(s,y(s),v)‖2
λ (dv)ds

+ 2M
(∫ t

0

∫
Z

E ‖h(s,x(s),v)−h(s,y(s),v)‖4
λ (dv)ds

) 1
2

.

≤ 2M [Tr(Q)+2]
∫ t

0
ln(s)E ‖x(s)− y(s)‖2 ds.

≤
∫ t

0

[
l̄n(s)eτL∗n(s)

][
e−τL∗n(s)E ‖x(s)− y(s)‖2

]
ds

≤
∫ t

0

[
l̄n(s)eτL∗n(s)

]
ds‖x− y‖n

≤
∫ t

0

1
τ

[
eτL∗n(s)

]′
ds‖x− y‖n

≤ 1
τ

eτL∗n(t) ‖x− y‖n .
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Therefore,

‖Φ(x)−Φ(y)‖n ≤ 1
τ
‖x− y‖n .

So, the operator φ is a contraction for all n ∈ N. From the choice of Ω, there is no x ∈ ∂Ωn such that
x = λΦ(x) for some λ ∈ (0,1). The statement (C2) does not hold. A consequence of the nonlinear
alternative of Frigon and Granas show that (C1) holds. We deduce that the operator Φ has a unique fixed
point x, which is the unique mild solution of the problem (1.1)-(1.2). The proof is completed. �

4. CONTROLLABILITY RESULTS

As an application of Theorem 3.1, we consider the following controllability for stochastic functional
integro-differential evolution equations of the form

dx(t) =
[

Ax(t)+
∫ t

0
B(t− s)x(s)ds

]
dt +Cu(t)dt + f (t,x(t))dw(t)+

∫
Z

h(t,x(t),v)Ñ(dt,dv), (4.1)

x(0) = x0, (4.2)

where the control function u(·) is given in L2(J,U), the Banach space of admissible control functions
with U is real separable Hilbert space with the norm |·|, C is a bounded linear operator from U into H
and functions A,B(t− s), f and x0 are as in problem (1.1)-(1.2). For more results on the controllability
defined on a compact interval, we refer to [18, 19, 20, 21] and the references therein.

Definition 4.1. An Ft-adapted stochastic process x : [0,+∞)→H is called a mild solution of the problem
(4.1)-(4.2) if x(0) = x0 ∈ L0

2(Ω,H),x(t) is continuous and satisfies the following integral equation

x(t) = R(t)x0 +
∫ t

0
R(t− s)Cu(s)ds+

∫ t

0
R(t− s) f (s,x(s))dw(s)

+
∫ t

0
R(t− s)

∫
Z

h(s,x(s),v)Ñ(ds,dv), t ∈ J = [0,+∞). (4.3)

Definition 4.2. The system (4.1)-(4.2) is said to controllable if for every initial random variable x0 ∈
L0

2(Ω,H),x∗ ∈ H, and n ∈ N, there is some Ft-adapted stochastic control u ∈ L2([0,n],U) such that the
mild solution x(·) of (4.1)-(4.2) satisfies the terminal condition x(n) = x∗.
In addition to conditions (H1)-(H3), we need the following assumption
(H4) For each n ∈ N, the linear operator W : L2([0,n],U)→ L2(Ω,H), which is defined by

Wu =
∫ n

0
R(n− s)Cu(s)ds (4.4)

has a pseudo invertible operator W̃−1, which takes values in L2([0,n],U)/KerW and there exist positive
constants M1 and M2 such that ‖C‖2 ≤M1, and

∥∥W̃−1
∥∥2 ≤M2.

Theorem 4.3. Assume conditions (H1)-(H4) are satisfied and moreover for each n ∈ N, there exists a
constant ∧n > 0 such that

∧n

βn +4M (Tr(Q+2)) [4MM1M2n2 +1]ψ(∧n)‖p‖L1
[0,n]

> 1, (4.5)

with

βn = βn(x∗,x0) = 4ME ‖x0‖2 +16MM1M2n2
[
E ‖x∗‖2 +ME ‖x0‖2

]
.

