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HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC

DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE

S. VARSHINI, K. BANUPRIYA, K. RAMKUMAR, K. RAVIKUMAR and D. BALEANU

Abstract. The goal of this study is to derive a class of random impulsive fractional
stochastic differential equations with finite delay that are of Caputo-type. Through
certain constraints, the existence of the mild solution of the aforementioned system
are acquired by Kransnoselskii’s fixed point theorem. Furthermore, through Ito
isometry and Gronwall’s inequality, the Hyers-Ulam stability of the reckoned system
is evaluated using Lipschitz condition.

1. Introduction

Fractional differential equations (FDE) have replaced integer-order differential
equations as a popular technique for analysing problems in modern science and
technology, and also in the fields of economy and insurance see [1, 12, 14, 15, 24].
Ahmadova and Mahmudov [2] studied the wellposedness results of caputo-type
fractional stochastic neutral Differential Equation systems.

Notably, stochastic disturbances are certain in practical systems due to its in-
fluence in the stability of systems. In [25], dz(t) = kz(t) is unstable when k > 0,
but there is an increase in the stochastic feedback control rz(t)dw(t) to become
dz(t) = kz(t) + rz(t)dw(t), being stable if and only if r2 > 2k. The above notion
clearly implies a certain stochastic control term stabilizing the unstable system.
It is notable and demanding to investigate stochastic stabilization of the deter-
ministic system [17, 26, 27]. The existence and uniqueness of solutions have
made instantaneous transformation in applied mathematics. S. Wu. and B. Zhou.
[23] established existence and uniqueness of stochastic differential equation(SDE)
with random impulse and markovian switching under Non-Lipschitz condition, the
reader may also refer the monographs [4, 5, 6, 7, 16, 18, 20].

One among the indispensable speculation of dynamical systems in the stability
concepts are taken into notice in research fields through applications. In particular,
in 1940 Ulam [19] posted an open question for which Hyers [10] answered in the
following year. Then, Ulam-Hyers stability was established. The evolution of the
theory paved way for the creative research in stability analysis refer [3, 8, 9,
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11, 22]. Recently, Hyers-Ulam stability of random impulsive stochastic functional
differential equations with finite delay were established by Li et al. [13]. Also,
Anguraj et al. [6] investigated the existence and Hyers Ulam results of random
impulsive stochastic functional integrodifferential equations.

This study, which is motivated by previous works, focuses on the existence and
Hyers-Ulam stability of random impulsive fractional stochastic functional differ-
ential equations with finite delays.

Let us consider a random impulsive stochastic fractional differential equations
of the form:

(1)

cDβt ϑ(t) = u(t), ϑt) + v(t, ϑt)
dw(t)

dt
, t 6= ζk , t ≥ 0,

ϑ(ζ−k ) = bk (δk )ϑ(ζ−k ), k = 1, 2, . . . ,

ϑ(t0) = ζ,

where the Caputo fractional cDβt is of order β ∈ (0, 1) [13]. A random variable δk is
described from w to Dk =def (0, dk ) with 0 < dk < +∞ for k = 1, 2, . . . . Assume
δi, δj to be unrestrained for i 6= j as i, j = 1, 2, . . . . Suppose T ∈ (t0,+∞),
u : [t0,T] × C → Rd, v : [t0,T] × C → Rd×m, and bk : Dk → Rd×d, and ϑt is
Rd-valued stochastic process 3 ϑt ∈ Rd, ϑt = {ϑ(t+ θ) : −δ ≤ θ ≤ 0}. ζk is
the impulsive moment from a strictly increasing sequence, i.e., ζ0 < ζ1 < · · · <
ζk < · · · < lim

k→∞
ζki = ∞, and ϑ(ζ−k ) = limt→ζk−0 ϑ(t). Assume ζ0 = t0 and

ζk = ζk−1 + δk as k = 1, 2, . . . . Evidently, {ζk} is a process with independent
increments. Let {N(t), t ≥ 0} be a simple counting process generated by {ζk} and

{w(t) : t ≥ 0} be a given m-dimensional Wiener process. Denote =(1)
t to be the

σ-algebra generated through {N(t), t ≥ 0} and =(2)
t be to the σ-algebra generated

by {w(s), s ≤ t}, provided =(1)
∞ ,=(2)

∞ , and ζ are mutually independent.
The significant contribution of this paper includes the succeeding aspects:

(i) There have not been many papers that have considered the aforementioned
random impulsive stochastic fractional differential system as in (1).

