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Abstract. The heat transfer characterisation of the three-phase local thermal non-equilibrium analysis due to
the nanofluid (solid particle phase and the base fluid phase) and the absorbing phase (due to the porous surface)
is performed for a third-grade nanofluid impinging over a receding surface. The mathematical formulation of
the physical model includes the Rivlin–Ericksen tensor for fluids of grade three with appropriate restriction to
viscous flows and also incorporates the Buongiorno nanofluid model for studying the impact of thermophoresis
and Brownian motion. The resultant governing time-dependent partial differential equations has been converted to
ordinary differential equations by applying similarity transformation. The computational results are obtained using
the finite-difference approach in the Matlab software. The non-Newtonian and the time-dependent flow phenomena
demands an additional boundary condition to ensure the uniqueness of the solution. With a general third-grade
assumption with the wall shrinking and unsteadiness, the resultant equations govern the occurrence of dual solution
in the obtained numerical results. The stability investigation reports the existence of multiple (dual) solutions due to
the unsteadiness imparted in the flow and the flow behaviour of both the stable and unstable solutions are revealed.
The boundary layer characteristics are explored for various vital physical parameters, such as material parameter,
porous permeability parameter, Brownian motion parameter, thermophoresis parameter, inter-phase heat transfer
coefficient, modified thermal capacity ratio, modified thermal diffusivity ratio and buoyancy ratio parameter. The
temperature distribution across different phases is analysed for the stable solutions.
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1. Introduction

The study of fluid flow in absorbing mediums has
become an area of vital importance, as the results
are useful in multitudinous technological applications,
including microwave heating, microelectronics cooling,
fibrous insulation, buildings insulation, gas filtration in
automobiles, etc. An appropriate mathematical mod-
elling and the computing results of the flow through
porous materials is done using many factors like parti-
cle or pore shape, the type of the porous material, the
characteristic temperature of the fluid and solid matrix,
the solid matrix temperature, speed of fluid flow, etc. In
many cases, the fluid-drenched porous medium abides

the local thermal equilibrium (LTE), which means that
the temperature distinction between the characteristic
temperature of the fluid and solid matter is of infinites-
imal order. Several situations arise in solid matrix heat
exchangers, nuclear reactor construction, etc., where the
difference between the average fluid phase and solid
phase temperature will be significant. An experimen-
tal study on the heat and fluid flow in a plate channel
operated with metallic or non-metallic particles was exe-
cuted by Jiang et al [1]. Their comparative analysis of
the experimental and computational results disclosed
the fact that in metallic porous structures, thermal non-
equilibrium approach in the computations produced
more accurate results than the equilibrium approach.
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Local thermal non-equilibrium (LTNE) transport of
heat (or poroelasticity approach) assumes that the ther-
mal energy is transmitted from fluid to solid phase
at a microscopic level and thence, a non-negligible
difference in temperature occurs between the fluid
and solid phase in the porous medium. Thermal non-
equilibrium approach has been employed by several
investigators [2–10] during the last few decades for var-
ious flow geometries. Nouri-Borujerdi et al [2] applied
the LTNE inside the porous medium with externally
applied heat generation. Wu et al [3] adopted LTNE
model to study the convective flow and heat transfer
within a rectangular cavity with heat-producing porous
structure. They showed that the heat transfer of the
porous medium was decreased with increasing inter-
phase thermal transmission coefficient. Omara et al [4]
numerically investigated the LTNE state in a thermo-
solutal convective flow. The impact of the electromag-
netic field on temperature, concentration and velocity
field in porous media was analysed by Montienthong
et al [5]. Their analysis revealed the existence of a
larger difference in temperature between the solid and
fluid phases. The implication of heat energy radiat-
ing processes generated by virtue of the fluid moving
through porous media was investigated using LTNE
approach by Chen et al [6]. Computational results
of the entropy generation due to an impinging jet
acting over a porous sink assuming thermal non-
equilibrium was investigated by Salimi et al [7]. The
LTNE model for heat emissive porous medium was
explored with side cooling approach by Chakravarty
et al [8]. A comprehensive review with an asso-
ciated comparison between the LTE approach and
LTNE one for different porous structures was exam-
ined by Pati et al [9]. Their survey suggested to deploy
LTNE approach with various effects such as magnetic
forces, radiative effects, etc. The pore scale simu-
lations for the local thermal equilibrium (LTE) and
(LTNE two-temperature approach) in phase changing
and melting materials was performed by Nemati et al
[10].

The core region of any impinging fluid flow field
at which the velocity of the fluid vanishes represents
a stagnation point. Hiemenz [11] discovered that the
Navier–Stokes equation can be used for analysing the
viscous regions in the neighbourhood of the stagnation
region. Khan and Pop [12] adopted the two-temperature
model for exploring heat transfer over a planar stagna-
tion region. The influence of flow separation confined in
a stagnation region subject to wall stretching is analysed
by Sadiq et al [13].

Recent researchers and industrialists are switching
from using typical heat conducting fluids or coolants,
such as the engine oil, water, ethylene glycol, etc., to

the contemporary nanofluids. Nanofluids form a pow-
erful tool in heat transferring applications, such as
the heating and ventilation devices, cooling of heavy
engine automobile systems, in food processing systems,
etc. Nanoparticles may also pave the way for practi-
cal and renewable energy. Specifically, nanofluids can
be used as a powerful tool for transferring heat from
solar energy collectors to their storage tanks. Nano-
fluids are of paramount significance in diverse fields,
such as electrochemical and thermal engineering, food
processing, sustainable energy, in automotive industries,
etc. [14,15]. Gomari et al [16] numerically simulated
the viscous layers bounding to the stagnation flow of
the nanofluid streaming around a cylinder and predicted
the entropy generated during the heat transfer pro-
cess. The boron nitrate composite-based nanofluid flow
within a curved microchannel with electro-osmotic
effects were examined by Akram et al [17]. Mandal
et al [18] focussed on carbon-based nanofluid impinging
flows with an enlarging/shrinking viscous layers. The
ternary nanofluid with electro-osmosis effects are inves-
tigated by Prakash et al [19]. Waini et al [20] obtained
symmetrical solutions of the steady-state planar stag-
nation region of the hybrid nanofluid. The optimisation
of the fluid flow over a rotating sphere with conjugate
nonlinear convection–radiation process was performed
by Rana et al [21].

