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Abstract: Software code clones (CC) in software programs are degrading the performance of software systems. many 

code clones detection (CCD) methods proposed in the literature detect only individual cloned types efficiently. This 

paper proposes a collaborative code clones detection (CCCD) method by utilizing lexical, syntactic, semantic and 

structural features for effectively identifying all types of clones including type-4. Initially, a large variance mapper 

(LV-mapper) is utilized to identify clone pairs (CPs). Then CPs are converted into lexical features by directly applying 

Word2vec. The synonyms of CPs are obtained using the WordNet tool and converted as semantic features by 

Word2vec.Additionally, code size metrics (CZM) and object oriented metrics (OOM) are additionally measured as 

structural features of a program’s code blocks (CBs). The syntactic features are extracted through the abstract syntax 

tree (AST) from the source code. Finally, the joint feature vector is generated by combining all the features together. 

In order to detect CCs in any new software, the joint feature vector of known clone type source codes is generated first 

(training set) and then the joint feature vector of unknown clone types source codes is generated next. The Euclidean 

distances between training and testing of joint feature vectors determine the clone type of test features. Finally, the 

experimental outcome demonstrates that the proposed CCCD technique has an accuracy of 87.8%, 92.3% and 95.5% 

for the dataset Apache Maven 3.8.3, Appache ant 1.10.12 and Opennlp-master 1.9.1, respectively, compared to the 

existing LV-CCD, ES-CCD, TBCNN-CCD and  CPVDetector  methods. 
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1. Introduction 

Cloned code, abbreviated as CC, is common in 

software development and is created by duplicating a 

section of code with little or no changes into another 

section of code. Because of CCs, errors available in a 

single section of the program affected all duplicated 

sections. As a result, identifying CCs in all segments 

inside the source code is essential. According to 

several assessments, CCs available in 20-50% of 

large code size software projects [1, 2]. 

CCs harm many software engineering functions, 

such as aspect mining, program comprehension, 

software assessment, program code efficiency 

evaluation, bug and virus identification. CCs also 

induce bug propagation which greatly raises the cost 

of software maintenance. Because of these upkeep 

issues, CCD has emerged as a hot topic in research. 

The types of CCs are as follows  

• Type-1 clones (Lexical similarity): This type of 

clone is substantially identical except for 

variations in variable names, function names, 

white space, formatting, and comments. 

• Type-2 clones (Semantic similarity): These 

clone types can be identified by different code 

snippets that implement the same behaviour in a 

syntactic manner. 

• Type-3 clones (Structural similarity): These 

CCs contain comparable software structures (for 

example, design patterns and object oriented 

programming class interactions). This 
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resemblance extends to the syntactic and logical 

study of code structure in programs. 

• Type-4 clones (Syntactic similarity): This can 

be found in code snippets that are similar at the 

statement level but differ at the code level. 

Statements have been added, altered, or removed 

in code samples. 

Text, Token, Tree, metric, Semantic, and Hybrid 

based methods are commonly used for CCD [3, 4]. 

Various tools for CCD are NICAD, CCFinderX, 

Simian, and CPMiner [5, 6]. Various similarity 

measures like Fingerprinting, Neural networks and 

Euclidian distance are used to detect CCs [7].  

However, because most of the available tools and 

methodologies were designed for highly similar 

clones, they are incapable of detecting large-variance 

CCs (LV-CC). These high-variability clones can be 

identified in a variety of software applications.LV-

CC detection is more important for software 

maintenance and malware detection.  

CCAligner [8] discovered LV-CCs effectively. 

The duplication or alteration in a single spot is known 

as “gap”, and this gap in clones typically results in an 

LV-CCs. LV-CCs propagation is effectively found 

across several locations rather than just one.  

However, this method results in limited scalability, 

also performs well only for type1 and type2 CCs.  

A unique and effective detector called LV-

Mapper [9] known as LV-CCD uses a locate-filter-

verify technique which locates and filters probable 

clone code by using a restricted window of 

continuous lines known as seeds which determines 

the dynamic threshold for CC verification. It detects 

Type-1 to Type-3 clones more accurately. However, 

it is incapable of producing satisfactory results for 

type-4 clones.  

In this research work, a CCCD approach is 

proposed to recognize all sorts of clones (Type 1 to 

Type 4) successfully. The proposed CCCD approach 

makes use of various features such as lexical, 

syntactic, semantic, and structural. This approach 

tokenizes all CPs detected by LV-Mapper and utilizes 

the WordNet tool to search for synonyms for tokens. 

Word2vec is used to translate synonyms into 

semantic features. CBs, CZM and OOM are 

measured for structural features. AST is used to 

capture syntactic features from the source code. The 

lexical, syntactic, semantic, and structural features 

are then combined to form a joint feature vector. 

Euclidean distances between the training joint feature 

vector and testing joint feature vector compute all 

clone types with less computational challenges. 

The next section of this paper explains existing 

CCD approaches. Section 3 explains the proposed 

methodology. Section 4 briefly describes the 

outcome of the evaluation. Section 5 explains 

conclusion and future scope.  