Then (4.1)-(4.2) is controllable on J.
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Proof. Fix τ > 1. For every n ∈ N, we define, in B+∞, the semi-norms

‖x‖n = sup
{

e−τL∗n(t)E ‖x(t)‖2 : t ∈ [0,n]
}
,

where L∗n(t) =
∫ t

0 l̄n(s)ds, and l̄n(t) = 3m [Tr(Q+2)] ln(t)[2MM1M2n2 + 1] and ln is the function from
(H2). Then B+∞ is a Frechet space with the family of semi-norms we transform (4.1)-(4.2) into a fixed
point problem. Consider the operator Γ : B+∞→ B+∞ defined by

Γ(x)(t) = R(t)x0 +
∫ t

0
R(t− s)Cux(s)ds

+
∫ t

0
R(t− s) f (s,x(s))dw(s)+

∫ t

0
R(t− s)

∫
Z

h(s,x(s),v)Ñ(ds,dv), t ∈ J.

Using condition (H3), for arbitrary function x(·), we define the control

ux(t) = W̃−1
[

x∗−R(n)x0−
∫ n

0
R(n− s) f (s,x(s))dw(s)−

∫ n

0
R(n− s)

∫
Z

h(s,x(s),v)Ñ(ds,dv)
]
(t)

Note that

E ‖ux(t)‖2 ≤
∥∥W̃−1∥∥E

∥∥x∗−R(t)x0−
∫ n

0
R(n− τ) f (τ,x(τ))dw(τ)

−
∫ n

0
R(n− τ)

∫
Z

h(τ,x(τ),v)Ñ(dτ,dv)
∥∥2
.

Applying (H1)-(H3), we get

E ‖ux(t)‖2 ≤ 4M2

[
E ‖x∗‖2 +ME ‖x0‖2 +M [Tr(Q)+2]

∫ n

o
p(τ)ψ(E ‖x(τ)‖2)dτ

]
.

We shall show that Γ has a fixed point x(·). Then x(·) is a mild solution of system (4.1)-(4.2). Let x∈B+∞

be a possible fixed point of the operator Γ. By conditions (H1)-(H3), we have, for each t ∈ [0,n], that

E ‖x(t)‖2

≤ 4E ‖R(t)x0‖2 +4E
∥∥∥∥∫ t

0
R(t− s)Cux(s)ds

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
R(t− s) f (s,x(s))dw(s)

∥∥∥∥2

+4E
∥∥∥∥∫ t

0
R(t− s)

∫
Z

h(s,x(s),v)Ñ(ds,dv)
∥∥∥∥2

≤ 4ME ‖x0‖2 +16MM1M2n
∫ t

0

[
E ‖x∗‖2 +ME ‖x0‖2 +M [Tr(Q)+2]

∫ n

0
p(τ)ψ(E ‖x(τ)‖2)dτ

]
ds

+4Tr(Q)M
∫ t

0
p(s)ψ(E ‖x(s)‖2)ds+8M

∫ t

0
p(s)ψ(E ‖x(s)‖2)ds

≤ 4ME ‖x0‖2 +16MM1M2n2E ‖x∗‖2 +16M2M1M2n2E ‖x0‖2

+16M2M1M2n2 [Tr(Q)+2]
∫ n

0
p(s)ψ(E ‖x(s)‖2)ds+8M [Tr(Q)+2]

∫ t

0
p(s)ψ(E ‖x(s)‖2)ds.

Set βn = 4ME ‖x0‖2 +16MM1M2n2
[
E ‖x∗‖2 +ME ‖x0‖2

]
. It follows that

E ‖x(t)‖2 ≤ βn +16M2M1M2n2 [Tr(Q)+2]
∫ n

o
p(s)ψ(E ‖x(s)‖2)ds

+ 8M [Tr(Q)+2]
∫ n

o
p(s)ψ(E ‖x(s)‖2)ds.
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We consider the function µ defined by µ(t) = sup
{

E ‖x(s)‖2 : 0≤ s≤ t
}
, 0≤ t ≤+∞. Let t∗ ∈ [0, t] be

such that µ(t) = E ‖x(t∗)‖2. If t∗ ∈ [0,n], by the previous inequality, we have, for t ∈ [0,n],

µ(t) ≤ βn +16M2M1M2n2 [Tr(Q)+2]
∫ n

0
p(s)ψ(µ(s))ds+8M [Tr(Q)+2]

∫ n

0
p(s)ψ(µ(s))ds.