(ii) The contraction principle is used to the existence results of random im-
pulsive differential equations in [5, 20]. However, using Kransnoselskii’s
fixed point theorem, we analyse the existence findings of fractional random
impulsive stochastic differential equations.

The following is a breakdown of the manuscript’s structure: Section 2 contains
some basic definitions and necessary assumptions. In section 3, certain needed
conditions are assumed for analysing the existence and uniqueness results of the
proposed stochastic system. The Hyers-Ulam stability of random impulsive sto-
chastic fractional differential equations with finite delay is shown in Section 4.

2. Preliminaries

Let (Ω,=,P) be a probability space with filtration {=t}, t ≥ 0 satisfying =t =

=(1)
t ∨ =

(2)
t , Lp(Ω,Rd) be the accumulation of all strongly measurable, pth in-

tegrable, =t measurable, ϑ be a Rd-valued random variable, provided ‖ϑ‖Lp =



FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS 353(
E ‖ϑ‖p

) 1
p and Eϑ =

∫
Ω
ϑdP. δ > 0 signifies the Banach space of entire piecewise

continuous Rd-valued stochastic process
{
ζ(t),t∈ [−δ, 0]

}
by C([−δ, 0],Lp(Ω,Rd)),

‖ξ‖C = sup
θ∈[−δ,0]

(
E ‖ξ(θ)‖p

) 1
p ,

thereby, ξ(θ) ∈ C.
Assume T ∈ (t0,+∞), u : [t0,T] ×C → Rd along with v : [t0,T] ×C → Rd×m

are Borel measurable.

(2) ϑt0 = ζ = {ζ(θ) : −δ ≤ θ ≤ 0}
is the initial data, where (2) is =t0 measurable, [−δ, 0] to Rd-valued random vari-

able 3 E ‖ζ‖2 <∞.

Definition 2.1 ([21]). The fractional order integral of the function ϑ(t) ∈
L1([a, b],Rn) of order β ∈ R+ is described as,

Iβa (ϑ(t)) =
1

Γ(β)

∫ t

a

ϑ(s)

(t− s)1−β ds,

wherein Γ(·) is the gamma function.

Definition 2.2 ([21]). The β order caputo derivative of a function ϑ on the
given interval [a, b] is explained to be

(cDβa,tϑ)(t) =
1

Γ(n− β)

∫ t

a

ϑ(n)(s)

(t− s)β+1−n ds,

n = [β] + 1 and [β] indicates the integer part of β.

Definition 2.3. For a specified T ∈ (t0,+∞), an Rd-valued stochastic process
ϑ(t) on t0 − δ ≤ t ≤ T is said to be a solution to (1) along the initial data (2) if
for all t0 ≤ t ≤ T, ϑ(t0) = φ, {ϑt}t0≤t≤T is =t-adapted and

(3)

ϑ(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t), t ∈ [t0,T],

where

k∏
j=i

bj(δj) = bk (δk )bk−1(δk−1) . . . bi(δi),

n∏
j=m

(·) = 1 as m > n, and IA(·) is

the index function, i.e.,

IA(t) =

{
1 if t ∈ A,
0 if t /∈ A.
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Definition 2.4. Assume µ(t) is an Rd-valued stochastic process. If there exist
a real number C > 0 such that for arbitrary ε ≥ 0, it satisfies

E
∥∥∥µ(t)−

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, µs)ds

+
1

Γ(β)
×
∫ t

ζk

(t− s)β−1u(s, µs)ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, µs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, µs)dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥p ≤ ε.
For each µ(t) along the initial value µt0 = xt0 = ζ, if there exists a solution ϑ(t) of
(3) with E ‖µ(t)− ϑ(t)‖p ≤ Cε, for all t ∈ (t0 − δ,T). Subsequently, Hyers-Ulam
Stability is found in (3).

Lemma 2.5 ([13]). Assume that φ, ϕ are two functions, where φ, ϕ ∈
C([a, b],Rd) and φ(t) is non-decreasing. If ϑ(t) ∈ C([a,b],Rd) is a solution of
the following inequality

ϑ(t) ≤ φ(t) +

∫ t

a

ϕ(s)ϑ(s)ds, t ∈ [a, b],

then, ϑ(t) ≤ φ(t) exp(
∫ t
a
ϕ(s)ds).