2. Literature survey 

A token-based CCD with an adaptive partitioning 

method was developed to detect Type-3 clones [10]. 

The volume of code segments was assessed in 

filtering stage. Non-potential segments for CCs are 

removed dramatically to decrease complexity.        

The validation stage confirmed the candidate pairs 

that are actual CCs. This two-stride method shortens 

the CCD runtime. However, this method has a higher 

chance of failing in the detection process while 

testing bigger inputs. 

A test-based approach was developed [11] for 

detecting semantic clones. This approach was applied 

to detect semantic clones of API methods.  The test 

cases for a given method were generated 

automatically, and the generated test cases were used 

to search for semantically equivalent API methods. 

When two methods produce the same output on all of 

these test cases, they are termed semantically 

equivalent methods.  This approach was restricted to 

arbitrary chunks to reduce time complexity. However, 

the appropriate selection of a test case generation tool 

is an issue for this method. 

A Modular, Sequential, and Multi-representation 

clone search engine called Siamese was proposed for 

CC search, [12]. This approach converts Java code 

into four program connections for the simultaneous 

identification of numerous clone varieties. A query 

reduction (QR) approach was utilized to reduce query 

size based on token document frequencies. 

Incremental index updating, allows for quick updates 

from existing indexes without having to construct the 

index from scratch. The siamese clone search 

technique enables real-time discovery of online code 

reuse, comparable code samples and software 

plagiarism detection. However, these evaluated 

methodologies were too small to be indicative of the 

software sector. 

An efficient semantic CCD (ES-CCD) technique 

was developed [13] by employing a pair-wise feature 

fusion for automated identification of all four clone 

types. AST and program dependency graphs (PDGs) 

were efficiently utilized to prepare labelled training 

features for detecting the Java code clones, including 

semantic clones. Then, the full path traversal method 

was used to extract the AST and PDG features and 

helps to derive those features in vector formation. 

The syntax of program codes was captured using 

AST program features, and the semantics of program 

codes using PDG features. Then the machine learning 

method was employed to find the relative 
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performance of the model using these extracted 

features. However, this model was acquired at a  high 

computational cost. 

Tree-based convolution neural network 

(TBCNN) was developed [14] for CCD. This method 

utilizes two-pass technique to detect and classify the 

clones-types based on their code features. These 

features were readily captured by using the AST node 

that reflects typical code patterns which was created 

from code and saves time on the preparation stage. 

This process uses two classification models like (i) 1-

st pass classification would detect the clone based on 

the provided clone fragments. (ii) 2nd-pass 

classification would classify the clone code type. 

However, this model was insufficient to handle the 

fine-grained code fragments. 

A CCD technique was presented [15] using code 

fingerprints, known as the context-enhanced and 

patch-validation-based vulnerable code clone 

detector (CPVDetector). In this technique, a 

fingerprint database was created for functions, code 

fragments, and patches that were obtained from pre-

processed susceptible source code. First, the target 

code that needs to be detected was converted into 

function-level fingerprints. If this coarse granularity 

could not detect clones, the detector could be used to 

detect them. The detector would move to check the 

context of vulnerable codes after a successful 

fingerprint match between the target code and the 

vulnerable code segments. However, this model has 

lower performance on larger datasets. 

2.1 Research contribution  

From the above literature survey, it is clear that 

most of the existing methods that have been 

developed for CCD are highly suitable to detect 

general Type-1 to Type-3 clones. But not having 

sufficient proof to provide better results for type-4 

clones. So, the proposed work is developed using 

lexical, syntactic, semantic and structure based 

features which are combined together to detect all 

four clone types (Type 1 to Type 4). The source code 

data is taken from the open source application which 

is split into training and testing data. In this research 

work, four primary clone types and their similarity 

features are used in this process. The further 

processes of this research work are briefly explained 

below. 

 

 

 

 

 

3. Proposed methodology 

3.1 Extraction of CBs 

A program unit is a series of statements 

surrounded by braces that normally represent a single 

function. This CB is crucial in detecting CPs with 

identical code sections. Lexical analysis for code in 

this system entails extracting CBs from source code 

and transforming them to Turing eXtender Language 

(TXL) [16]. TXL is a coding language developed for 

modifying program coding transcriptions and 

attributes via link transformation. The Fig. 1 depicts 

the reliable description of the proposed CCCD model. 

TXL's guiding principle is to start with a syntax 

for an existent system, define syntactic changes to the 

grammar that reflect new language attributes or 

expansions, and then quickly test-type these novel 

attributes through code conversion to the source 

language. It extracts CBs by specifying syntactical 

rules in terms of hash tags (restrained signifiers), 

substances (several integrity succession to be treated  

as a unit), remarks (definition of articulating norms), 

and more broadly, tokens\symbols, structured pattern 

matching for random character concatenation. These 

sentences will be useful in determining the structure 

of CBs. 