The nanofluid flow in an embedded porous medium
using a three temperature model was pioneered by
Kuznetsov and Nield [22]. This temperature model
constitutes the solid phase of the porous medium, the
nanoparticle phase and the fluid phase. Bhadauria and
Agarwal [23] inspected the existence of stable solu-
tions in a nanofluid drowned porous medium with LTNE
assumption.

The non-Newtonian fluids are actively used in many
contemporary appliances in the domain of geophysics,
material processing, etc. The viscoplastic (non-
Newtonian) nanofluid flow past stenosed arteries are
examined and the results of this study is said to be
applicable in human circulatory systems [24]. Specif-
ically, the non-Newtonian fluids of differential types of
grade n has been of special interest for the past few
decades. The viscoelastic effects exhibited with regard
to the motion of second-grade fluids was investigated
extensively by many researchers [25,26]. They showed
that the application of these kind of problems can be
found in extrusion of polymer from a die. Prakash et al
[27] investigated the electromagnetohydrodynamic flow
characteristics of ionic nanofluids driven by peristalsis.

Second-grade fluid possesses the normal stress effects
and lacks the ability to account for viscous thining/

thickening attributes which can be counterfeited by
using the third-grade flow analysis. Following this,



Pramana – J. Phys.          (2024) 98:132 Page 3 of 16   132 

many studies have been carried out for the flow of
third-grade fluids [28–31]. Abbasbandy and Hayat [28]
obtained the solutions of a special third-grade fluid in
semi-analytical form. The flow of third-grade fluid sub-
ject to peristaltic effects due to the contraction and
dilation processes with varying thermal conductivity
ratio was analysed by Hayat et al [29]. Chu et al
[30] examined the impact of the third-grade fluid with
Brownian motion exhibited by the gyrostatic micro-
organisms dispersed inside third-grade fluids. Ogunsola
et al [31] studied the energy loss through the entropy
generated in chemical processes coupled with the Arrhe-
nius energy.

The nanofluid modelling based on two distinctive
phases constituting the solid phase and the fluid phase
for distinct flow domains was done by Turkyilma-
zoglu [32]. Triple diffusive convection phenomena in
nanofluids considering the stabilising and destabilis-
ing effects over a diverse range of Lewis number and
Reynolds number was simulated by Shukla and Gupta
[33] using the Galerkin procedure.

Thus, the main objective of this study relies on
examining the viscous layers associated with the sta-
ble solutions of the stagnation point flow of nanofluid
past a porous shrinking surface. The governing flow
attributes to the formation of stagnation zones with
the thermal non-equilibrium due to the tri-temperature
phases (fluid, solid and the nanoparticle). To the best
of the authors’ knowledge, the study of an unsteady
stagnation point flow of a third-grade nanofluid past
a porous shrinking surface using the local thermal
non-equilibrium model among the particle, fluid and
solid-matrix phases is a research to be considered.
The obtained solutions will be analysed for the exis-
tence of stable solutions among the obtained multiple
solutions.

2. Formulation of the problem

Consider an unsteady, incompressible impinging vis-
cous flow of special third-grade nanofluid ascribed in the
neighbourhood of a planar stagnation region. The flow
is modelled in the Cartesian coordinates (x, y) with the
resulting velocity variables symbolised as (u, v) (see fig-
ure 1). The horizontal plane is subjected to move towards
the origin by applying two equal forces and the sheet
is shrunk with a time-dependent velocity Uw = λuw

(λ < 0 is the shrinking rate and λ > 0 is the stretch-
ing rate). Thus, a moving porous surface (with porosity
ε and coinciding with the plane y = 0) is aligned
with a uniform, time-dependent speed u∞ and moving
along the opposite direction of the stream. The time- and
space-dependent solid-phase temperature is given by

Tw = T∞ + bx

1 − ct
,

where b > 0 governs the assisting flow and b < 0
governs opposing flow. The ambient fluid and the fluid
adjacent to the stagnation wall are Tw and T∞, while
the ambient and the wall adjacent nanoparticle vol-
ume fraction are φw and φ∞, respectively. The fluid
saturated porous medium is assumed to be homoge-
neous. The flow near the stagnation region is slow
and hence the terms representing advection and Forch-
heimer quadratic resistance with regard to the flow drag
is neglected. The considered planar flow region com-
prised of a homogeneous porous material is damped in
a nanofluid.

The flow has an incompressible behaviour with non-
negligible density transitions due to the Boussinesq
approximation and all other fluid properties remain
invariant.

The stress constitutive equation for the differential
fluid of third grade is given by Fosdick and Rajagopal
[34] in the following form:

τ = −pI + μA1 + α1A1 + α2A1
2 + β1A3

+β2(A1A2 + A2A1) + β3(trA1
2)A1, (1)

where p is the spherical pressure, I accounts for the
identity tensor and μ is the dynamic viscosity. The third-
grade material parameters β1 and β2 are assumed to
vanish. The first two Rivlin–Ericksen tensors A1 and
A2 can be written as

A1 = (∇u) + (∇u)T ,

A2 = dA1

dt
+ A1(∇u) + (∇u)t A1.

(2)

Moreover, the viscous stress coefficients α1, and β3 are
non-negative constants and the material parameters are
entitled to satisfy the thermodynamic constraints:

α1 + α2 ≤ √
24αβ3. (3)

Following [28,35], the second-grade terms in the third-
grade fluid formulation are neglected compared to the
viscous terms. The three-temperature phase equations
follow from Bhaduaria and Agarwal [23]. The govern-
ing boundary layer equations follows from Abbasbandy
and Hayat [28].