Lemma 2.6 ([13]). For any p ≥ 1 and Θ ∈ Lp
d×m[0,T] a predictable process,

the inequality

sup
s∈[0,t]

E
∥∥∥ ∫ s

0

Θ(η)dw(η)
∥∥∥p ≤ (p

2
(p− 1)

)p/2 (∫ t

0

(E ‖Θ(s)‖p)2/p
)p/2

, t ∈ [0,T],

holds.

3. Main Results

Let us impose the following assumptions.

(A1) u : [t0,T]×C→ Rd satisfies:
(i) for all t ∈ [t0,T], u(t, ·) : C → Rd is continuous and for all y ∈ C,

u(., y) : [t0],T]→ Rd is measurable.
(ii) There exists M > 0 being constant 3

E ‖u(t, y1)− u(t, y2)‖p ≤M
(
‖y1 − y2‖pC

)
for y1, y2 ∈ C.

(iii) There exists a constant M > 0 3
E ‖u(t, y)‖p ≤M

(
1 + ‖y‖pC

)
.
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(A2) max
i,k

{ k∏
j=i

E ‖bj(δj)‖p
}
< ∞. There exists a constant N > 0 such that for

all for all δj ∈ Dj , (j = 1, 2, 3, · · · ) 3

E
(

max
i,k

{ k∏
j=i

E ‖bj(δj)‖p
})p
≤ N.

(A3) v : [t0,T]×C→ Rd×m appeases:
(i) v(t, ·) : C → Rd×m being continuous also for all y ∈ C, t ∈ [t0,T],

where v(., y) : [t0,T]→ Rd×m is measurable.
(ii) There exists S(t) : [t0,T]→ [0,∞) being continuous and Lq integrable,

continuous, and increasing function Ξ: [0,+∞)→ [0,+∞) 3
E ‖v(t, y)‖p ≤ S(t)Ξ(‖y‖pC),

subjective to (t, y) ∈ [t0,T] × C, S∗ = sup
t
∈ [t0,T]S(t), and the

function $ fulfils

lim
δ→∞

inf
$(δ)

δ
= α <∞.

(A4) Let F = max{1,N} (t− δ)βp−1

(pβ − 1)(Γ(β))p
(t− t0)pM < 1.

Theorem 3.1. If the hypotheses (A1)–(A3) are true, the system (3) must have
at least one mild solution

3p−1 max{1,N} (t− δ)βp−1

(pβ − 1)(Γ(β))p

[
M(T− t0)p + Mp(T− t0)p/2−1S∗α

]
≤ 1.

Proof. Let B = C ([t0 − δ,T],Lp(Ω,Rd)) be a space, provided

‖ϑ‖pB = sup
t∈[t0,T]

‖ϑt‖pC ,

where ‖ϑt‖pB = sup
t−δ≤s≤t

E ‖ϑ(s)‖p.

We interpret the mapping Ψ : B→ B as

(Ψϑ)(t+ t0) = ζ(θ) ∈ Lp (Ω,C) , t ∈ [−δ, 0],

(Ψϑ)(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0)

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)
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+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t).

The problem of detecting the mild solutions for (3) is shorten to find the fixed
point of Ψ.

Now, let us decompose the operator Ψ as

P(ϑ)(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds
]
I[ζk ,ζk+1)(t),

Q(ϑ)(t) =

+∞∑
k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t).

Let the closed ball Br with centre ϑ and radius r > 0 be denoted by Br =
{ϑ ∈ B; ‖ϑ‖pB ≤ r}. The subsequent steps are used to derive the proof.

Step 1:
Manifesting, Pϑ+ Qϑ ∈ Br, where r > 0 and ϑ, ϑ ∈ Br.

Let us prove the part by confliction, i.e., for all r > 0 and t ∈ [t0,T], there exists

ϑr(·), ϑr(·) ∈ Br 3
E
∥∥P(ϑr)(t) + Q(ϑ)r(t)

∥∥p > r.