3.2 Tokenizing the CBs 

After extracting the CBs, the tokenizing step is 

carried out using a tool called fast lexical analyzer 

generator (Flex). Flex tool [17] is used for the 

tokenizing these extracted CBs. During the process, 

the extracted CBs are used as input files, which are 

generated by a lexical analyzer and may be recast in 

𝑙𝑒𝑥  language. The 𝑙𝑒𝑥  compiler transforms a input 

file to specific code program (C program). Then, the 

specific code program will compile the input file into 

an executable file or output file. From this output file, 

a stream of input characters is analyzed and produces 

a stream of token codes from the extracted CBs which 

is then indexed to detect the clone pairs.  

3.3 Detecting CPs  

LV-Mapper [9] examines all operational modules 

and accumulates all seeds instead of tokens to 

discover clone pairs. These seeds are transformed 

into hash values and saved in a hash table. The seed’s 

hash is the key of the component in the hash table in 

this process, and the content is an accumulation of 

related unit’s ids. 
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Figure. 1 Systematic representation of the developed CCCD method 

 

3.3.1 Identifying prospective CC pairs using the shared 

seed:  

It is done by searching for probable CC pairings 

using the indexed seed. The purpose of this phase is 

to collect as many candidates as possible while 

minimising the loss of actual clone couplings.  In this 

strategy, the 3-line sliding frames are employed as the 

seeds region to combine all potential clone sets that 

contain the similar seed (s) and allow improved clone 

pair determination. 

3.3.2 Retrieval for the quantity of common seeds: 

 The possibility of CBs that might be easily 

duplicated is taken into account. This is the filtering 

step, and it is in charge of identifying potential clone 

pairings. Filtering step is especially responsible with 

estimating the possibility of cloning by assessing the 

quantity of common seeds between two CBs. The 

resemblance of the two CBs, as measured by the 

number of seeds they possess, determines the 

choosing of probable CPs. In this method, the 

resemblance (𝑆𝑟) of code pairs 𝐴 and 𝐵 is computed 

as  

 

       𝑆𝑟(𝐵\𝐴) =  
𝑠

𝑡
 =  

𝑠

𝐿−𝑘+1
                   (1) 

 

The amount of shared seeds is 𝑠 , the overall 

number of seeds in code pair 𝐵 is 𝑡, and the length of 

𝐵 in line is 𝐿. The greater the 𝑆𝑟(𝐵\𝐴) value for each 

pair of CBs, the more likely it is that they are clone 

pairs. 

From the following procedures, the CPs are 

detected. Once the clone pair is identified, similarity 

features such as lexical and semantic similarity must 

be retrieved from these pairs using various tools for 

detecting clone types as detailed in detail below 

whereas other two similarity features (structural and 

syntactic) are extracted directly from the source code. 

3.4 Lexical feature  

Whole word, prefix/suffix (different 

lengthsallowed), stemmed word, lemmatized word 

are the most common lexical features. To detect the 

CC from the clone pairs, this tool will compute the 

similarity of hamming space instead of vector pairs 

created by binary hash functions. For the extraction 

of lexical features from the clone pairs, the word 

embedding technique like word2vector (word2vec) 

tool [18] is used to capture the word context in a data, 

semantic and syntactic similarity, relation with other 

words, etc. 

To detect the CC from the CPs, this tool will 

compute the similarity of hamming space instead of 

vector pairs created by binary hash functions. It 

parses feature text by "vectorizing" words using a 
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two-strand network. It keeps a textual sample as input 

to produce a set of arrays: attribute matrix describing 

a words in the article. This Word2vec tool is widely 

used in natural language processing (NLP) to shorten 

learning time. Word2Vec may use two distinct model 

architectures to generate these word embedding 

representations like the continuous bag of words 

(CBOW) model and the skip-gram model. CBOW is 

used in this framework because it is quicker and 

provides better representations for more common and 

related terms, even in greater datasets. 

3.4.1 Structure of CBOW model 

This model efficiently attempts to predict the 

lexical feature based on the identified clone pairs' 

source code words.  Also, the model converts the 

sentences into word pairs in the form 

( 𝑠𝑜𝑢𝑟𝑐𝑒_𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑤𝑜𝑟𝑑 ). With these 

word pairs, the model attempts to predict the lexical 

feature based on the source code words using the 

user-adjusted window size. The Fig. 2 depicts the 

CBOW model structure. In the figure, the four source 

code words ( 𝑤𝑡−2, 𝑤𝑡−1,   ⋯  𝑤𝑡+1𝑎𝑛𝑑 𝑤𝑡+2 ) has 

been used for the prediction of lexical features. The 

input will be in the form of  1 × 𝑊  input vectors. 

These input vectors are sent to the buried layer, where 

they are multiplied by a 𝑊𝑋𝑁 matrix. Finally, the 

1𝑋𝑁  output from the hidden layer enters the sum 

layer, where the vectors are element-wise summed 

before a final activation is done and the output is 

generated. 

The CBOW approach is constructed from a 

neural network language model (NNLM) that 

simultaneously develops a phrase embedding and a 

language concept, with the exception that there is no 

quadratic. The CBOW model is designed to forecast 

the median phrase given 𝑁/2  past chronological 

terms and 𝑁/2 prospective phrases. When 𝑁 = 8 is 

employed, the best findings are produced. Word 

arrays of 𝑁 input sentence are simply summed in the 

interpreted stage. The positioning of the word has 

minimal effect on determining the word vector of the 

middle word, hence the term "Bag of words. 