Continuity equation

∂u

∂x
+ ∂v

∂y
= 0. (4)

Momentum equation

ρ f

ε

∂u

∂t
+ ρ f

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
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Figure 1. Schematic configuration of the stagnation point
flow impinging over a flat surface.
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Figure 2. Effect of material parameter β0 on the veloc-
ity profile when γp = γs = εp = εs = NHS =
NHP = 1, Nb = Nt = Nr = 0.1, λ = A = −1, s = Le
= Pr = 1 and � = 2.

= ∂u∞
∂t

+ u∞
∂u∞
∂x

+ μ f
∂2u

∂y2 + 6k

(
∂u

∂y

)2
∂2u

∂y2

− μ

K ′ (u − u∞) + [(1 − φ∞)ρ f ∞β(T f − T∞)

− (ρp − ρ f ∞)(φ − φ∞)]g. (5)

Temperature equation for the fluid phase

ε(1 − φ∞)(ρC) f

[
∂T f

∂t
+ 1

ε

(
u
∂T f

∂x
+ v

∂T f

∂y

)]

= ε(1 − φ∞)k f
∂2T f

∂y2 + ε(1 − φ∞)(ρC)p

×
[

DB
∂φ

∂y

∂T f

∂y
+ DT

T∞

(
∂T f

∂y

)2
]

+h f p(Tp−T f )

+h f s(Ts−T f ). (6)
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Figure 3. Effect of porous permeability parameter � on
the velocity profile when γp = γs = εp = εs =
NHS = NHP = 1, Nb = Nt = Nr = 0.1, λ = A = −1
and β0 = s = Le = Pr = 1.
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Figure 4. Effect of Brownian diffusion parameter Nb and
thermophoresis parameter Nt on the velocity profile when
γp = γs = εp = εs = NHS = NHP = 1, Nr = 0.1,
λ = A = −1, β0 = s = Le = Pr = 1 and � = 2.

Temperature equation for the particle phase

εφ∞(ρC)p

[
∂Tp

∂t
+ 1

ε

(
u
∂Tp

∂x
+ v

∂Tp

∂y

)]

= εφ∞kp
∂2Tp

∂y2 − h f p(Tp − T f ). (7)

Temperature equation for the solid phase

(1 − ε)(ρC)s
∂Ts
∂t

= (1 − ε)ks
∂2Ts
∂y2 − h f s(Ts − T f ).

(8)

Nanoparticle volume fraction equation

∂φ

∂t
+ 1

ε

(
u
∂φ

∂x
+ v

∂φ

∂y

)
= DB

∂2φ

∂y2 + DT

T∞
∂2T f

∂y2 . (9)
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Figure 5. Effect of the modified diffusivity ratios εp and εs
of the particle and solid phases on the velocity profile when
γp = γs = NHS = NHP = 1, Nr = Nb = Nt = 0.1,
λ = A = −1, β0 = s = Le = Pr = 1 and � = 2.
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Figure 6. Effect of material parameter β0 on the tempera-
ture profile of the fluid phase when γp = γs = εp = εs
= NHS = NHP = 1, Nb = Nt = Nr = 0.1, λ = A = −1,
s = Le = Pr = 1 and � = 2.

The governing physical model follows the boundary
conditions:

At y = 0 : u = Uw = −λuw, v = vw,

T f = Tw, Tp = Tw, Ts = Tw, φ = φw

As y → ∞ : u → u∞, T f → T∞, (10)

Tp → T∞, Ts → T∞, φ → φ∞,

where u and v symbolise the velocity along the x and y
directions, ρ f and β correspond to the viscosity and vol-
umetric expansion coefficient of the fluid, respectively.
The heat capacities of the fluid, nanoparticle and solid
phases are represented as (ρc) f , (ρc)p, (ρc)s and their
respective thermal conductivities are k f , kp, ks , respec-
tively.
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Figure 7. Effect of material parameter β0 on the tempera-
ture profile of the particle phase when γp = γs = εp =
εs = NHS = NHP = 1, Nb = Nt = Nr = 0.1, λ = A =
−1, s = Le = Pr = 1 and � = 2.
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Figure 8. Effect of material parameter β0 on the tem-
perature profile of the solid phase when γp = γs = εp =
εs = NHS = NHP = 1, Nb = Nt = Nr = 0.1, λ = A = −1,
s = Le = Pr = 1 and � = 2.

The coefficients DB and DT signify the Brownian
motion and the thermophoretic diffusion coefficients,
while the interface heat transfer coefficients due to
the fluid–particle and the fluid–solid interphases are
expressed as h f p and h f s , respectively.

The velocity of the inviscid fluid is given by

u∞ = uw = ax

1 − ct
. (11)

To simplify the problem, dimensionless functions f ,
θ f , θp, θs , 
 are introduced:

η = y
√

a

ν f (1 − ct)
, ψ =

√
aν f

1 − ct
x f (η),

θ f = T f − T∞
Tw − T∞

, θp = Tp − T∞
Tw − T∞

,
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Figure 9. Effect of material parameter β0 on mass concen-
tration distribution when γp = γs = εp = εs = NHS
= NHP = 1, Nb = Nt = Nr = 0.1, λ = A = −1, s = Le
= Pr = 1 and � = 2.

θs = Ts − T∞
Tw − T∞

, 
 = φ − φ∞
φw − φ∞

. (12)

Substituting eqs (11) and (12) into eqs (4)–(9), the result-
ing mathematical model follows:

f ′′′(1+β0 f
′′2)+1+A+�(1 − f ′)+Ri(θ f − Nr
)

− A

ε

(
f ′ + η

2
f ′′) − 1

ε2

(
f ′2 − f f ′′) = 0, (13)

1

Pr
θ ′′
f − Aη

2
θ ′
f + Nbθ ′

f 

′ + 1

ε
f θ ′

f − 1

ε
f ′θ f − Aθ f

+Ntθ ′
f

2 + NHP(θp − θ f ) + NHS(θs − θ f ) = 0,

(14)
εp

Pr
θ ′′
p − Aη

2
θ ′
p + 1

ε
f θ ′

p − 1

ε
f ′θp − Aθp

−γpNHP(θp − θ f ) = 0, (15)

εs

Pr
θ ′′
s − A

ηθ ′
s

2
− Aθs − γs NHS(θs − θ f ) = 0, (16)
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(c)                      (d)
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Figure 10. Effect of Nield numbers NHP and NHS on the temperature profile when γp = γs = εp = εs = 1,
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Figure 11. Effect of modified capacity ratios γp and γs on the temperature profile when γp = γs = NHS = NHP
= 1, Nb = Nt = Nr = 0.1, λ = A = −1, s = Le = Pr = 1 and � = 2.

