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Abstract: Oxidative stress and mitochondrial dysfunction are associated with the pathogenesis of
several human diseases. The excessive generation of reactive oxygen species (ROS) and/or lack
of adequate antioxidant defenses causes DNA mutations in mitochondria, damages the mitochon-
drial respiratory chain, and alters membrane permeability and mitochondrial defense mechanisms.
All these alterations are linked to the development of numerous diseases. Curcumin, an active
ingredient of turmeric plant rhizomes, exhibits numerous biological activities (i.e., antioxidant, anti-
inflammatory, anticancer, and antimicrobial). In recent years, many researchers have shown evidence
that curcumin has the ability to reduce the oxidative stress- and mitochondrial dysfunction-associated
diseases. In this review, we discuss curcumin’s antioxidant mechanism and significance in oxida-
tive stress reduction and suppression of mitochondrial dysfunction in mammals. We also discuss
the research gaps and give our opinion on how curcumin research in mammals should proceed
moving forward.

Keywords: curcumin; mammals; mitochondrial dysfunction; oxidative stress; antioxidant; anti-
inflammatory; anticancer; antimicrobial

1. Introduction

Mitochondria are membrane-bound organelles involved in oxidative phosphoryla-
tion, which is solely responsible for synthesizing phospholipids, heme, and adenosine-5′-
triphosphate (ATP). It has a considerable role in calcium proportion, induction of apoptosis,
and cell senescence [1]. Mitochondria possess their own genetic material and are intro-
spective of bacterial origin. The nuclear genome encodes a few respiratory proteins of
mitochondria and some mitochondrial tRNA encoded by mitochondrial genes [2]. The
biogenesis of mitochondria requires both nuclear and mitochondrial genomes to express
respiratory chain proteins [3]. Defects in mitochondrial expression may lead to numerous
dysfunctions including diabetes mellitus, leigh syndrome, and Leber’s hereditary optic
neuropathy [4,5]. Mitochondrial dysfunction is defined by the deficit of its efficacy in
minimizing high-energy molecules, namely ATP required for metabolism in the body.
It is related to aging and is also important in many chronic diseases [6]. Mitochondrial
dysfunction is often maternally inherited by offspring from mothers. It may also arise due
to inadequate mitochondrial numbers in a cell or even mutations in the mitochondrial
DNA. The symptom is chronic fatigue, and the disorder cannot be cured completely but
can be sustained with supportive treatments [7].
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ATP synthesis occurs in mitochondria as it is the site for oxidative metabolism. Glucose,
a main energy source for cellular metabolism, which is absorbed from the food consumed
by the mitochondria to produce energy moieties known as ATP. Glucose is converted to ATP
through the following cycles: glycolysis, Kreb’s cycle, and oxidative phosphorylation. In
the glycolysis pathway, glucose is converted into pyruvate, generating two ATP molecules
which are a very low energy source. Simultaneously, pyruvate is transformed to acetyl
coenzyme A (acetyl Co-A), which on entering Kreb’s cycle generates 36–38 ATP molecules,
enabling the oxidation of NADH and FADH2. These two molecules are utilized by the
mitochondrial respiratory chain, protein complexes catalyze ADP phosphorylation to ATP
by generating a high proton gradient across the inner mitochondrial membrane. These ATP
molecules are further utilized by the other cells of our body to perform various metabolic
activities [8,9].

Oxidative stress, a disproportion between the generation and over-accumulation of
reactive oxygen species (ROS) and antioxidants [10]. ROS are free oxidative radicals and
no radical derivatives of oxygen present in the body that can readily combine with other
biomolecules resulting in the formation of toxic substances. These toxic substances formed
from ROS can eventually lead to cell death. ROS includes peroxides, superoxides, hydroxyl
radicals, ozone, and nascent oxygen molecules [11]. Under favorable and regulated con-
ditions, these ROS act as signaling molecules in the cell organelles. When produced in
higher amounts, it becomes a toxicant, damaging most of the biomolecules because of
its ability to oxidize nucleic acids, lipids, and proteins [12]. ROS generally forms highly
stable molecules, but after being oxidized with the free compounds available in the body, it
becomes a toxic substance in the organelle [13].