The latent factor 𝐷  is represented by the word 

Continuous. The CBOW model is a simple log-linear 

paradigm in which the logarithmic of the model's 

outcome may be written as a quadratic combination 

of the model's parameters. To get distribution over 𝑉, 

an average variable is sent to the out-layer, which is 

then accompanied by the recursive softmax (𝑉 is the 

total number of words in the corpus). The overall 

weights used in developing the CBOW system are 

𝑁 × 𝐷 + 𝐷 × 𝑙𝑜𝑔(2)𝑉. 

The CBOW variables are two groups of word 

extracted features: "reference-edge" and "desired-

edge" vectors 𝑣𝑤 ,   𝑣𝑤
,  ∈ 𝑅𝑑  for each, 𝑉  lexicon 

word type 𝑤 ∈ 𝑉 .  A text window in a corpus 

consists of a central word w o and context words 

𝑤1 ,…𝑤𝑐  . For example, the dog laughed in the 

window, 𝑤𝑜 = 𝑑𝑜𝑔  , 𝑤1 = 𝑡ℎ𝑒 , 𝑤1 = 𝑙𝑎𝑢𝑔ℎ𝑒𝑑 . 

Given a text window, the CBOW loss is defined as: 

 

𝑣𝑐 =  
1

𝑐
 ∑ 𝑣𝑤𝑗

𝑐

𝑗=1

 

ℒ =  − 𝑙𝑜𝑔 𝜎 (𝑣𝑤𝑂
, 𝒯𝑣𝑐  ) − ∑ 𝑙𝑜𝑔 𝜎 ( 𝑣𝑛𝑖

, 𝒯𝑣𝑐 )𝑘
𝑖=1   

 (2) 
 

Where 𝑛1 … . 𝑛𝑘  ∈ 𝑉 are the negative samples of 

a noise distribution 𝑃𝑛  over 𝑉 . ℒ  gradients with 

reference to the desired source  (𝑣𝑤𝑂
, ),), negotiate 

source  (𝑣𝑛𝑖

, ) , and standard topic origin  𝑣𝑐   

embeddings are produced. 

 

 
𝜕𝐿

𝜕𝑣𝑤𝑂
, = (𝜎( 𝑣𝑤𝑂

, 𝒯𝑣𝑐  )–  1)𝑣𝑐  

𝜕𝐿

𝜕𝑣𝑛𝑖

, = (𝜎( 𝑣𝑛𝑖

, 𝒯𝑣𝑐 )𝑣𝑐  

𝜕𝐿

𝜕𝑣𝑐
= (𝜎( 𝑣𝑤𝑂

, 𝒯𝑣𝑐  )–  1) 𝑣𝑤𝑂
, +  ∑ = (𝜎𝑘

𝑖=1

( 𝑣𝑛𝑖

, 𝒯𝑣𝑐 ) 𝑣𝑛𝑖

,
  

(3) 

 

Hence, in the case of a source context embedding, 

by the chain rule: 

 
𝜕𝐿

𝜕𝑣𝑤𝑗

=  
1

𝐶
[(𝜎( 𝑣𝑤𝑂

, 𝒯𝑣𝑐  )–  1) 𝑣𝑤𝑂
, +   

 ∑ = (𝜎( 𝑣𝑛𝑖

, 𝒯𝑣𝑐 )𝑘
𝑖=1 𝑣𝑛𝑖

,          (4) 

 
In this method, the building-method will be used 

to tokenize every feature in the source context and try 

to fit the word in the tokenizer. The total number of 

features will be calculated for further use.  The 

window size is then determined by the greatest 

distance between the target words (lexical 

characteristics) and their contextually adjacent words. 

Then, a function is created to match the context and 

target terms. The function that was made takes the 

widths of the target window and the context window 

separately and makes pairs of contextual words and 

target words (lexical features). 

3.5 Semantic feature  

The word net tool comprises a lexical database of 

words in over 200 languages, with adjectives, 
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adverbs, nouns, and verbs arranged separately into a 

series of conceptual analogues, and all phrases in the 

database will expresses a separate conception. 

Intellectual analogues, also known as synsets, are 

provided by utilizing conceptual-semantic and lexical 

linkages. WordNet looks to function similarly to a 

lexicon, by clustering terms collectively depending 

on their definitions. Nonetheless, there are numerous 

distinctive traits. 

• Initially, WordNet integrates not only phrase 

structures and letter strings, but also actual word 

meanings. As a result, the channel's contextually 

linked terms are meaningfully interpreted. 

• Second, WordNet recognizes meaningful links 

between phrases, whereas thesaurus word 

classifying does not predefined structure other 

than meaning similarity. 