1

Le

(

′′ + Nt

Nb
θ ′′
f

)
− Aη

2

′ + 1

ε
f 
′ = 0, (17)

with accompanied boundary conditions (eq. (11))

At η = 0 : f = 0, f ′ = λ, θ f = 1,

θp = 1, θs = 1, 
 = 1. (18)

As η → ∞ : f ′ → 1, θ f → 0, θp → 0,

θs → 0, 
 → 0,

where the third-grade parameter

β0 = 6k0a
3/ν2

f

the Prandtl number

Pr = ν f

α f
,

the Lewis number,

Le = γ

DB
,

the Grashof number

Gr = gβ(Tw − T∞)x3

ν2
f

,

the Reynolds number

Rex = u∞x

ν f
,

the buoyancy ratio parameter

Nr = (ρp − ρ f ∞)(φw − φ∞)

(1 − φ∞)ρ f ∞β(Tw − T∞)
,

the unsteadiness parameter

A = c/a,
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the porous permeability parameter
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0.6065
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0.61
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- θ
′ s(0

)

β0 = 1, 1.5, 2

Figure 14. Effect of material parameter β0 for varying �
on the reduced Nusselt number of the solid phase when
γp = γs = εp = εs = NHS = NHP = 1, Nb = Nt
= Nr = 0.1, λ = A = −1, s = Le = Pr = 1.
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- Φ
′ (0

)
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Figure 15. Effect of material parameter β0 for varying
� on Sherwood number when γp = γs = εp
= εs = NHS = NHP = 1, Nb = Nt = Nr = 0.1,
Nb = Nt = Nr = 0.1, λ = A = −1, s = Le = Pr = 1.

the Nield numbers

NHP = h f pxα f

ε(1 − φ∞)k f u∞
and NHS = h f s xα f

ε(1 − φ∞)k f u∞
,

the Richardson number

Ri = Gr

Rex2 ,

the Brownian diffusion

Nb = (ρC)pDB(φw − φ∞)

(ρC) f ν f
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Figure 16. Effect of Brownian diffusion parameter
Nb and thermophoresis parameter Nt on the reduced
Nusselt number of the fluid phase when
γp = γs = εp = εs = NHS = NHP = 1, Nr
= 0.1, λ = A = −1, s = Le = Pr = 1 and � = 2.
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Figure 17. Effect of Brownian diffusion parame-
ter Nb and thermophoresis parameter Nt on the
reduced Nusselt number of the particle phase when
γp = γs = εp = εs = NHS = NHP = 1, Nr
= 0.1, λ = A = −1, s = Le = Pr = 1 and � = 2.

and thermophoresis parameter

Nt = (ρC)pDT (Tw − T∞)

(ρC) f T∞ν f
.

The skin-friction coefficient C f , the local Nusselt num-
bers for the fluid, particle, solid-matrix phases Nu f ,
Nup, Nus and the local Sherwood number Sh follow:

C f = τw

ρu∞2 , Nu f = x(qw) f

k f (Tw − T∞)
,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

Nt

- θ
s′ (0

)

β0 = 1
β0 = 2

Nb = 0.1, 0.5, 0.9

Figure 18. Effect of Brownian diffusion parameter
Nb and thermophoresis parameter Nt on the reduced
Nusselt number of the fluid phase when
γp = γs = εp = εs = NHS = NHP = 1, Nr = 0.1,
λ = A = −1, s = Le = Pr = 1 and � = 2.
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Figure 19. Effect of Brownian diffusion parame-
ter Nb and thermophoresis parameter Nt on the
reduced Nusselt number of the fluid phase when
γp = γs = εp = εs = NHS = NHP = 1, Nr
= 0.1, λ = A = −1, s = Le = Pr = 1 and � = 2.

Nup = x(qw)p

kp(Tw − T∞)
, Nus = x(qw)s

ks(Tw − T∞)
,

Sh = x(qm)

DB(φw − φ∞)
(19)

where

τw = μ

(
∂u

∂y

)

y=0

is the local wall shear stress,

(qw) f = −k f

(
∂T

∂y

)

y=0
,
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(qw)p = −kp

(
∂T

∂y

)

y=0
,

(qw)s = −ks

(
∂T

∂y

)

y=0

are the heat flux at the wall for the fluid, particle, solid
phases, respectively and

qm = −DB

(
∂φ

∂y

)

y=0

is the mass transfer coefficient.
Using the similarity transformation (eq. (12)),

1

2
C f

√
Rex = f ′′(0), Nu f /

√
Rex = −θ ′

f (0),

Nup/
√
Rex = −θ ′

p(0), Nus/
√
Rex = −θ ′

s(0), (20)

Sh/
√
Rex = −φ′(0).

3. Stability investigation

The non-linearity of the Navier–Stokes equations and
the range of variations in fluid flow parameters admit
the possibility of occurrence of more than one solu-
tion for certainly many nonlinear problems. The chosen
mathematical problems feature two distinct solutions
with regard to the shrinking parameter or the decel-
erated flow (reversed flow) situations. The solutions
attributing to the decaying nature of any disturbances
can be accounted to be of stable nature which can be
found by analysing the nature of the obtained solu-
tions. Merkin [36] discussed different types of solutions
corresponding to boundary layers flows, such as, the
regions in which the solutions ceases to exist, regions
with unique solutions and regions with multiple solu-
tions. A temporal stability analysis was made on the
multiple(dual) solutions which unveiled the stability of
the upper branch solutions and they are practically pos-
sible whereas the lower branch ones are unstable. A
similar stability investigation of the unsteady flow sit-
uations for the mixed convective boundary layer flow
with small/large suction effects was done by Weidman
et al [37]. A pioneering work on the linear stability
exploration for two thermal state problems streamed
over wedge domains was performed by Gogate et al
[38]. There has been no primary work on the stability
investigation of the heat flow solutions which forms an
important criterion in this study since the three-phase
thermal non-equilibrium assumptions give a different
flow pattern for different interphase parameters. Here
we interpret the stable behaviour of both the solutions
for the fluid flow, energy equations for the fluid, particle
and solid phases and the concentration equations.

