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Abstract

This paper studies the analysis of Trajectory (T-) controllability for the fractional order

neutral stochastic impulsive integrodifferential system involving statedependent delay (SDD) and

impulsive effects. Sufficient conditions are designed to illustrate the evaluation of T-controllability

via Gronwall’s inequality. It is exhibited that the proposed protocol can explicitly drive the

results by Mönch fixed point technique and semigroup theory. As a final point, the derived

scheme is validated through an example.
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1 Introduction

The fractional calculus, which deals with integral and derivatives of noninteger order, is a generalization

of classical calculus. One of the most effective methods for describing long-range interactions, power

laws, long-memory processes, and geometrical scaling rules is fractional calculus. Therefore, fractional

differential equations (FDEs) are the corresponding mathematical models. The variety of applications

of FDEs can be observed, for example, in the fields of mechanics (viscoelasticity theory), biology

(protein modeling), robotics, signal processing, traffic and control systems, finance, and economy. For

more details on FDEs, we refer the reader to the books [1, 2, 3, 4, 5], and the references therein.

Moreover, the stochastic differential systems provide a powerful tool in formulation and analysis

of the phenomenon which fluctuates due to random influences or noise and therefore this theory can
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be successfully applied to various problems not only in mathematics but outside also, see [6, 7, 8, 9].

For example, the Wiener process is utilized the noise essential to the stock exchange, where the

millions of agents react independently and behave irrationally (see [10]). In recent years, scholars have

focused especially on solving the stochastic dynamical models with mixed fBm, Rosenblatt process,

and Poisson jumps; see [11, 12, 13, 14] and references therein.

On the other hand, the most important aspect of mathematical control theory is delivered by

the notion of controllability. The controllability problem is searching for a suitable control function

that steers the proposed dynamical model to a desired final state. For fractional stochastic evolution

equations, the theory and applications of the existence of mild solutions and controllability are

investigated in [15]. Ahmed et al. [16, 17] established the exact null controllability and boundary

controllability of Hilfer fractional stochastic differential equations (SDEs) with fBm. The

approximate controllability of a semilinear stochastic integrodifferential system with nonlocal

conditions is studied in [18] by utilizing the Sadovskii’s fixed point theorem. The new notion of

T-controllability was first introduced by Chalishajar et al. [19], to detect for control that steers the

system along a prescribed trajectory to the final state instead of navigating a given initial state to

the required final destination. The advantages of T-controllability include; minimizing the cost

involved in steering the system from an initial state to desired final state and safeguarding the

system. For example, while launching a rocket in space sometimes it may be desirable to have a

precise path along with the desired destination for cost-effectiveness and collision avoidance. So

naturally, T-control is the strongest notion than all other existing control definitions. The first and

second order T-controllability in infinite dimension with numerical simulation was initiated by

Chalishajar et at. [20, 21]. A few years back, Malik and George [22] looked into the T-controllability

of a fractional order system. Recently, Malik and his team [23, 24], studied the T-controllability for

nonlinear FDEs by employing Gronwall’s inequality. Very recently, Chalishajar and his team

[25, 26, 27], investigated the T-controllability of stochastic dynamical system with deviated

argument using Rosenblatt process and Poisson jumps.

After the success of theory and applications of fractional calculus for both deterministic and

stochastic systems, how to extend them to the case of involving various delays, naturally became a

predominant research field. Only a few kinds of results have been studied in previous research

regarding the topic of T-controllability for fractional impulsive stochastic systems, particularly with

finite and infinite delays. To best of our knowledge, when the semigroups appeared in above

fractional stochastic neutral integrodifferential systems are noncompact, it is not easy to obtain the

corresponding compact resolvent operators. Also, there is no published paper has considered the

impulsive fractional stochastic neutral integrodifferential systems incorporating time and SDD along

with nonlocal conditions. Motivated by these statements, it is essential to consider this type of
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interesting problem. The analysis also takes into account the contributions, highlighted below:

• A significant number of previous research on fractional systems have been published with delay,

such as finite, infinite, or without delay. Consequently, it is essential to pay consideration attention

to the analysis of fractional stochastic systems with time and SDD.