In eukaryotes, mitochondria are a rich source of free radicals [14]. Oxidative damage
induced by free radicals can potentially damage the mitochondrial DNA (mtDNA), which
affects its function within the cells and contributes to redox signaling for the rest of the cell
organelle [15]. ROS is generated in the mitochondrial respiratory chain with the help of
enzymes and matrix proteins of the TCA cycle, and the first report of mitochondrial ROS
was in 1966 [16]. To mitigate and regulate oxidative stress caused in the body, mitochondrial
ROS scavenging systems come into the act, where hydrogen peroxide arises from superox-
ide radical dismutation with superoxide dismutase are detoxified with catalysts such as
glutathione peroxidase breaking down hydrogen peroxide into water [17]. Mitochondria
possesses sodium dismutase (SOD), MnSOD, which explains mitochondrial superoxide
production [18]. Deregulated ROS and oxidative levels in mitochondria lead to various
pathogenesis in the human body, causing mitochondrial dysfunction. Mitochondrial ROS
pool has a major role in disease pathophysiology and therapeutic purpose [19]. The dysfunc-
tion in mitochondria is characterized by higher oxidative stress, nitric oxide (NO) synthesis,
and declined ATP production/oxygen consumption [20]. Antioxidants scavenge ROS by
donating their electron to prevalent ROS and neutralizing it. This scavenging activity of
antioxidants decreases or delays the capacity of damage to macromolecules [21]. Antioxi-
dants such as glutathione and uric acid are found during the body’s normal metabolism.
At the same time, some others are found in our diet. Other lighter antioxidants, namely
vitamin E, C, and β-carotene, must be supplied through diet [22–24].

In the view of increasing disease conditions in humans, many medicinal and dietary
plants grabbed the attraction of researchers as therapeutic agents. One such plant com-
pound is curcumin. It is a polyphenol compound present in rhizomes of turmeric plants
(Curcuma spp.). Curcumin is beneficial as it has antioxidant, anti-inflammatory, antimi-
crobial, antimutagenic, and anticancer activities [25–28]. Another important mechanism
is the antioxidant action of curcumin against oxidative stress [29] by increasing the effect
of superoxide dismutase, glutathione and catalase, which reduces mitochondrial oxida-
tive stress [30]. The three redox sites of curcumin can undergo oxidation and hydrogen
abstraction, resulting in the formation of phenoxy radicals and stabilization across the keto-
enol structure. The administration of curcumin can inactivate stress-sensitive kinases by
scavenging free radicals, which could significantly prevent cell damage [31]. Consumption
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of natural antioxidants such as curcumin will be useful to control oxidative stress caused
in our body. It combats various forms of free radicals, namely ROS and reactive nitrogen
species (RNS); it modifies glutathione, SOD, and catalase activity to neutralize ROS/RNS
and inhibits certain enzymes generated by ROS, such as cyclooxygenase/lipoxygenase and
xanthine hydrogenase/oxidase [32,33]. It is an effective scavenger of peroxy radical as it
is a lipophilic compound similar to vitamin E, and is considered a chain-breaking antioxi-
dant [34]. Curcumin increases the ROS levels in cancer cells, which leads to apoptosis using
caspase enzymes and Cytochrome C release from mitochondria. It has a potent role in
regulating cancer cell proliferation and apoptosis activation in different types of cancer [35].
Curcumin can act as an antioxidant that can potentially neutralize free radical ROS in
mitochondria and other cellular parts, proving a dynamic approach to controlling mito-
chondrial oxidative stress. In this review, we discuss curcumin’s antioxidant mechanism
and the positive effect rendered by curcumin on oxidative stress-mediated mitochondrial
dysfunction in mammals. In addition, we evaluate the study gaps and offer our thoughts
on future curcumin research in mammals

2. Antioxidant Mechanism of Curcumin

Curcumin possesses numerous pharmacological activities (antiangiogenic, antioxi-
dant, antiviral, anti-inflammatory, antileukemic, immunostimulant, decarboxylase inhibitor,
COX-2 inhibitor, metal chelator); therefore, it has been utilized experimentally and thera-
peutically in humans and animals. Of these, the antioxidant is remarkable, and the existing
research outcome showed that it is an effective antioxidant that reduces the negative effects
of oxidative stress [36,37]. Curcumin has the ability to prevent oxidative degradation of
lipids, hemoglobin, and DNA by potentially chelating heavy metals or controlling the activ-
ity of many enzymes [38]. Curcumin’s antioxidant mechanism is summarized in Figure 1.
Regarding curcumin’s antioxidant properties, research revealed that its two phenolic sites
enable it to scavenge a number of free radicals directly. It has been shown to be effective
against ROS and RNS production in the microenvironment. Additionally, curcumin lowers
low-density lipoprotein (LDL) and prevents DNA and protein damage.