The time-dependent similarity variables are given in
following form:

η = y
√

a

ν f (1 − ct)
, τ = at

1 − ct
,

u = ax

1 − ct

∂ f

∂η
(η, τ ), v = −

√
aν f

1 − ct
f (η, τ ),

θ f (η, τ ) = T f − T∞
Tw − T∞

, θp(η, τ ) = Tp − T∞
Tw − T∞

,

θs(η, τ ) = Ts − T∞
Tw − T∞

, 
 = φ − φ∞
φw − φ∞

. (21)

Extracting the similarity transformed form of eqs (4)–
(9) using the newly defined variables (eq. (21)),

∂3 f

∂η3

(

1 + β0

(
∂2 f

∂η2

)2
)

+ 1 + A − �

(
∂ f

∂η
− 1

)

+Ri[θ f − Nr
] − 1

ε
A

[
∂ f

∂η
+ η

2

∂2 f

∂η2

]

−(1 + Aτ)
1

ε

∂2 f

∂η∂τ
− 1

ε2

[(
∂ f

∂η

)2

− f
∂2 f

∂η2

]

= 0,

(22)

1

Pr

∂2θ f

∂η2 − A
η

2

∂θ f

∂η
+ 1

ε
f
∂θ f

∂η
+ 1

ε
θ f

∂ f

∂η
+ Aθ f

+Nb
∂θ f

∂η

∂


∂η
+ Nt

(
∂θ f

∂η

)2

+ NHP(θp − θ f )

+NHS(θs − θ f ) − (1 + Aτ)
∂θ f

∂τ
= 0, (23)

εp

Pr

∂2θp

∂η2 − A
η

2

∂θp

∂η
+ 1

ε
f
∂θp

∂η
+ 1

ε
θp

∂ f

∂η
+ Aθp

−γpNHP(θp − θ f ) − (1 + Aτ)
∂θp

∂τ
= 0, (24)

εs

Pr

∂2θs

∂η2 − A
η

2

∂θs

∂η
+ Aθs − γs NHS(θs − θ f )

−(1 + Aτ)
∂θs

∂τ
= 0, (25)

1

Le

(
∂2


∂η2 + Nt

Nb

∂2θ f

∂η2

)
− A

η

2

∂


∂η
+ 1

ε
f
∂


∂η

−(1 + Aτ)
∂


∂τ
= 0, (26)

and the boundary conditions are

f (0, τ ) = 0,
∂ f

∂η
(0, τ ) = λ, θ f (0, τ ) = 1,

θp(0, τ ) = 1, θs(0, τ ) = 1, 
(0, τ ) = 1,

∂ f

∂η
(η, τ ) → 1, θ f (η, τ ) → 0, θp(η, τ ) → 0,
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θs(η, τ ) → 0, 
(η, τ ) → 0 as η → ∞. (27)

Upon assuming linearity in the stability analysis, the
perturbation expansion for the steady-state solution
employing Merkin [36] and Weidman et al [37] is given
by

F(η, τ ) = eγ τ ( f (η, τ ) − f0(η)),

H f (η, τ ) = eγ τ (θ f (η, τ ) − θ f 0),

Hp(η, τ ) = eγ τ (θp(η, τ ) − θp0), (28)

Hs(η, τ ) = eγ τ (θs(η, τ ) − θs0),

N (η, τ ) = eγ τ (
(η, τ ) − 
0),

where τ is the dimensionless time variable, γ represents
the corresponding eigenvalues of the governing problem
(eqs (4)–(9)), f0(η) satisfies the governing steady-state
problem and F(η) is assumed to be relatively smaller
than f0(η).

The linearisation yields

(1 + β0 f
′′2
0 )

∂3F

∂η3 +
(

f0
ε2 − Aη

2ε
+ 2A f ′′

0 f ′′′
0

)
∂2F

∂η2

+
(

γ

ε
− A

ε
− 2 f ′

0

ε2 − �

)
∂F

∂η
+ 1

ε2 f ′′
0 F + RiH f

− RiNrN + Aγ τ

ε

∂F

∂η
− (1 + Aτ)

ε

∂2F

∂η∂τ
= 0, (29)

1

Pr

∂2H f

∂η2 +
(

f0
ε

− 1

ε

∂ f0
∂η

− Aη

2

)
∂H f

∂η
+ (γ − A)H f

+ F

ε

∂θ f 0

∂η
− θ f 0

ε

∂F

∂η
+ Nb

(
∂H f

∂η

∂
0

∂η
+ ∂θ f 0

∂η

∂N

∂η

)

+ 2Nt
∂θ f 0

∂η

∂H f

∂η
+ Aγ τH f + NHP(Hp − H f )

+ NHS(Hs − H f ) − (1 + Aτ)
∂H f

∂τ
= 0, (30)

εp

Pr

∂2Hp

∂η2 +
(

f0
ε

− 1

ε

∂ f0
∂η

− Aη

2

)
∂Hp

∂η

+ (γ − A)Hp + F

ε

∂θp0

∂η
− θp0

ε

∂F

∂η
+ Aγ τHp

− γpNHP(Hp − H f ) − (1 + Aτ)

(
∂Hp

∂τ

)
= 0, (31)

εs

Pr

∂2Hs

∂η2 − Aη

2

∂Hs

∂η
+ (γ − A)Hs + Aγ τHs

− γs NHS(Hs − H f ) − (1 + Aτ)

(
∂Hs

∂τ

)
= 0, (32)