It follows that

µ(t) ≤ βn +4M (Tr(Q+2))
[
4MM1M2n2 +1

]∫ n

0
p(s)ψ(µ(s))ds.

Consequently, one has

‖x‖n
βn +4M (Tr(Q+2)) [4MM1M2n2 +1]ψ(‖x‖n)‖p‖L1

[0,n]

≤ 1.

From (4.3), there exists ∧n such that µ(t)≤ ∧n. Since ‖x‖n ≤ µ(t), we have ‖x‖n ≤ ∧n. Set

Ω =
{

x ∈ B+∞ : supE ‖x(t)‖2 : 0≤ t ≤ n≤ ∧n +1 for all n ∈ N
}
.

Clearly, Ω is a closed subset of B+∞. We shall show that Γ : Ω→ B+∞ is a contraction operator. Indeed,
consider x,y ∈ B+∞. By (H1)-(H3), we find, for each t ∈ [0,n] and n ∈ N,

E ‖Γ(x)(t)−Γ(y)(t)‖2 ≤ 3E
∥∥∥∥∫ t

0
R(t− s)C[ux(s)−uy(s)]ds

∥∥∥∥2

+ 3E
∥∥∥∥∫ t

0
R(t− s)[ f (s,x(s))− f (s,y(s))]dw(s)

∥∥∥∥2

+ 3E
∥∥∥∥∫ t

0
R(t− s)

∫
Z
[h(s,x(s),v)−h(s,y(s),v)]Ñ(ds,dv)

∥∥∥∥2

≤ 3MM1n
∫ t

0
E
∥∥∥∥W̃−1

[
x∗−R(n)x0−

∫ n

0
R(n− s) f (τ,x(τ))dw(τ)

−
∫ n

0
R(t− s)

∫
Z

h(τ,x(τ),v)Ñ(dτ,dv)
]
−W̃

[
x∗−R(n)x0

−
∫ n

0
R(n− s) f (τ,y(τ))dw(τ)−

∫ n

0
R(n− s)

∫
Z

h(τ,y(τ),v)Ñ(ds,dv)
]∥∥∥∥2

ds

+ 3M [Tr(Q+2)]
∫ t

0
ln(s)E ‖x(s)− y(s)‖2 ds.

≤ 6M2M1M2n2 [Tr(Q+2)]
∫ t

0
ln(s)E ‖x(s)− y(s)‖2 ds

+ 3M [Tr(Q+2)]
∫ t

0
ln(s)E ‖x(s)− y(s)‖2 ds

≤
∫ t

0
[ln(s)eτL∗n(s)][e−τL∗n(s)E ‖x(s)− y(s)‖2]ds

≤
∫ t

0
[ln(s)eτL∗n(s)]ds‖x− y‖n

≤
∫ t

0

1
τ
[eτL∗n(s)]′ds‖x− y‖n

≤
∫ t

0

1
τ

eτL∗n(t) ‖x− y‖n .
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Therefore

‖Γ(x)−Γ(y)‖n ≤ 1
τ
‖x− y‖n .

So, Γ is a contraction for all n ∈ N. From the choice of Ω, we see that there is no x ∈ ∂Ωn such that
x = λΩ(x) for some λ ∈ (0,1). Then the statement (C2) does not hold. A consequence of the nonlinear
alternative of Frigon and Granas show that (C1) holds. We deduce that the operator Γ has a unique fixed
point x. This fixed point is the solution of system (4.1)-(4.2). Clearly, x(n) = (Γx)(n) = x∗ which implies
that system (4.1)-(4.2) is controllable on J. The proof is completed. �
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