• Many of previous results on fractional stochastic integrodifferential systems have been published

without taking into account nonlocal and impulsive effects. The study of the T-contollability of

fractional systems involving impulsive and nonlocal behavior is more essential.

• The semigroups appeared in the stochastic systems are compact [28, 29, 30], assuming the

corresponding compact resolvent operator. We have proved the results using noncompact resolvent

operator.

• The aim of this work is to study the mild solutions for a class of T-controllability for the fractional

order neutral stochastic impulsive integrodifferential systems involving nonlocal condition and time

and SDD by using noncompact semigroup in a Hilbert space. Furthermore, under some suitable

assumptions, the considered system’s T-controllability is established using generalized Gronwall’s

inequality.

The article is structured as follows: Section 2 describes the essential preliminaries and some

notations. Section 3 proves the existence of mild solution for fractional order neutral stochastic

impulsive integrodifferential systems involving nonlocal conditions and time and SDD through

Hausdorff measure of noncompactness (HMNC) and the Mönch fixed point theorem. Section 4

demonstrates T-controllability results using Gronwall’s inequality. Section 5 justifies the proposed

theoretical results with the aid of an example.

2 Problem Formulation and Preliminaries

Consider the fractional order neutral stochastic impulsive integrodifferential system involving SDD

and impulsive effects,

cDαν [z(ν)− l(ν, zν)] =
[
A z(ν) + Bu(ν) +

∫ ν

0
λ(ν − ζ)m(ζ, zζ)dζ

]
dν

+ n
(
ν, zρ(ν,zν)

)
dω(ν), ν ∈J = [0, b],

4z|ν=νk = Ik(z(νk)),

z(0) + µ(z) = z0 = φ̃ ∈ B. (2.1)

cDαν is the Caputo derivative with order α ∈ (0, 1), the state variable z(ν) in Hilbert space H .

K represents a separable Hilbert space with ‖ · ‖K . Let ω(ν)ν≥0 denotes a Wiener process involving

covariance operator Q ≥ 0 and K −valued function described on the space (Ω,=,P) with the filtration

=ν , ν ∈ J generated by Wiener process with the probability measure P on Ω. A represents an
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infinitesimal generator of C0 semigroup T (ν) for ν ≥ 0 on H , control function u ∈ L2 (J ,U ),

U is a Hilbert space and B is a bounded linear operator from U to H . zζ : (−∞, b] → H on

the phase space B (defined later) denoted by zζ(θ) = z(ζ + θ) and ρ : J × B → (−∞, b] is a

continuous function. Let l : J × B → H , m : J × B → H and n : J × B → LQ(K ,H )

be suitable functions and (λ(ν))ν≥0 is a bounded linear operator. Let PC (J ,L2 (Ω,=,P; H )) ={
z(ν) be continuous everywhere except for some νk, where z(ν+

k ) & z(ν−k ) exist with z(ν−k ) = z(νk),

k = 1, 2, · · · ,m with ‖z‖PC = supν∈J |z(ν)| < ∞
}

. Also, Ik : B → H and 0 = ν0 < ν1 < · · · <

νm < νm+1 = b. Furthermore, Br(z) denotes the closed-ball with center at z and radius r > 0.

Let B be a phase space for measurable functions =0 : J0 = (−∞, 0]→H with ‖ · ‖B fulfills the

succeeding conditions:

(a) On [0, b), if γ : (−∞, b) → H is continuous and γ0 ∈ B, then the following constraints gets

satisfied for each ν ∈ [0, b):

(i) γν ∈ B;

(ii) ‖γ(ν)‖ ≤ K1‖γν‖B;

(iii) ‖γν‖B ≤ K2(ν)‖γ0‖B + K3(ν) sup ‖γ(ζ)‖; 0 ≤ ζ ≤ b, where K1 > 0 is a constant, K2 :

[0,∞) → [0,∞) symbolizes locally bounded function and K3 : [0,∞) → [0,∞) is a continuous

function. K1, K2 and K3 are independent of z.