1

Le

∂2N

∂η2 +
(

f0
ε

− Aη

2

)
∂N

∂η
− γ N + F

ε

∂
0

∂η

+ 1

Le

Nt

Nb

∂2H f

∂η2 + Aγ τN − (1 + Aτ)
∂N

∂τ
= 0,

(33)

satisfying

η = 0, τ ≥ 0 : F = 0,
∂F

∂η
= 0, H f = 0,

Hp = 0, Hs = 0, N = 0, (34)

η → ∞, τ ≥ 0 : ∂F

∂η
→ 0, H f (η, τ ) → 0,

Hp → 0, Hs → 0, N → 0. (35)

The eigenvalue problem eqs ((29)–(34)) furnishes an
innumerable set of eigenvalues γ1 < γ2 < γ3 <

· · · , wherein the smallest eigenvalue γ1 is obtained
for testing the nature of disturbances (exponentially
growing/decaying). If the smallest eigenvalue assumes
a positive value, then the solutions possess an initially
decaying behaviour of disturbances showing stable
characteristics while for negative γ1, the solutions pos-
sess unstable characteristics. The above equations are
transformed to yield the eigenvalue problem by consid-
ering τ = 0, the steady-state problem as follows:

(1 + β0 f
′′2
0 )F ′′′

0 +
(

f0
ε2 − Aη

2ε
+ 2A f ′′

0 f ′′′
0

)
F ′′

0

+
(

γ

ε
− A

ε
− 2 f ′

0

ε2 − �

)
F ′

0 + 1

ε2 f ′′
0 F0

+RiH f 0 − RiNrN0 = 0, (36)

1

Pr
H ′′

f 0 +
(

f0
ε

− f ′
0

ε
− Aη

2

)
H ′

f 0 + (γ − A)H f 0

+F0

ε
θ ′
f 0− F ′

0

ε
θ f 0+Nb(H ′

f 0

′
0+θ ′

f 0N
′
0)+Ntθ ′

f 0H
′
f 0

+NHP(Hp0 − H f 0) + NHS(Hs0 − H f 0) = 0, (37)

εp

Pr
H ′′

p0 +
(

f0
ε

− f ′
0

ε
− Aη

2

)
H ′

p0 + (γ − A)Hp0

+F0

ε
θ ′
p0 − F ′

0

ε
θp0 − γpNHP(Hp0 − H f 0) = 0, (38)

εs

Pr
H ′′
s0 − Aη

2
H ′
s0 + (γ − A)Hs0

−γs NHS(Hs0 − H f 0) = 0, (39)

1

Le
N ′′

0 +
(

f0
ε

− Aη

2

)
N ′

0 + γ N0 + F0

ε

′

0

+ 1

Le

Nt

Nb
H ′′

f 0 = 0, (40)

satisfying

At η = 0 : F0(0) = 0, F ′
0(0) = 0, H f 0(0) = 0,

Hp0(0) = 0, Hs0(0) = 0, N0(0) = 0,
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As η → ∞ : F0(η) → 0, F ′
0(η) → 0, H f 0(η) → 0,

Hp0(η) → 0, Hs0(η) → 0, N0(η) → 0. (41)

The above eigenvalue problem is solved for the selected
range of different parameters in the varying range like
Pr, Le, Ri, Nr, etc. For solving the problem, we impose
new conditions on F0(η), H f 0(η), Hp0(η), H ′

s0(0) and
N0(η).

4. Results and discussion

The similarity transformed equations (eqs (13)–(17))
holding eq. (19) is computationally solved using the
Matlab software. The asymptotic boundary conditions
provided by eq. (19) is approximated by considering
finitely large value for η (here, η = 15) which will be
sufficient to attribute to the fully developed flow and the
missing slopes at η = 0 are guessed. In this problem,
multiple(dual) solution profiles obtained with unique
guesses for each of the solutions exist satisfying the
asymptotic boundary conditions. The present numeri-
cal results are compared with the solutions obtained by
Naganthran et al [39] for different values of material
parameter (β0) and the shrinking parameter λ which are
presented in table 1. The numerical validation (compar-
ison) of the obtained results with the available literature
has been portrayed. Since the numerical values are
almost closer with the compared research work, it means
that the obtained numerical results are valid and accu-
rate.

Numerical results of an unsteady Hiemenz flow of
a special third-grade nanofluid streaming over a perfo-
rated shrinking sheet employing tri-temperature model
to represent an LTNE are discussed. The asymptotic
boundary conditions are satisfied for two different initial
values thereby obtaining two different solution pro-
files. Multiple(dual) solutions are obtained for the flow
properties with varying physical parameters. It can be
understood that multiple solutions are found to exist
when the velocity of the wall acts along opposite direc-
tions [40]. It is also interesting to note that the range
of shrinking parameter to yield dual solutions is influ-
enced by the unsteadiness parameter and the suction
parameter [41]. Moreover, the flow of the third-grade
fluid considered in this study follows non-Newtonian
behaviour wherein both the normal and shear stresses
differ from the corresponding stresses of a Newtonian
fluid. Until now, there is no way to find the range of
physical parameters to identify the range of physical
parameters for which multiple solutions exist. One of
the most effective approach is to find the exponentially
decaying solutions and identify the stable solutions.
By using the stability analysis, we find that the first

of the dual profiles corresponds to a stable and physi-
cally interpretative one whereas the other one is unstable
and unusually physically deviating. The representative
results for the velocity, temperature of the fluid, par-
ticle and solid phases and particle concentration are
provided graphically and in tabular form for various flow
controlling parameters such as material parameter (β0),
porous permeability parameter �, Brownian motion
parameter Nb, thermophoresis parameter Nt , buoyancy
ratio parameter Nr , Lewis number Le, Prandtl num-
ber Pr , interface heat transfer coefficient NHP and
NHS , modified thermal capacity ratio parameter γp and
γs and modified thermal diffusivity ratio parameter εp
and εs . The fixed parameters are unsteady parameter
A, Richardson number Ri , porosity parameter ε and
shrinking parameter λ.