Consequently,

E
∥∥P(ϑr)(t) + Q(ϑ)r(t)

∥∥p
≤ 3p−1E

∥∥∥ +∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0)
]∥∥∥p

+ 3p−1E
∥∥∥ +∞∑

k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, ϑrs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑrs)ds
]
I[ζk ,ζk+1)(t)

∥∥∥p
+ 3p−1E

∥∥∥ +∞∑
k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑ
r

s)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑ
r

s)dw(s)
]
I[ζk ,ζk+1)(t)

∥∥∥p
≤ 3p−1Nζ(0)p + 3p−1 max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(t− t0)pM(1 + ‖ϑrs‖

p
C)

+ 3p−1 max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(t− t0)p/2−1MpS

∗
∫ t

t0

Ξ
(∥∥ϑrs∥∥pC)ds.
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Thus,

r ≤ 3p−1
[
Nζ(0)p + max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(T− t0)pM

]
+ 3p−1 max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(T− t0)pMr

+ 3p−1
[

max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(T− t0)p/2−1Mp

S∗

r

∫ t

t0

Ξ(r)ds
]
r,

where Mp = (p(p− 1)/2)p/2.
Also,

sup
t∈[t0,T]

‖ϑrt‖
p
C = sup

t∈[t0−δ,T]

‖ϑr‖p ≤ ‖ϑr(t)‖pB ≤ r.

The aforesaid inequality is divided by r and r→∞, by (A3)(ii),

3p−1 max{1,N} (t− δ)βp−1

(pβ − 1)(Γ(β))p

[
M(T− t0)p + Mp(T− t0)p/2−1S∗α

]
≥ 1,

which conflicts our assumption. Therefore, there exists r > 0 3 ϑ, ϑ∈Br, Pϑ +
Qϑ∈Br.

Step 2:
Let ϑ, ϑ ∈ Br for t ∈ [t0,T],

E
∥∥(Pϑ)(t)− (Pϑ)(t)

∥∥p
≤ E

∥∥∥ +∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(δj)
1

Γ(β)

∫ ζi

ζi−1

(t− s)β−1
[
u(s, ϑs)− ϑ(s, ϑs)

]
ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1
[
u(s, ϑs)− ϑ(s, ϑs)

]
ds
]
I[ζk ,ζk+1)(t)

∥∥∥p
≤ E

[
max
i,k

{
1,

k∏
j=i

‖bj(δj)‖
}]p

× 1

Γ(β)

(∫ t

t0

(t− s)β−1E
∥∥u(s, ϑs)− u(s, ϑ)s

∥∥dsI[ζk ,ζk+1)(t)

)p

≤ max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(t− t0)pM

(∥∥ϑt − ϑt∥∥pC) ,
where ∥∥ϑt − ϑt∥∥pC ≤ sup

s∈[t−δ,t]
E
∥∥ϑ(s)− ϑ(s)

∥∥p .
Taking supremum over t and by (A4),∥∥(Pϑ)(t)− (Pϑ)(t)

∥∥p
B
≤ F

∥∥ϑ− ϑ∥∥p
B

with 0 < F < 1. Hence, P is a contraction on Br.
Step 3:

Let {ϑn} ⊂ Br with ϑn → ϑ (as n → ∞). For t ∈ [t0,T] by continuity of v in
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(A3)(i),

E ‖(Qϑn)(t)− (Qϑ)(t)‖p

≤ max{1,N} (t− δ)pβ−1

(pβ − 1)(Γ(β))p
Mp(t− t0)p/2−1

∫ t

t0

E ‖v(s, ϑns )− v(s, ϑs)‖p ds

−→ 0 as n→∞.
Q is continuous Br.

Step 4:
B being a piecewise space, suppose ζk < t1 < t2 < ζk+1 (k = 1, 2, . . . ) and
ϑ ∈ Br. Then, for any fixed ϑ ∈ Br, through assumptions (A2), (A3) along with
the Lemma 2.6,

E ‖(Qϑ)(t2)− (Qϑ)(t1)‖p

≤ 2p−1E
∥∥∥ +∞∑

k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t1

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t1)

∥∥∥p
+ 2p−1E

∥∥∥ +∞∑
k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t2

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t2)

∥∥∥p
≤ 2p−1 max {1,N}E

∥∥∥ +∞∑
k=0

1

Γ(β)

∫ t2

t1

(t− s)β−1v(s, ϑs)dw(s)I[ζk ,ζk+1)(t2)
∥∥∥p

−→ 0 while t2 −→ t1.