(b) B be a complete space.

Assume the =−adapted measurable process z : (−∞, b] → H such that =0−adapted process

z0 = φ̃(ν) ∈ L2(Ω,B) gives

E‖zν‖2B ≤ K2E‖φ̃‖2B + K3 sup
ν∈J
{E‖z(ζ)‖2},

where K2 = sup
ν∈J

K2(ν), K3 = sup
ν∈J

K3(ν).

Lemma 2.1. [28] For each ν ∈ D , D = (−∞, 0] and φ̃ ∈ B with φ̃ν ∈ B. Assume that there exists

H φ̃ : D → [0,∞) for ν ∈ D such that E‖φ̃ν‖2B ≤ H φ̃(ν)E‖φ̃‖2B. Assume the function z : (−∞, b] →

H such that z0 = φ̃ and z ∈ PC(J ,L2) gives

E‖zζ‖2B ≤
(
H2 + n

)
E‖φ̃‖2B + H3 sup{E‖z(θ)‖2; θ ∈ [0,max{0, ζ}]}, ζ ∈ (−∞, b).

Here n = sup
ν∈D

H φ̃(ν), H2 = sup
ν∈J

K2(ν) and H3 = sup
ν∈J

K3(ν).

Definition 2.1. [28] The fractional integral of order κ > 0, with the lower limit 0 for a function f,

Iκf(ν) =
1

Γ(κ)

∫ ν

0

f(ζ)

(ν − ζ)κ−1
dζ, ν > 0,

where Γ(·) is the gamma function.
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Definition 2.2. [28] The Caputo derivative of order κ > 0, with the lower limit 0 for a function f

given by

cDαν f(ν) =
1

Γ(n− κ)

∫ ν

0

fn(ζ)

(ν − ζ)κ+1−n , ν > 0.

Next, we recall some facts of the HMNC ℵ(·) defined on each bounded subset E of Banach space

X by

ℵ(E ) = inf{ε > 0; E has a finite ε− net in X}.

Lemma 2.2. [25] Let X be a real Banach space and E ,F ⊂ X be bounded, the following properties

hold:

(1) E is precompact if and only if ℵ(E ) = 0;

(2) ℵ(E ) = ℵ(E ) = ℵ(convE ), where E and conv E are the closure and convex hull of E ;

(3) ℵ(E ) ≤ ℵ(F ) when E ⊂ F ;

(4) ℵ(E + F ) ≤ ℵ(E ) + ℵ(F ), where E + F = {x + y; x ∈ ℵ(E ), y ∈ ℵ(F )};

(5) ℵ(E ) ∪F ≤ max{ℵ(E ),ℵ(F )};

(6) ℵ(λE ) ≤ |λ|ℵ(F ) for any λ ∈ R;

(7) if K ⊂ C(J ) is bounded, then

ℵ(K(ν)) ≤ ℵ(K) for all ν ∈J ,

where K(ν) = {u(ν) : u ∈ K ⊂ X}. Further, if K is equicontinuous on J , then ν → K(ν) is

continuous on J , and

ℵ(K) = sup{K(ν) : ν ∈J };

(8) if K ⊂ C(J ;X) is bounded and equicontinuous, then ν → ℵ(K(ν)) is continuous on J and

ℵ
(∫ ν

0
K(s)ds

)
≤
∫ ν

0
ℵ(K(s))ds,∀ν ∈J ,

where ∫ ν

0
K(s)ds =

{∫ ν

0
u(s)ds : u ∈ K

}
;

(9) let {un}∞n=1 be a sequence of Bochner integrable functions from J to X with ‖un(ν)‖ ≤ m̂(ν)

for almost all ν ∈ J and every n ≥ 1, where m̂(ν) ∈ L(J ;R+), then the function φ(ν) =

ℵ({un}n=1) ∈ L(J ;R+) satisfies

ℵ
({∫ ν

0
un(s)ds : n ≥ 1

})
≤ 2

∫ ν

0
ψ(s)ds.
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Lemma 2.3. [25] If K ⊂ C(J ;L0
2(Y,X)), ω is a standard Wiener process, then

ℵ
(∫ ν

0
K(s)dω(s)

)
≤
√
Tℵ(K(ν)),

where ∫ ν

0
K(s)dω(s) =

{∫ ι

0
u(s)dω(s);∀u ∈ K, ν ∈J

}
.