 

  Algorithm for the extraction of tokens 

Require𝑑 = 𝑑{𝑤𝑖, … . , 𝑤𝑛 }: 𝑤𝑖  ∈
𝑙𝑒𝑥𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 (𝑊𝑜𝑟𝑑𝑛𝑒𝑡) 

Require: 𝑙𝑑 =  𝑙𝑒𝑥𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 

function Source(𝑑, 𝑙𝑑)  \\ 𝑑 - document containing 

words 𝑤𝑛, 𝑙𝑑 - lexical data base 

2. 𝑙𝑖𝑠𝑡−𝑜𝑓− 𝑡𝑜𝑘𝑒𝑛𝑠 =  ⦰ 

3. 𝑭𝒐𝒓 𝑖 =  0 𝑡𝑜 𝑛    𝒅𝒐 

4. 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 =  𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖, 𝑙𝑑) 

5.  𝐼𝑓 𝑖 ≠ 0 ⩘ 𝑖 ≠ 𝑛 𝑡ℎ𝑒𝑛 

6.  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 =  𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖−1, 𝑙𝑑 ) 

7.  𝑛𝑒𝑥𝑡 =  𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖+1, 𝑙𝑑 ) 

8.  𝒆𝒍𝒔𝒆 𝒊𝒇 𝑖 =  0 𝒕𝒉𝒆𝒏 

9.  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 =  ⦰ 

10. 𝑛𝑒𝑥𝑡 =  𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖+1, 𝑙𝑑 )\ 

11.  𝒆𝒍𝒔𝒆 

12.  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 =  𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖−1, 𝑙𝑑 ) 

13. 𝑛𝑒𝑥𝑡 =  ⦰ 

14.𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑡𝑎𝑒𝑠 =
⦰,   𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 =
 ⦰, 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ⦰ 

15.  𝒇𝒐𝒓 𝑠𝑝𝑟  ∈ {𝑝𝑟𝑒𝑠𝑒𝑛𝑡}, 𝑠𝑝𝑖 ∈
{𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠} 𝑎𝑛𝑑 𝑠𝑛 ∈ {𝑛𝑒𝑥𝑡} 𝑑𝑜         \\where  0 ≤
𝑐 ≤ 𝑄, 0 ≤ 𝑓 ≤ 𝑅 and 0 ≤ 𝑙  
16. 𝑰𝒏𝒔𝒆𝒓𝒕 𝑠𝑦𝑛𝑠𝑒𝑡 −

𝑣𝑒𝑐(𝑠𝑝𝑟, 𝑠𝑝𝑖 , 𝑠𝑛 ) 𝒕𝒐 𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑛𝑒𝑥𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

17. 𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑐𝑎
 {𝑐𝑜𝑠𝑖𝑛𝑒 −

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)} 

18. 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑐𝑏
 {𝑐𝑜𝑠𝑖𝑛𝑒 −

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 
𝑛𝑒𝑥𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)} 

19. 𝑰𝒏𝒔𝒆𝒓𝒕 𝑠𝑦𝑛𝑠𝑒𝑡 (𝑠𝑐𝑎  𝑜𝑟 𝑠𝑐𝑏) 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

𝒕𝒐 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑡𝑜𝑘𝑒𝑛𝑠 

20. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑡𝑜𝑘𝑒𝑛𝑠 

 
The 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑡𝑜𝑘𝑒𝑛𝑠  from the above algorithm is 

considered as synonyms.  
Finally, the produced synonyms are converted as 

synset-based vector representations which are then 

used as an input in a word2vec with CBOW as the 

training algorithm for the extraction of semantic 

features between synsets. 

3.6 Structural feature 

The rational and syntactic investigation of source 

scripts is part of clone structural analysis. The 

software's layout patterns are utilized in the 

evaluation of structural clones as a representation of 

rational assessment. CZM and OOM [19] are used to 

indicate the attributes in source code for combining 

structural similarities of Functionality. 

 

(A) CZM: When the programs of the items are 

exactly duplicated and exploited without 

modifications, the dimension parameters may be 

utilised to detect clones. 

The following names have been used for this 

CZM: 

(i) Line score: The entire volume of lines in the 

code program 

(ii) Total integer of comments: The maximum 

integer of comments in the source code. 

(iii) Lines of code commented and 

uncommented: The overall amount of commented 

and uncommented LOC in the source code. 

(iv) Token count: The total score of tokenized 

Lines Of Code (LOC) in the source code. 

(v) Addition of entire identifier: The value of 

tokenized identifiers in the program as a whole 

 

(B) OOM:  Several key aspects of an object-oriented 

language are required to construct object-oriented 

software. Abstraction, polymorphism, and 

inheritance are examples of these characteristics. The 

inclusion of all components required for an entity to 

perform successfully, most notably methods and data, 

is referred to as abstraction. Any sub-type that is 

formed after an object class is declared may acquire 

the definitions of one or multiple universal labels. 

The various names used for object-oriented metrics 

are as follows: 

(i) Depth in the tree: A class's number of 

inheritance tiers 

Purpose: Same depth value of classes in the 

project that are architecturally comparable to each 

other. 

file://///where
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Figure. 2 Sample AST with generate features vector 

 

(ii) Number of users who use another class: The total 

number of additional classes utilised in the class. 

Purpose: The same number class value is utilised 

in all classes in the program, even if they are 

substantially identical. 