Accordingly, Q maps the bounded sets Br into equicontinuous sets.
Step 5:

sup
t∈[t0,T]

E ‖(Qϑ)(t)‖p

= sup
t∈[t0,T]

E
∥∥∥ +∞∑

k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t)

∥∥∥p
≤ (T− δ)pβ−1

(pβ − 1)(Γ(β))p
max{1,N}Mp ‖S∗‖Lq Ξ(r).

Then {Q(Br)} is uniformly bounded.
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Step 6:
Let ε > 0 3 0 < ε < t− t0. For ϑ ∈ Br,

(Qϑ)(t) =

+∞∑
k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t−ε

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t), t ∈ (t0, t− ε).

The set Wε(t) = {(Qεϑ)(t) : ϑ ∈ Br} is relatively compact in B for all ε ∈
(0, t− t0). We have

(4)

E ‖(Qϑ)(t)− (Qεϑ)(t)‖p

≤ max{1,N} (T− δ)pβ−1

(pβ − 1)(Γ(β))p
(ε)p/2−1Mp

∫ t

t−ε
S∗Ξ(r)ds.

As ε → 0, (1) tends to zero. Thus the set W(t) = {(Qϑ)(t) : ϑ ∈ Br} has
arbitrarily precompact sets and W(t) is relatively compact in B. Therefore, Q is
compact and completely continuous using Arzela-Ascoli theorem.

From Kransnoselskii’s Fixed point theorem, Φϑ = Pϑ + Qϑ has a fixed point
on Br. Therefore, (1) has a mild solution. Thus the proof is complete. �

Yet, existence of the solution for the system (3) can also be acquired by Banach
Contraction Principle. Let us impose the following assumption.

(A3′) Let v(t, ϑt) be continuous, v(t, ϑt) ∈ Lp([t0,T]×C; Rd×m) ∃ M > 0 3
E ‖v(t, ϑ1)− v(t, ϑ2)‖p ≤M (ϑ1 − ϑ2)

p
C

for t ∈ [t0,T], ϑ1, ϑ2 ∈ C.

By assuming (A1), (A2), and (A3′) getting satisfied, let us consider the subse-
quent theorem.

Theorem 3.2. If the hypotheses (A1), (A2), and (A3′) are all true, there exists
a specific mild solution of (3).

Proof. For every initial value t0 ≥ 0, ϑ0 ∈ Br, an operator U : B→ B is defined
such that for t ∈ [t0,T],

(Uϑ)(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1

× v(s, ϑs)dw(s) +
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t).
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Subsequently,

E
∥∥(Uϑ)(t)− (Uϑ̃)(t)

∥∥p
≤ 2p−1E

[
max
i,k

{
1,

k∏
j=i

‖bj(δj)‖
}]p

×
( 1

Γ(β)

∫ t

t0

(t− s)β−1E
∥∥u(s, ϑs)− u(s, ϑ̃s)

∥∥ds
)p

+ 2p−1E
[

max
i,k

{
1,

k∏
j=i

‖bj(δj)‖
}]p

+
( 1

Γ(β)

∫ t

t0

(t− s)β−1E
∥∥v(s, ϑs)− v(s, ϑ̃s)

∥∥dw(s)
)p

≤ 2p−1 max{1,N} (T− δ)pβ−1

(pβ − 1)(Γ(β))p
(t− t0)pM

∥∥ϑs − ϑ̃s∥∥pC
+ 2p−1 max{1,N} (T− δ)pβ−1

(pβ − 1)(Γ(β))p
Mp(t− t0)p/2M

∥∥ϑs − ϑ̃s∥∥pC.
Taking supremeum over t,∥∥Uϑ− Uϑ̃

∥∥p
B ≤ $(t)E

∥∥ϑ− ϑ̃∥∥p
B
,

where $(t) = 2p−1 max{1,N} (T−δ)pβ−1

(pβ−1)(Γ(β))pM
[
(t− t0)p + Mp(t− t0)p/2

]
.

For sufficiently small 0 < T1 < T, F < 1. Thus U is a contraction mapping.
Through Banach Contraction principle, Uϑ = ϑ is a distinctive solution of (3).