On an enzyme level, curcumin reduces the production of ROS by the enzymes (i.e.,
lipoxygenase/cyclooxygenase and xanthine dehydrogenase/oxidase). It increases the
enzyme activity SOD and POD, which are known as the first line of defense against
oxygen-free radicals [39,40]. The topical application of curcumin is well-known to ob-
struct TPA-induced H2O2 production in the epidermis [41]. In a study, curcumin al-
leviated the decrease in cardiac antioxidant enzymes (SOD and CAT) and glutathione
levels (glutathione-S-transferase) in diabetic rats [42]. After inducing Al3+ metal ion into
Drosophila melanogaster, Oyetayo et al. (2020) [43] found that antioxidants, including cata-
lase, glutathione-S-transferase, and glutathione, decreased whereas H2O2 and NO, which
are related to free radical precursors were increased. Notably, oxidative damage induced
by the Al3+ ion was reduced by curcumin in a concentration-based dosage.
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Figure 1. Molecular targets and antioxidant mechanism of curcumin. The activities of superoxide dis-
mutases (SOD), catalase (CAT), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione
S-transferases (GST), and glutathione peroxidase (GPx) adapted from [39,40,44,45].

3. The Physiological and Molecular role of Curcumin in Reducing Oxidative Stress
and Preventing Mitochondrial Dysfunction

Elevated ROS levels and oxidative stress are associated with mitochondrial dysfunc-
tion, affecting various cellular activities. Curcumin has phenolic and β-diketone functional
groups, which helps it to be an antioxidant and free radical scavenger. It enhances the activ-
ities of SOD, CAT, and GPX. Curcumin’s ability to penetrate mitochondria protects against
oxidative damage and prevents mitochondrial dysfunction. Curcumin’s significance in
reducing mitochondrial dysfunction in various organs depicted in Figure 2.

3.1. The Effect of Curcumin in Neurodegenerative Diseases

Neurodegenerative disease (ND) is characterized by losing an accessible population
of anatomical and physiological related neurons due to other metabolic or toxic disorders.
It is classified based on clinical features, anatomic distribution, and molecular abnormal-
ity [46,47]. Despite various symptoms and pathology in neurological disorders, recent
evidence shows that mitochondria damage plays a considerable role in the progression
of neurodegenerative disease [48]. In ND patients, combining quercetin and curcumin
enhanced neuro and mitochondrial-protective effects against the side effects of oxaliplatin.
It declines lipid peroxidation levels, protein carbonyl content, and simultaneous oxidative
stress in mitochondria. It also increases electron transport chain complex enzymes and
alters enzymatic and non-enzymatic antioxidants [49]. Curcumin can protect the central
nervous system in NDs. It prevents dysfunction in mitochondria and suppresses neuronal
death by targeting various pathways, including ROS, intrinsic/extrinsic apoptosis pathway,
inflammatory mediators, and microglial cells. It also reduces the loss of neurons and
neurotoxic compounds. Curcumin also protects the central nervous system (CNS) against
ischemia-induced mitochondrial dysfunction and the onset of NDs [50].
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Figure 2. Role of curcumin in reducing mitochondrial dysfunction in various organs: in the brain—
Alzheimer’s disease; eye—retinal infection; skeletal system; liver function; kidney disease, and
lymphocyte regulation. Curcumin mainly regulates ROS levels and maintains the antioxidant
system for proper regulation of mitochondrial function. (APP—amyloid precursor protein; EGF—
epidermal growth factor; HO-1—Heme oxygenase 1; NQO1—NAD(P)H quinone oxidoreductase
1; Nrf2—nuclear factor erythroid 2-related factor 2; Keap1—Kelch-like ECH-associated protein 1;
ARE—antioxidant response element.).