Lemma 2.4. [25] Suppose that D is a closed convex subset of X, 0 ∈ D. If the map Φ : D → X is

continuous and of Mönch type, (i.e.) Φ satisfies,

M ⊂ D, M is countable, M ⊂ co ({0} ∪ Φ(M )) ,

this implies M is compact, then Φ has a fixed point in D.

Definition 2.3. A stochastic process z : J ×B→H is known as mild solution for the system (2.1)

if the subsequent conditions hold:

(i) z(ν) is =ν−adapted and measurable for each ν ≥ 0.

(ii) For z(ν) ∈H ,

z(ν) = U(ν)
[
z0 − µ(z)− l(0, φ)

]
+ l(ν, zν) +

∫ ν

0
(ν − ζ)α−1A V(ν − ζ)l(ζ, zζ)dζ

+

∫ ν

0
(ν − ζ)α−1V(ν − ζ)Bu(ζ)dζ

+

∫ ν

0
(ν − ζ)α−1V(ν − ζ) (λ(ζ − τ)m(τ, zτ )dτ) dζ

+

∫ ν

0
(ν − ζ)α−1V(ν − ζ)n

(
ζ, zρ(ζ,zζ)

)
dω(ζ)

+
∑

0<νk<ν

U(ν − νk)Ik(z(νk)), ν ∈J . (2.2)

3 Main Results

The following hypotheses are taken into consideration

(H1) A is the infinitesimal generator of a C0- semigroup of bounded linear operators T (ν) in H , there

exist constants Mβ, M and M1−β 3 ‖A −β‖ = Mβ, ‖T (ν)‖ ≤M and ‖A 1−βT (ν)‖ ≤M1−β, ∀

ν ∈J .

(H2) (i) l is continuous and ∃ Ml > 0 3

E
∥∥∥A βl(ν, z)

∥∥∥2

H
≤ Ml

(
1 + ‖z‖2β

)
,

E
∥∥∥A βl(ν, z1)−A βl(ν, z2)

∥∥∥2
≤ Ml‖z1 − z2‖2β, z1, z2 and z ∈ B, ν ∈J .
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(ii) ∃ a positive function Kl(ν) ∈ L′(J ,R+) for arbitrary bounded subset Q ⊂ H , the

Hausdorff non-compact measure β satisfies

β(l(ν,Q)) ≤ Kl(ν) sup
−r≤θ≤0

β(Q(θ)).

(H3) (i) m is continuous and ∃ Mm > 0 3

E
∥∥∥A βm(ν, z)

∥∥∥2

H
≤ Mm

(
1 + ‖z‖2β

)
,

E
∥∥∥A βm(ν, z1)−A βm(ν, z2)

∥∥∥2
≤ Mm‖z1 − z2‖2β, z1, z2 and z ∈ B, ν ∈J .

(ii) ∃ a positive function Km(ν) ∈ L′(J ,R+) for arbitrary bounded subset Q ⊂ H , the

Hausdorff non-compact measure β satisfies

β(m(ν,Q)) ≤ Km(ν) sup
−r≤θ≤0

β(Q(θ)).

(H4) (i) ν is continuous and ∃ Mµ > 0 3

E
∥∥∥A βµ(ν, z)

∥∥∥2

H
≤ Mµ

(
1 + ‖z‖2β

)
,

E
∥∥∥A βµ(ν, z1)−A βµ(ν, z2)

∥∥∥2
≤ Mµ‖z1 − z2‖2β, z1, z2 and z ∈ B, ν ∈J .