(iii) Total number of children: The overall 

number child in the class. 

Purpose: The goal is to have the same amount of 

child values of classes in the program that are 

architecturally comparable to each other. 

(iv) Number of other classes that use: Total 

amount of class times used by others 

Proposal: Use the identical employed 

occurrences values of labels by other conceptually 

relevant objects in the application. 

(v) Amount of arguments: The total number of 

parameters supplied to the method 

Proposal: The goal is to have the same argument 

number value of methods in the project that are 

architecturally comparable to each other. 

(vi) The number of parameters returned Method 

returns the total number of parameters. 

Purpose: The objective is for all methods in the 

project that are structurally equivalent to have the 

same returning argument number value. 

(vii) The number of times you've called other 

methods: The total number of calling methods in a 

single method. 

Purpose: Use the same amount of calls to other 

method values in the project, which might have 

comparable structures. 

This statistic is used to determine which grades 

are functionally related to each other by quantifying 

the proximity among observation variables.  A linear 

array of evaluated results is represented by each 

source code that is being evaluated for each of its 

labels. If the cosine and jaccard functions [19] both 

yield normalized resemblance findings towards a 

certain pair of classes that are within the set threshold 

values, these classes are retained as structural features.  

3.7 Syntactic feature  

An AST is a tree representation of a code 

fragment. To extract the syntactic features from the 

code fragment, code fragments is fragmented into 

different parts, then the code is converted into a set of 

tokens, and the list of tokens is turned into an AST 

[20]. Each node of the AST tree structure has a type 

specifying what it is representing. For example, a 

type could be a “MethodDeclaration” representing a 

method definition or a “FormalParameter” 

representing a parameter for a method declaration. 

There are two “FormalParameter” subtrees, each with 

a “ReferenceType” of “str”, that is, String. 

3.7.1 Vector representation of AST 

To facilitate data mining on code and an 

interpretation of the data mining results, syntax trees 

should be transformed into continuous vectors for 

representing the code. Vector representation of the 

code enables a much more comprehensive range of 

analysis. Since machine learning algorithms take 

vectors as their inputs, the vector embedding 

techniques [21] is used to transform AST into vectors. 

The code vectors capture properties of code 

fragments, such that similar code fragments have 

similar vectors. Fig. 2 represents the sample AST 

with generates feature vectors.  

Type your main text in 11-point Times New 

Roman, single-spaced. Do not use double-spacing. 

All paragraphs should be indented 1.5 times character 

size. Be sure your text if fully justified—that is, flush 

left and flush right. Please do not place any additional 

blank lines between paragraphs. 

The AST represented for syntactic feature 

extraction [22] is used in this work, which is directly 

applied to the source code for extracting syntactic 

features of functionality. For example, 𝐶 is a code 

snippet, and 𝑁𝑟𝑜𝑜𝑡  is the AST entry node that 

corresponds to it. The beginning section of 𝑁𝑟𝑜𝑜𝑡 is 

iterated over all the nodes of AST in preorder to 

extract the syntactic representation of 𝐶. There is an 

identifier, such as symbols and variable names, in 

each AST node. The identification sequence 𝑆𝑒𝑞 =
 {𝑖𝑑𝑒𝑛𝑡1, 𝑖𝑑𝑒𝑛𝑡2, . . . , 𝑖𝑑𝑒𝑛𝑡𝑛 } is formed, and it may 

be used to express 𝐶's syntactic information. 

Each method in source code is now represented 

as a sequence of identifiers. Average pooling used in 
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[22] is applied to all identifier vectors in each 

procedure to provide a syntactic feature vector. 

Following that, each method's syntactic information 

is encoded as a fixed-length feature vector marked a 

 

𝑚𝑣 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒(ℎ𝑖), 𝑖 =  1, . . . , 𝑁        (5) 
 

Where ℎ𝑖 is the identifier's feature vector, 

Average pooling method provide the relevant 

syntactic feature for each functionality (i.e., the 

related methods). Each functionality's syntactic 

information is expressed as a fixed-length feature 

vector 

 

𝑓𝑣 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑣𝑖), 𝑖 =  1, . . . , 𝑁            (6) 

 

Where 𝑚𝑣𝑖 is the syntactic feature vector of each 

method. 

After obtaining all the similarity features, the 

joint feature vector is generated by combining all 

features together for training (clone type known 

source codes) and testing (unknown clone type 

source code) datasets.   

3.8 Generating joint feature vector  

Only CC types of a matching tuple in the 

derivation tree are considered in this technique. 

Developers will occasionally embed a CC type within 

a larger context. The parents may not be recognised 

as clones due to considerable differences in the 

surrounding nodes. The four step of characteristic 

vector creation, known as vector merging, is used to 

detect CC types by summing the indices of specific 

vertex patterns 

 

   𝐸 =  〈𝐴&𝐵&𝐶&𝐷〉                      (7) 

 

𝐸’ = Joint feature vector;  𝐴 = lexical similarity; 

𝐵  = Semantic Similairity; 𝐶 =Structural similarity;  

𝐷 = Syntactic similarity;   

Using the aforementioned Eq. (2), a sliding frame 

is moved along a fictionalised form of the parse tree, 

and the windows are adjusted so that the combined 

column has a sufficient CC. The decision of which 

node in the tree to merge is an important one since 

these nodes will take better boundaries among cloned 

CCs rather than containing big sub trees. For merging 

vectors, the origins of statement trees, which are 

equivalent to quantum units for duplicate, will be a 

superior alternative. These selected nodes are known 

as joint feature vectors. These joint feature vectors 

are used to build the training data for detecting CCs 

from known source code. 