�

4. Hyers-Ulam Stability Results

Here, the Hyers-Ulam stability of system (3) is investigated presuming the hy-
potheses (A1), (A2), and (A3′),

Theorem 4.1. If the assumption of Theorem 3.2 gets fulfilled, (3) has Ulam-
Hyers stability.

Proof. It is well known that ϑ(t) is the solution of (3).

ϑ(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)
]
I[ζk ,ζk+1)(t).
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By the condition,

E
∥∥∥µ(t)−

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, µs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, µs)ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, µs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, µs)dw(s)
]
I[ζk ,ζk+1)(t)

∥∥∥p ≤ ε.
When t ∈ [t0 − δ,T], E ‖µ(t)− ϑ(t)‖p = 0. Meanwhile for t ∈ [t0,T],

E ‖µ(t)− ϑ(t)‖p

≤ 2p−1E
∥∥∥µ(t)−

+∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, µs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, µs)ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, µs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, µs)dw(s)
]
I[ζk ,ζk+1)(t)

∥∥∥p + 2p−1E
∥∥∥ +∞∑

k=0

[ k∏
i=1

bi(δi)ζ(0)

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1 [u(s, ϑs)− u(s, µs)] ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1
[
u(s, ϑs)− u(s, µs)

]
ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1
[
v(s, ϑs)− v(s, µs)

]
dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1
[
v(s, ϑ(s))− v(s, µs)

]
dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥p
≤ 2p−1ε+ 2p−1I,

whereas

I = E
∥∥∥ +∞∑

k=0

[ 1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1 [u(s, ϑs)− u(s, µs)] ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1 [u(s, ϑs)− u(s, µs)] ds
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+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1 [v(s, ϑs)− v(s, µs)] dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1
[
v(s, ϑ(s))− v(s, µs)

]
dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥p
× (T− t0)(p−2)/2 (T− δ)pβ−1

(pβ − 1)(Γ(β))p
M

∫ t

t0

‖ϑs − µs‖pC

≤ Y1

∫ t

t0

‖ϑ(s)− µ(s)‖pC ds,

where

Y1 = 2p−1Mmax{1,N}(T− t0)p/2−1 (T− δ)pβ−1

(pβ − 1)(Γ(β))p

×
[
(T− t0)p/2 + (p(p− 1)/2)p/2

]
.

So,

E ‖µ(t)− ϑ(t)‖p ≤ 2p−1ε+ 2p−1Y1

∫ t

t0

‖µ(s)− ϑ(s)‖pC ds.

Consider ∫ t

t0

‖µ(s)− ϑ(s)‖pC ds =

∫ t

t0

sup
θ∈[−δ,0]

E ‖µ(s+ θ)− ϑ(s+ θ)‖p ds

= sup
θ∈[−δ,0]

∫ t+θ

t0+θ

E ‖µ(m)− ϑ(m)‖p dm.

While t ∈ [t0 − δ, t0], E ‖µ(m)− ϑ(m)‖p = 0. Accordingly,∫ t

t0

‖µs − ϑs‖pC ds = sup
θ∈[−δ,0]

∫ t+θ

t0

E ‖µ(m)− ϑ(m)‖p dm

=

∫ t

t0

E ‖µ(m)− ϑ(m)‖p dm,

E ‖µ(t)− ϑ(t)‖p ≤ 2p−1ε+ 2p−1Y1

∫ t

t0

E ‖µ(m)− ϑ(m)‖p dm.

Through Lemma 2.5,

E ‖µ(t)− ϑ(t)‖p ≤ 2p−1ε exp(2p−1Y1).

Consequently, ∃ C = 2p−1 exp(2p−1Y1) 3
E ‖µ(t)− ϑ(t)‖p ≤ Cε.

Hence the Hyers-Ulam stability of (3) is proved. �
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5. Conclusion

A class of Caputo type random impulsive fractional stochastic differential equa-
tions are investigated. The existence and uniqueness of solutions have been ac-
quired through Kransnoselskii’s fixed point theorem. Hyers-Ulam stability of the
aforementioned system is obtained using Lipschitz condition. The system can
be further extended to g-Brownian motion with resolvent operator and Poisson
jumps.

Acknowledgment. The authors would like to thank the reviewers for their
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