Alzheimer’s disease (AD) is the most common ND characterized by oxidative damage
in mitochondria leading to degeneration. These damages enhance oxidative stress causing
mitochondrial dysfunction in AD [51]. Studies revealed that higher levels of oxidative
damage to biomolecules were observed in AD patient’s brains. β-amyloid is an essential
protein in AD which misfolds and forms aggregates due to oxidative stress. The β-amyloid
protein in mitochondria interacts with alcohol dehydrogenase inhibiting cytochrome c
oxidase [52–54]. In human brain tissues and transgenic mice from AD, it was observed that
there are direct interactions between ROS and amyloid plaques [55]. The β-amyloid protein
impairs mitochondrial dynamics, declines mitochondrial biogenesis, synaptic activity,
and improves mitochondrial function. Curcumin enhances mitochondrial fusion activity,
biogenesis, and synaptic proteins. It also increases cell function and viability in SHSY5Y
cells [56].

3.2. The Effect of Curcumin in Liver Function (Alcoholic Fatty Liver and Obesity)

Fatty liver is the condition in which over-accumulation of fats occurs in hepato-
cytes [57]. It is the earliest change observed in the pathology of non-alcoholic fatty liver
disease (NAFLD) and alcoholic fatty liver disease (AFLD) [58]. NAFLD may be due
to the insulin resistance linked with metabolic risk factors [59]. AFLD is due to exces-
sive consumption of alcohol [49]. Both cases lead to steatohepatitis followed by fibrosis,
cirrhosis, hepatocellular carcinoma (HCC), and simultaneously death [60]. In patients
with NAFLD, insulin resistance is likely to occur along with mitochondrial dysfunction,
which plays a significant role in the progression of NAFLD to non-alcoholic steatohepatitis
(NASH) [61,62]. High free fatty acids (HFFAs) induced mitochondrial impairment and
oxidative stress in primary hepatocytes. Treatment with curcumin inhibited ROS produc-
tion, ATP depletion, and lipoapoptosis, contributing to the cell’s survival and regaining
the membrane potential of mitochondria. Curcumin also increases the copy number of
mitochondrial DNA (mtDNA) along with higher levels of transcription factors, namely
peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), nuclear respiratory
factor 1 (NRF1), and mitochondrial transcription factor A (Tfam) regulating mitochondrial
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biogenesis [63,64]. Curcumin reverses the role of HFFA-induced enhancement of PGC-1α
levels, thereby upregulating mitochondrial biogenesis in fatty liver patients [65]. In an
experiment with high-fat diet (HFD)-induced obese mice (OM), mitochondria from the liver
were isolated, showing high oxidative stress. On treatment with curcumin, it was observed
that there was increased oxygen consumption and decreased lipid and protein oxidation
levels in isolated mitochondria compared with untreated obese mice [66,67]. Curcumin
reduces body weight, decreasing body fat in HFD-induced OM mice [68].

3.3. The Effect of Curcumin in Renal Function

The kidney filters out waste products and withholds other proteins and other compo-
nents. In the case of damage, these products will drain into urine from the blood. The filters
were slowly shut down and lost their ability to filter [69]. Chronic kidney disease (CKD)
and chronic renal failure (CRF) are the disease condition that prevails with the abnormality
of kidney failure for more than three months period [70]. CKD occurs when a person is
diagnosed with anemia, hypertension, breathing shortness, kidney function alterations,
itches, cramps, damage to the glomerular capillary tubes, cognitive changes, and occurrence
of peripheral odema due to accumulation of sodium [71]. CKD patients are more prone to
muscle atrophy with the decline in physical exercise, which contributes to hazardous situa-
tions and decreases the quality of life. However, no preventive measures or treatment for
muscle atrophy have been devised so far [72,73]. Oxidative stress-mediated mitochondrial
dysfunction contributes widely to muscle atrophy. Mitochondria has a considerable role in
generating energy as ATP for metabolism in muscle and ROS production [74]. Curcumin, a
promising candidate, prevents CKD-induced muscle atrophy by improving mitochondrial
dysfunction, biogenesis, and oxidative metabolism of mitochondria. Thereby, it decreases
the level of oxidative stress in CKD patients with muscle atrophy [75,76]. Furthermore,
pre-treatment with curcumin will protect the renal function by the early decline in changes
of CKD-induced mitochondrial biogenesis, oxidative damage, and dynamics [77]. Patients
with CRF are inevitably prone to cardiovascular diseases linked with higher oxidative
stress associated with mitochondrial dysfunction. Renal failure was observed after nephrec-
tomy in Wistar rats, followed by alteration in cardiac functions. Treatment with curcumin
ameliorates the cardiac problem linked with the decline in ROS production, a decrease in
oxidative stress markers, and enhanced antioxidant activities [78].