3.9 CCD using joint feature vector  

From the joint features, the similarity features are 

collectively joined together. The LV-mapper, which 

is derived from the source code, recognises all of 

these properties. The source code is compiled into 

training and testing data. Now these training and 

testing data are enhanced and converted together to 

calculate the distance between the both for better 

identification of clone and its types. 

The Euclidian distance is used to detect the clone 

type by calculating the distance between the training 

(known source code) and the testing (unknown 

source code). In which the training data is derived 

from the joint feature vector and testing data is taken 

from the given source code. The clone type is 

calculated for four similarity features which are 

directly compared as the 𝑛-dimensional vectors. The 

Euclidean distance for given similarity features are 

calculated as  

 

𝑑 (𝑝, 𝑞𝑖) = 

min (√∑ 𝑞𝑖 (1) − 𝑝𝑖
𝑛
𝑖=1 ,   √∑ 𝑞𝑖 (2) − 𝑝𝑖

𝑛
𝑖=1 , … … … ,

√∑ 𝑞𝑖 (𝑚) − 𝑝𝑖
𝑛
𝑖=1 )      (8) 

 

From Eq. (8),  𝑞𝑖(𝑚)   is   𝑖𝑡ℎ   join feature vector of 

𝑚𝑡ℎ type clone from training data and pi is the 𝑖𝑡ℎ join 

feature vector of test  data.  The distance value below 

threshold is identifies as clone. The unique feature 

vector extracted for each clone type.    

Algorithm for the detection of CC types 

Step 1: The training and testing data is splitted up 

from the original source code data. 

Step 2: The CBs are extracted using TXL and it is 

tokenized using flex tool. 

Step 3: The hash indexing has been used to detect the 

CPs by collecting all seeds (tokens), converting them 

to hash value and indexing them in a hash table. 

Step 4: From the detected clone pairs, the lexical 

features (Type -I) is extracted by using the 

mechanism of CBOW tool (a type of word2vector).  

Step 5: The synonyms are extracted from the CPs 

using word-net tool (sysnet) and extracted synonyms 

are urged to detect the semantic features (Type -II) 

with the help of word2vdector (shallow neural 

network). 

Step 6: The structural CC (Type -III) is extracted 

directly from the source code by using software 

metrics like CZM and OOM. 

Step 7: Again from the source code program, the 

syntactic features (Type IV) has been extracted using 

AST model. 
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Figure. 3 Evaluation of accuracy 

 

 
Figure. 4 Evaluation of precision 

 

Step 8: These determined similarity features are 

integrated together in a joint feature vector for the 

identification of CC types. 

Step 9: By using the Euclidean distance Eq (6), the 

clone type are identified. 

4. Performance evaluation 

The clone type known dataset is used for 

generating training feature vector. A benchmark 

dataset BigCloneBench is used to generate the 

training dataset. This is consisting of a large number 

of manually approved clones from the IJaDataset-2.0 

source. 

 The testing datasets details are: 

Apache maven 3.8.3 is a toolkit for managing and 

comprehending software projects. Maven depends 

upon the presumption of a Project Entity Paradigm 

(POM), can manage a project's development, 

monitoring, and information from a primary source 

of contact [23]. 

Appache ant 1.10.12 is a Java library and function 

tool that manages operations indicated in construct 

documents as objectives and extensibility endpoints. 

The well-known use of Ant is the creation of Java 

applications, as it has a collection of built-in tasks for 

compiling, assembling, testing, and executing Java 

programs [24]. 

Appache opennlp-master 1.9.1 is a natural 

language information retrieval toolkit based on 

machine learning. Among the most common NLP 

operations supported are indexing, sentence 

classification, part-of-speech labelling, named entity 

identification, stacking, and processing [25] 

Using these datasets, the proposed method's 

efficiency is compared to that of existing methods 

such as LV-CCD [9], ES-CCD [13], TBCNN-CCD 

[14], and CPVDetector [15] in terms of accuracy, 

precision, recall, time period, memory space, and 

clone types for detecting all four types of CC 

detection and its similarity features.  

4.1 Accuracy 

It is calculated by dividing the number of properly 

recognised CCs by the total CCs and non-CCs in the 

clone repository (actual).  

Fig. 3 displays the results of accuracy achieved 

for proposed and existing methods to detect clone 

types. For the dataset apache maven 3.8.3, Appache 

ant 1.10.12 and Opennlp-master 1.9.1, it is observed 

that the accuracy of proposed model increased 

23.37%,  26.62%, and 26.46%  than LV-CCD , 

17.93%, 17.09% and 22.52%  than ES-CCD, 12.35%, 

13.22% and 14.41%  than TBCNN-CCD,  2.39%, 

1.66% and 3.22% than CPVDetector respectively. 