In figures 2–9 we observe that there exists dual solu-
tions, one corresponds to the stable and physically
realisable one represented by the solid lines and the sec-
ond branch of solutions, though satisfy the asymptotic
boundary conditions are, in general, not physically inter-
pretable (represented by dashed lines). The variation in
β0 (the non-Newtonian parameter) with the dimension-
less velocity f ′(η) is depicted in figure 2. Increase in β0
leads to an increase in the momentum boundary layer
for the stable solutions (upper branch solutions) whereas
unstable solutions (lower branch solution) have a reverse
effect. The analysis of stable solutions conveys that the
shear stress decreases with the increase in β0. This was
also observed by Abbasbandy and Hayat [28], where
the analysis was conducted for both suction and injec-
tion. Particularly, we see that although many parameters
influence the change in boundary layer formation, the
impact of injection parameter is able to control the shear
behaviour in boundary layer flows. Figure 3 elucidates
that a rise in � decreases the obstruction in the fluid
flow (may be due to increase in pore size) which results
in enhancing the permeable flow of momentum. Fig-
ure 4 shows that the variations of Nb and Nt lead to a
rise in velocity, thereby decreasing the boundary layer
thickness for the upper branch solution and the adjoint
lower branch solution there occurs an increase in veloc-
ity. This is because the increase in the micro-convection
levels induces a faster motion of interacting particles,
hence increasing the velocity. Figure 5 shows that an
increase in fluid/particle and fluid/solid modified ther-
mal diffusivity ratio (εp, εs) increases the velocity of the
flow for both upper branch and lower branch solutions.

The influence of β0 on the dimensionless fluid tem-
perature θ f , nanoparticle temperature θp and solid phase
temperature θs are plotted in figures 6, 7 and 8, respec-
tively. Increase in material parameter results in small
enhancement in the temperature profile of all the phases
(fluid, particle and solid) and this effect can be hardly
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seen for the upper branch solution whereas for the
lower branch solution, the increase leads to an abnor-
mal reduction in the temperature for all the phases and
the related thermal boundary layers. The influence of
β0 on nanoparticle volume fraction (
) is shown in fig-
ure 9 with dual solutions. It is clear from figure 9 that
nanoparticle concentration is increased for larger values
of β0 for the upper branch solution. In the case of lower
branch solution, initially the nanoparticle concentration
of the flow increases with an increase in β0 but after cer-
tain distance the nanoparticle concentration of the fluid
flow starts decreasing. Hence, the nanoparticles tend to
increase the boundary layer to a small extent.

The unstable and unaccountable physical nature of
the lower branch solutions make us to proceed for
results with the stable (upper branch solution). More-
over, by envisaging the unstable solutions, the impact of
the stable solutions in the corresponding figures cannot
be understood easily. Therefore, figures 10–19 repre-
sent only the upper branch solutions. The effect of
Nield numbers (NHP , NHS) is plotted in figure 10. It
is found that for the smallest value of Nield numbers
NHP = NHS = 0.1 (nearly 0) the convective heat
transport between the fluid–solid and fluid–nanoparticle
phase is very small. It is interesting to note that as NHP
and NHS approach zero, there occurs only a negligible
heat transport between the fluid–particle and the fluid–
solid interphases. Hence, the nanoparticle and solid
matrix almost fail in convective heat transport. Hence
we observe for smaller values of Nield number, the
temperature of the solid seems to be very high and
the difference between the solid, fluid and nanopari-
cles seems to be vital. Further, for intermediate values
of Nield number NHP = NHS = 1 as depicted in
figure 10b, the difference between the phases reduces
when compared with the last one. The thermal bound-
ary layer of the fluid, particle increases and that of the
solid phase decreases and the difference seems to be
more subtle for NHS = NHP = 100 and the differ-
ence almost diminishes for the highest value of Nield
numbers NHS = NHP = 100. It is signified that as
NHP and NHS approaches larger values such as 100,
1000 and even more, the three distinct phases (fluid,
particle and solid) behave like a single phase and can be
regarded as the LTE state. This phenomenon shows that
there is a shift from LTNE to LTE as the Nield number
increases due to the highest convective heat transfer. The
effect of the fluid–particle and fluid–solid modified ther-
mal capacity ratios (γp, γs) on the temperature profile is
sketched in figure 11. It is shown that the results are sim-
ilar to the results obtained for the Nield numbers. The
transformation from the local thermal non-equilibrium
state to the local thermal equilibrium state is observed
as γp, γs increase from 0.1 to 1000. This reveals that as

γp, γs → ∞, local thermal equilibrium is achieved. For
brevity, the results of the fluid–particle and fluid–solid
modified thermal diffusivity ratios εp, εs on the tem-
perature profile are omitted as the results obtained are
similar to the results in figure 11.

The influence of β0 with varying porous permeability
parameter (�) on local Nusselt number is sketched in
figures 12, 13, 14 and 15. The increase in β0 leads to a
decrease in local Nusselt number for all the three phases,
while the Sherwood number is observed to increase near
the wall. Figures 16, 17 and 18 show the effect of local
Nusselt number near the wall with respect to Brown-
ian motion and thermophoresis parameter for different
values of material parameter. The combined effect of
random motions of colliding nanoparticles induced by
Brownian motion and nanoparticle motion due to ther-
mal gradient caused by thermophoresis increases the
finer distribution of heat, thereby reducing local Nusselt
number for the fluid, particle and solid phases near the
wall. Figure 19 portrays that larger values of Brownian
motion parameter (Nb) and thermophoresis parameter
(Nt) create an increase in the Sherwood number. It is
observed from figures 15–18 that the local Nusselt num-
ber for all the phases decreases as β0 increases whereas
Sherwood number has a considerable increase with β0.