Various documentation alleviates the role of curcumin protective activities against
several disease models mediating the mechanism of protecting mitochondrial function and
maintaining its integrity [79]. A study using curcumin enhanced the antioxidant enzyme
activity levels and the oxidative stress decline. It prevented the capacity of respiration
in mitochondrial isolation in nephrectomy, followed by heart failure induced by cardiac
reperfusion rats [79,80]. Gentamicin (GM)-induced renal injury is closely linked with
mitochondrial dysfunction in proximal convoluted tubules [81]. An experiment conducted
in both in vitro cell culture of tubular cells and in vivo studies in rat kidneys exposed to GM
brings about the disruption of mitochondrial membrane potential, decline in production of
ATP, release of cytochrome c oxidase, apoptosis, and decrease in antioxidant status [82,83].
Treatment with curcumin rendered a positive effect against GM-induced renal injury by
protecting antioxidants and modifying the inflammatory response by nuclear factor—
κB [84,85]. In 5/6 nephrectomized rats (a rat model with one kidney removed totally and
the other 2/3 of the other kidney removed a week later), curcumin reduced the expression
of NFκB signaling, and increased NRF2 translocation, enhanced antioxidant enzymes, and
decreased inflammation [86,87].

3.4. Effect of Curcumin in Eyes (Retina)

Curcumin has been shown to have negative effects on RPE cells at concentrations
indicated as effective in the treatment of tumor cells and reducing the death of retinal
neurons (∼10 µm). It is recommended that the function of retina must be closely monitored
while taking curcumin as a concurrent therapy for cancer or in the treatment of visual
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problems. Increased oxidative stress has a role in the etiology of a number of binding retinal
disorders (i.e., diabetic retinopathy, retinitis pigmentosa, and age-related macular degen-
eration) [88]. Antioxidants may reduce the likelihood of developing age-related macular
degeneration [89]. Curcumin has been proposed to have potential benefits in reducing the
progress of diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa
based on results acquired in animal models of retinopathies and cultured retinal cells [90].
In the retina of hyperglycemic rats, dietary curcumin reduced oxidative alterations and
suppressed the increased activity of interleukin-1β, tumor necrosis factor (TNF)-α, and
vascular endothelial growth factor (VEGF) [91]. In a rat model of light-induced retinal
degeneration, dietary curcumin also prevented the activation of inflammatory genes and
protected retinal cells from oxidative damage and simultaneous leading to cell death [92].
Curcumin reduced staurosporine-induced retinal ganglion cell and murine amacrine cell
death, decreased neuronal apoptosis, and microvessel degeneration in an experimental
ischemia-reperfusion retinal injury model in rats with retinitis pigmentosa. It has also been
found that curcumin causes human retinal endothelial cells to undergo apoptosis [93].

It is unclear how curcumin affects retinal pigment epithelial (RPE) cells. RPE cells de-
fend the outer retina from photo-oxidative stress during the digestion of shed photoreceptor
outer segments transporting oxidized lipids, avoiding retinal edema and neovasculariza-
tion [94]. Age-related macular degeneration’s pathogenesis heavily depends on RPE cell
malfunction and degeneration [95]. The wet form is recognized by choroidal neovascular-
ization and subretinal edema brought on by outer retinal hypoxia, whereas the dry form is
distinguished by the presence of lipofuscin inside the RPE and drusen under the RPE, both
of which include photoreceptor-derived oxidized lipids. VEGF is the main hypoxia-induced
angiogenic agent that triggers the development of retinal neovascularization and edema.
RPE cells are a significant source of VEGF in the retina. Basic fibroblast growth factor
(BFGF), a growth factor in addition to VEGF, regulates retinal neovascular diseases such as
diabetic retinopathy and the most common kind of age-dependent macular retinopathy. In
hyperactive retinopathies and choroidal neovascularization, HGF-induced cell scattering
is a necessary step for RPE cell migration and proliferation. Recent research has shown
that curcumin reduces RPE cell viability by inducing caspase activation [96]. Researchers
evaluated the toxicity of curcumin in human RPE cells as well as curcumin’s effects on the
production and release of angiogenic factors from the cells.