From this analysis, it is proved that the proposed 

model attains a higher accuracy than the other 

existing methods. 

4.2 Precision  

It is computed by calculating the total number of 

identified CCs by the No. of accurately detected CCs 

(predicted). 

Fig. 4 displays the results of precision achieved 

for proposed and existing methods to detect clone 

types. For the given dataset Apache Maven 3.8.3, 

Appache ant 1.10.12 and Opennlp-master 1.9.1 , it is 

observed that the precision of proposed model 

increased 14.32%,  26.79%, and 21.35% than LV-

CCD, 8.66%, 16.09% and 11.65% than ES-CCD, 

4.77%, 9.48% and 6.73% than TBCNN-CCD,  1.66%, 

2.24% and 2.10 % than CPVDetector respectively. 

From the analysis, it is proved that the proposed 

model attains a higher precision than the other 

existing methods. 
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Figure. 5 Evaluation of recall 

 

Table 4. Comparison of time (processing) period and 

memory storage 

 

k 

LV-CCD  

2 3 4 

Time 126 mts 68 mts 38 mts 

Memory 1894 mb 979 mb 964 mb 

 

k 

ES-CCD 

2 3 4 

Time 114 mts 57 mts 30 mts 

Memory 1803mb 966 mb 951 mb 

 

k 

TBCNN-CCD 

2 3 4 

Time 103 mts 46 mts 24 mts 

Memory 1714 mb 954      mb 938mb 

 

k 

CPVDetector 

2 3 4 

Time 94  mts 35       mts 18  mts 

Memory 1624 mb 954      mb 925 mb 

 

k 

CCCD 

2 3 4 

Time 86  mts 27 mts 12     mts 

Memory 1532 mb 942 mb 912    mb 

4.3 Recall 

The recall is obtained by splitting the total count 

of CCs in the database by the number of successfully 

recognized CCs (actual).  

Fig. 5 displays the results of recall achieved for 

proposed and existing methods to detect  clone types. 
For the given dataset Apache Maven 3.8.3, Appache 

ant 1.10.12 and Opennlp-master 1.9.1, it is observed 

that the recall of proposed model increased 26.95%, 

11.98%, and 13.14% than LV-CCD, 7.48%, 7.02% 

and 8.26% than ES-CCD, 3.11%, 3.45% and 3.45% 

than TBCNN-CCD,  0.58%, 1.28% and 2.45% than 

CPVDetector respectively. 

According to the results of the analysis, the 

suggested model has a higher recall than the existing 

technique. 

 

 
Table 5. Comparison of LV-CC types 

 

 

LV-CCD  

Type- 1 & 2 Type 3 ALL 

Apache 

Maven 3.8.3 

259 267 717 

Appache ant 

1.10.12 

2334 471 2591 

Opennlp-

master 1.9.1 

306 474 540 

 

 

ES-CCD 

Type- 1   & 

2 

Type  3 ALL 

Apache 

Maven 3.8.3 

252 460 708 

Appache ant 

1.10.12 

2325 462 2643 

Opennlp-

master 1.9.1 

294 465 610 

 TBCNN-CCD 

Type- 1   & 

2 

Type  3 ALL 

Apache 

Maven 3.8.3 

247 454 699 

Appache ant 

1.10.12 

2318 451 2697 

Opennlp-

master 1.9.1 

281 452 678 

  CPVDetector 

Type- 1   & 

2 

Type  3 ALL 

Apache 

Maven 3.8.3 

242 447 689 

Appache ant 

1.10.12 

2309 439 2748 

Opennlp-

master 1.9.1 

269 437 706 

 CCCD 

Type- 1   & 

2 

Type  3 ALL 

Apache 

Maven 3.8.3 

238 440 678 

Appache ant 

1.10.12 

2248 427 2675 

Opennlp-

master 1.9.1 

257 420 776 

4.4 Processing period and storage AND 

comparison of LV-CC types 

Processing duration and memory storage with 

various parameterizations, where k = seed length is 

depicted in Table 4 and 5 pfor the comparison of 

existing and proposed method for detecting all clone 

types. Time is represented in minutes (mts) and 

memory in megabytes (mb) . 
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5. Conclusion 

In this research work, CCCD systems are 

proposed to detect all types of clones (Type 1 to Type 

4) effectively by utilizing the lexical, syntactic, 

semantic and structural features. The joint feature 

vector is constructed by combining lexical, syntactic, 

semantic feature and structural features are termed as 

training data (known clone type). The testing data 

(unknown clone type) is taken from the source code 

where both the data are measured using Euclidean 

distances to calculate the clone type and its similarity 

features with less computational complexity. The 

results proved that proposed model increased average 

accuracy of 25% than LV-CCD, 18 % than ES-CCD 

and 14.41% than TBCNN-CCD methods. Machine 

learning and deep learning will be utilized for CCCD 

systems instead of Euclidian distance. The supervised 

learning methods will give precise results.  
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