Tables 2–5 assume constant values of the physical
parameters as follows: Nb = Nt = Nr = 0.1, γp =
γs = s = β0 = NHP = NHS = 1 and � = 2.
The smallest eigenvalues corresponding to Le = Pr =
Nr = 1 are provided in table 2, in which the positive
eigenvalues govern the stable solutions and the nega-
tive eigenvalues correspond to the unstable solutions.
Numerical results of the physical quantities such as local
Nusselt number for the fluid, particle and solid phases,
Sherwood number and skin-friction coefficient analysed
for various values of fluid–particle and fluid–solid mod-
ified thermal diffusivity ratio parameters (εp, εs) are
presented in tables 3–5. Table 3 shows that the rate of
heat transfer of the fluid and particle phases decreases
with an increase in fluid–particle and fluid–solid modi-
fied thermal diffusivity ratio parameters when Pr = 1.
Heat transfer rate of the solid increases with an increase
in εp, εs which can also be interpreted as the decrease
in the thermal boundary layer of the solid phase. Skin
friction coefficient is an increasing function of εp, εs . As
Pr increases to 2, we observe that local Nusselt num-
ber of both the fluid and particle phases increases and
that of the solid phase decreases. Upon increasing Pr , a
decrease in skin-friction coefficient and Sherwood num-
ber is noticed. This implies that the Brownian motion of
the nanosized particle plays a significant role in affect-
ing the thermal behaviour of the nanoparticles.

The variation of the fluid–particle and fluid–solid
modified thermal diffusivity ratio parameters (εp, εs)
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Table 1. Comparison of numerical results with Naganthran et al [39] for f ′′(0) for various values of λ and β0 when s =
3, A = −1, ε = � = 1 and Ri = 0.

f ′′(0)

Present results Naganthran et al [39]

β0 λ First solution Second solution First solution Second solution

1 −1.5 2.193764 −1.282856 2.1937 −1.2828
−1 2.166657 −1.722114 2.1666 −1.7221

0 2.044786 −2.014235 2.0448 −2.0142
2 −1.5 1.496962 −0.776318 1.4969 −0.7763

−1 1.555901 −1.190562 1.5558 −1.1906
0 1.476849 −1.413027 1.4768 −1.4130

Table 2. Smallest eigenvalue γ1 for varied range of λ when Pr = Le = Nr = 1.

λ Upper solution Lower solution

−1.5 0.0812 −0.0312
−1 0.1173 −0.0976

0 0.2853 −0.1833
1 0.4754 −0.3094
1.5 0.6548 −0.4006

Table 3. Numerical results of f ′′(0), −θ ′
f (0), −θ ′

p(0), −θ ′
s(0) and −
′(0) for different values of Pr , εp and εs when

Le = Nr = 1.

Pr εp εs f ′′(0) −θ ′
f (0) −θ ′

p(0) −θ ′
s(0) −
′(0)

1 0.1 0.1 2.965228 2.959132 33.937394 −2.633585 1.432302
0.4 0.4 2.965618 2.907704 8.171023 0.021597 1.495041
0.9 0.9 2.966100 2.828162 3.613177 0.565947 1.583342

2 0.1 0.1 2.954505 5.806345 70.907714 −3.244948 −1.579950
0.4 0.4 2.956118 5.512951 17.227949 −0.520636 −1.258468
0.9 0.9 2.956554 5.390375 7.453788 0.292099 −1.127964

Table 4. Numerical results of f ′′(0), −θ ′
f (0), −θ ′

p(0), −θ ′
s(0) and −
′(0) for different values of Le, εp and εs when

Pr = Nr = 1.

Le εp εs f ′′(0) −θ ′
f (0) −θ ′

p(0) −θ ′
s(0) −
′(0)

1 0.1 0.1 2.965228 2.959132 33.937394 −2.633585 1.432302
0.4 0.4 2.965618 2.907704 8.171023 0.021597 1.495041
0.9 0.9 2.966100 2.828162 3.613177 0.565947 1.583342

2 0.1 0.1 2.966598 2.900303 33.942281 −2.629759 4.985963
0.4 0.4 2.966978 2.849627 8.172199 0.022038 5.050761
0.9 0.9 2.967447 2.772320 3.613650 0.566113 5.137146

Table 5. Numerical results of f ′′(0), −θ ′
f (0), −θ ′

p(0), −θ ′
s(0) and −
′(0) for different values of Nr when εp = εs = Pr =

Le =1.

Nr f ′′(0) −θ ′
f (0) −θ ′

p(0) −θ ′
s(0) −
′(0)

0.1 2.966196 2.815518 3.276047 0.609211 1.597767
0.5 2.952193 2.814460 3.274959 0.609152 1.598375
0.9 2.938081 2.813396 3.273865 0.609093 1.598986
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for different Lewis number is depicted in table 4. We
can see that there is no notable variation in all physi-
cal parameters for varying Le, except for the Sherwood
number, which has a significant increase by varying
Le. Numerical results of the physical quantities, such
as Nusselt number, Sherwood number and skin-friction
coefficients, are analysed for different values of Nr and
Pr and given in table 5. As Nr increases, the convec-
tive heating tends to get stronger which makes the heat
transfer rate at the wall to become weaker.

5. Conclusion

The objective of this work is the time-dependent analysis
of the impinging flow of a special third-grade nanofluid
streaming over a perforated shrinking sheet using the
local thermal non-equilibrium approach. The numeri-
cal results of the boundary layer flow characteristics
for the velocity, temperature of the fluid, particle and
solid phases and mass concentration as well as reduced
skin-friction coefficient, local Nusselt number and local
Sherwood number are presented graphically and in
tabular form for various combinations of the physical
parameters. The main points are summarised as follows:

• Dual solutions are obtained when the unsteadiness
is negative, one of which is stable and the other one
is unstable.

• Momentum boundary layer increases with increas-
ing material parameter whereas increases with
increasing porous parameter, Brownian motion and
thermophoresis parameter.

• Temperature distribution and nanoparticle concen-
tration are increased by increasing the material
parameter.

• Sherwood number directly augments with porous
parameter, Brownian motion and thermophoresis
parameter whereas Nusselt number for the fluid,
particle and solid phases decreases with porous
parameter, Brownian motion and thermophoresis
parameter.

• Smaller values of inter-phase heat transfer param-
eters (NHP , NHS → 0) and modified thermal
capacity ratios (γp, γs → 0) enhance the thermal
non-equilibrium effect.
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