The retina is a component in the CNS that comprises the posterior region of the
optic globe, and is directly in touch with the vitreous fluid. It is made up of several cell
types, of which two kinds of photoreceptors are described in detail: the rods, which are
intense at the retina’s periphery, function in scotopic bright conditions (< 0.1 lux, night
vision) and are especially susceptible to darkness; while the cones are intense in the macula
lutea, and are more sensitive to fine shape and light, being able to distinguish colors
and working in photopic light conditions (> 10 lux). The retina also has bipolar cells,
amacrine cells, horizontal cells, Muller cells, and retinal pigment epithelial cells in addition
to photoreceptors (RPEC). The RPE is a retinal layer that is responsible for numerous
important tasks, including the digesting of damaged photoreceptor outer segments (POS)
and maintenance of retinal structure. Munia et al. studied the effects of resveratrol, lutein,
and curcumin on human retinal epithelial cells, finding that pre-treatment with these
nutraceuticals shielded these cells from demise following oxidative stress. The retina is
a continual oxidative stress target. It is identified as being mitochondrial-rich and with
capillaries that are constantly affected by photons of light. This explains why the majority
of retinal disease developments include an oxidative stress equilibrium with high amount
of ROS and low levels of antioxidant scavengers.

Furthermore, it is important to note that the retina has a high amount of polyunsatu-
rated fatty acids (PUFA) and, as previously stated, a higher oxygen and glucose intake in
contrast to other tissues; these properties make the retina very susceptible to oxidative stress.
The RGCS and photoreceptors, in particular, are vulnerable to oxidative stress damage.
ROS imbalance is well known to be involved in several retinal diseases, including uveitis,
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age-related macular degeneration (AMD), diabetic retinopathy (DR), central serous chori-
oretinopathy (CSC), macular edema (ME), and from uncommon etiologies, retinal ischemia-
reperfusion injury (RIRI), retinal and choroidal tumors, proliferative vitreoretinopathy
(PVR), hereditary tapeto-retinal degenerations, and retinal and choroidal tumors.

Curcumin substantially decreased retinal vascular leakage in a diabetic retinopathy
(DR) animal model. (1) Curcumin is an antioxidant that inhibits free radical formation [97].
(2) Curcumin boosts the mRNA expression of antioxidant enzymes such as SOD and cata-
lase by lowering oxidative DNA damage and controlling nitrosative DNA damage [98].
(3) Curcumin activates a mitochondrial pathway by controlling the respiratory activity of
mitochondrial complexes I, II, III, and V while simultaneously activating Nrf2 [99]. (4) Cur-
cumin, a dual inhibitor of dual inhibitor of arachidonic acid, can increase antioxidant capac-
ity in the retina of diabetic rats as well as hypoglycemic and preventive anti-inflammatory
activity by lowering levels of proinflammatory cytokines such as IL-1, tumor necrosis
factor-alpha, VEGF and 5-hydroxyeicosatetraenoic acid [100]. (5) Curcumin inhibits the
migration of retinal human endothelial cells and functions as an antiangiogenic drug by
reducing stromal cell-derived factor 1 alpha.

3.5. Effect of Curcumin on the Skeletal System

Mitochondrial dysfunction can cause damage to the osteoblasts, the cells that help the
bone formation and mineral absorption, ultimately leading to bone diseases [34]. Mitochon-
drial oxidative stress can cause an imbalance between osteoblast and osteoclast’s functions
within the skeletal bones [101]. Thus, this imbalance will lead to bone-related disorders
such as osteoporosis, osteoarthritis, and the demineralization of bones. Consumption
of curcumin can improve the proliferation and differentiation of these cells resulting in
normal bone remodeling, resorption, and improving the mineral density of the skeletal
system [102]. However, some experiments demonstrate that curcumin administered at
appropriate dosages can regulate the reactive oxygen species levels in normal proportions
within a cell, beyond which it could have some negative impacts and inhibiting effects
on the cell organelles [103]. Apart from oxidative stress and mitochondrial dysfunction,
curcumin is also known to cause apoptosis of bone marrow cells, reducing the risk of blood
and bone marrow cancer.

3.6. Effect of Curcumin on the Lymphatic System

It is known that curcumin can activate T and B cells of the lymphatic system provid-
ing an efficient immune defense mechanism to the body with the help of using natural
compounds [104]. Curcumin can increase the T cell population over the tumor site of the
affected individuals or organisms in the circulating lymphatic system, proving that the
compound can be used to fight against malignant cancers known so far [105]. It inhibits the
tube formation in rat lymphatic endothelial cells, thereby exhibiting anti-lymphangiogenic
effects [106]. It can regulate the mitochondrial ROS level of lymphocytes, thus aiding in the
lymphatic system’s normal metabolism [107].

3.7. Effect of Curcumin on Psychiatric Disorders

Depression is a chronic psychological condition that reduces one’s quality of life and
increases one’s risk to death. It is a complex disorder with multifactorial etiologies that
includes genetic and environmental influences [108]. Curcumin has been widely used as
an antidepressant in modulating neurotransmitters (increases in noradrenaline, dopamine,
serotonin and decreases in monoamine oxidase enzymes), improving mitochondrial protec-
tion, decreasing levels of oxidative markers and nitric oxide, increasing antioxidant enzyme
activity, restoring HPA axis dysfunction and enhancing auto-immuno inflammatory ac-
tion [109]. Tables 1 and 2 illustrate the cause of mitochondrial dysfunction and the role of
curcumin against mitochondrial dysfunction in various organs, respectively.
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Table 1. The molecular causes of mitochondrial dysfunction in various organs in the body.

Organ Causes of Mitochondrial
Dysfunction Affected Genes/Proteins Anticipated Disease State Reference

Brain

Excessive accumulation of calcium
in the mitochondrial matrix
Opening of mitochondrial

permeability transition pore
Release of cytochrome C leading to

activation of apoptosis
Dysfunction in fission and fusion

activities in mitochondria

Cyclophilin D (Cyp D)
Cytochrome C (Cyt C)

Mitofusin (Mfn)
Dynamin-related protein1 (Drp1)

Optic atrophy mitochondrial protein
(OPA)

Traumatic brain injury (TBI)
Alzheimer’s disease
Parkinson’s disease

Huntington’s disease
Ischemic stroke

[110]

Liver

Inner mitochondrial lesions
Dynamic alterations in

mitochondria
Lower levels if respiratory chain

complex enzymes
Inability to synthesize ATP

Nuclear factor- κB (NF- κB)
I kappa B-kinase (IKK-α,β,γ)

Stimulation of Interferon genes (STING)
TANK binding kinase 1 (TBK1)

Interferon regulatory factors (IRF3, IRF7)

Non-alcoholic fatty liver disease
Alcoholic fatty liver disease
Drug-associated fatty liver

disease
Hepatitis B
Hepatitis C

[111]

Lungs

Increased concentration of
iron mitochondria

Abnormal metabolic activity due
to excessive mtROS production

Decrease in mitochondrial number
and function

Mammalian target of rapamycin (mTOR)
Peroxisome proliferator- activated

receptor gamma coactivator
1-alpha (PGC-1α)

Angiotensin converting enzyme 2 (ACE2)
Tumor necrosis factor-α (TNF-α)

Interleukin-6 (IL-6)
Matrix metalloproteinase 2 (MMP2)

Transforming growth factor-β (TGF-β)

Cystic fibrosis
Asthma

Pneumonia
Tuberculosis
Lung cancer

Chronic obstructive pulmonary
disease (COPD)

[112]

Eye

Defects in mitochondrial
respiratory chain subunit complex

I enzymes
Deletion of mitochondrial DNA

Fragments in mitochondrial
network

Loss of membrane potential
Unproper arrangement cristae

structure of optic nerve
mitochondria

OPA 1 and 3
Thymidine phosphoryase (TYMP)
Adenine nucleoside translocator

1 (ANT1)
Twinkle mtDNA helicase (PEO1)

DNA polymerase subunit gamma
1 (PLOG1)

Dominant optic atrophy (DOA)
Leber Hereditary optic

neuropathy (LHOA)
Chronic progressive external

ophthalmoplegia (CPEO)
Pigmentary retinopathy

[113]

Skeletal
system

Lower levels of mitochondrial
enzyme production

Decreased ATP production
Decline in mitochondrial density

Lower protein levels in ATP
synthase subunit β
Insulin resistance

Cytochrome C oxidase (COX)
Forkhead box class-I (FoxO1)

PGC-1α
NADH dehydrogenase subunit IV

(NADH)
Protein kinase B (AKT)

Aging
Cancer cachexia

Disuse-induced muscle atrophy
[114,115]

Lymphatic
system

Decreased ATP production
Lower levels of mitochondrial

respiratory chain complex
enzymes

Adenylate kinase 2 (AK2)
Tafazzin,

Phospholipid-Lysophospholipid
Transacylase (TAZ)

Severe combined immune
deficiency disease (SCID) [116]

Table 2. The role of curcumin in alleviating mitochondrial dysfunction in different organs.

Disease Action of Curcumin Effects of Curcumin Animal Model/Cell Type Reference

Chronic kidney disease
(CKD)-induced muscle

atrophy

Inhibition of GSK-3β
activity

Improves muscle function
Higher ATP levels

Suppressing mitochondrial membrane
potential

Decreases mitochondrial oxidative stress and
increases antioxidant levels

C57BL/6 mice [117]

Neurodegenerative
disease

Inhibits GFAP,
vimentin and Prdx6

upregulation

Suppresses oxidative stress-induced
inflammation

Alleviates apoptosis
Suppresses mitochondrial fragmentation

Human glioblastoma cell
line -A172

Human astrocytes cell line
derived from spinal cord-

HA-sp

[118]
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Table 2. Cont.

Disease Action of Curcumin Effects of Curcumin Animal Model/Cell Type Reference

Insulin resistance in
non-alcoholic fatty liver

disease

Inhibits lipoapoptosis,
ROS generation and

ATP depletion

Lowers high free fatty acid-induced
synthesizes of phosphoenol pyruvate

carboxykinase (PEPCK) and
glucose-6-phosphate

Contributes cell survival
Restores mitochondrial membrane potential

Hepatocytes [66]

Hyperglycemia

Inhibits increased
oxygen consumption
and decreased nitric

oxide levels

Decreased state 3 oxygen consumption rate
Declines the levels of thiobarbituaric

acid-reactive substances

Female and male
heterozygote non-diabetic

db/+ mice
[119]

Heart failure Acts as an
adjuvant therapy

Inhibits mitochondrial impairment
Alleviates oxidative stress

Decreases mitochondrial membrane
potential collapse

Male wistar rats [120]

Alzheimer’s disease Protects β-amyloid
protein

Enhances mitochondrial fusion activity
Decreases fission machinery

Increased biogenesis and synaptic proteins
SHSY5Y cells [56]

Acute kidney injury

Suppresses NF-κB
activation in reducing

inflammation and
stimulates

NRF2/HO-1 signaling
reduced

mitochondrial
dysfunction

Decline in the level of mitochondrial ROS
Reduced mitochondrial fragmentation level

Enhanced TCA cycle,
mitochondrial biogenesis

Human renal proximal
tubular epithelial cell

(TEC) line—HK2
[121]

4. Conclusions and Future Perspectives

In comparison to other plant-derived compounds, curcumin has garnered considerable
attention for its therapeutic value over the years. In this review, according to the content
mentioned, numerous research has demonstrated curcumin’s potent ability to reduce ox-
idative stress and prevent mitochondrial dysfunction. However, they are limited to in vitro
and in vivo studies, and no detailed data for clinical trials about the long-term effects and
precise mechanisms of curcumin on oxidative stress in humans were available. As a result,
we know little about the potential risks of curcumin and its modified formulations in hu-
man. Therefore, a greater number of clinical studies must be conducted to comprehend the
possible advantages of curcumin and its modified formulations and related risks in humans.
Curcumin’s mechanism of action is complex and linked to multiple signaling pathways. Its
targeting mechanisms are not well understood. Therefore, the precise molecular targets
and regulatory mechanisms of curcumin require further investigation. It is hoped that
further studies on curcumin will provide novel insights to curcumin’s role in reducing
oxidative stress and preventing mitochondrial dysfunction.
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