(ii) ∃ a positive function Kµ(ν) ∈ L′(J ,R+) for arbitrary bounded subset Q ⊂ H , the

Hausdorff non-compact measure β satisfies

β(µ(ν,Q)) ≤ Kµ(ν) sup
−r≤θ≤0

β(Q(θ)).

(H5) Ik : B→H is continuous and ∃ Mk > 0 such that z ∈ B,

E‖Ik(z)‖2 ≤ Mk

(
E‖z‖2

)
,

lim
r→∞

inf
Mk(r)

r
= ηk <∞, k = 1, 2, · · · , n.

(H6) n : J ×B→H satisfies the following:

(i) Let z : (−∞, b) → H be such that z0 = φ̃ and z/J ∈ PC. Also, ν → n(ν, zρ(ν,zν)) is

measurable on J and for every ζ ∈J , ν → n(ζ, zν) is continuous.

(ii) The continuous non-decreasing function Mn : [0,∞)→ (0,∞) and ∃ m : J → [0,∞) 3

E‖n(ν, z)‖2 ≤ m(ν)Mn

(
‖z‖2B

)
, (ν, z) ∈J ×B.

(iii) n is continuous and ∃ Mn ∈ L1(J ,R+) such that

E ‖n(ν, z1)− n(ν, z2)‖2 ≤Mn‖z1 − z2‖2β, z1, z2 and z ∈ B, ν ∈J .

(iv) ∃ a positive function Kn(ν) ∈ L′(J ,R+) for arbitrary bounded subset Q ⊂ H , the

Hausdorff non-compact measure β satisfies

β(n(ν,Q)) ≤ Kn(ν) sup
−r≤θ≤0

β(Q(θ)), K∗n = sup
ν∈J

Kn(ν).
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Theorem 3.1. If the hypotheses (H1)-(H6) hold, then there exists at least one mild solution of the

system (2.1).

Proof . Let Br = {z ∈ PC(J ,L2)} be the space furnished with uniform convergence topology.

Lemma 2.1 yields that E‖zν‖2B ≤ (H2 + η)E‖φ̃‖2B + H3r := r∗, we have

(Φz)(ν) = U(ν)
[
z0 − µ(z)− l(0, φ)

]
+ l(ν, zν) +

∫ ν

0
(ν − ζ)α−1A V(ν − ζ)l(ζ, zζ)dζ

+

∫ ν

0
(ν − ζ)α−1V(ν − ζ)Bu(ζ)dζ +

∫ ν

0
(ν − ζ)α−1V(ν − ζ) (λ(ζ − τ)m(τ, zτ )dτ) dζ

+

∫ ν

0
(ν − ζ)α−1V(ν − ζ)n

(
ζ, zρ(ζ,zζ)

)
dω(ζ) +

∑
0<νk<ν

U(ν − νk)Ik(z(νk)), ν ∈J .

Then the problem of finding mild solution for (2.1) is reduced to finding the fixed point of Φ. Let

Br = {z ∈ B : ‖z‖2B ≤ r} stands for the closed ball with center at z and radius r > 0 in B. We may

divide the proof into several steps.

Step 1: We prove that ∃ r 3 Φ maps Br into Br.

E‖(Φz)(ν)‖2 ≤ 9E ‖U(ν)z0‖2 + 9E ‖U(ν)µ(z)‖2 + 9E ‖U(ν)l(0,Φ)‖2 + 9E ‖l(ν, zν)‖2

+ 9E
∥∥∥∥∫ ν

0
(ν − ζ)α−1A V(ν − ζ)l(ζ, zζ)dζ

∥∥∥∥2

+ 9E
∥∥∥∥∫ ν

0
(ν − ζ)α−1V(ν − ζ)Bu(ζ)dζ

∥∥∥∥2

+ 9E
∥∥∥∥∫ ν

0
(ν − ζ)α−1V(ν − ζ) (λ(ζ − τ)m(τ, zτ )dτ) dζ

∥∥∥∥2

+ 9E

∥∥∥∥∥∥
∑

0<νk<ν

U(ν − νk)Ik(z(νk))

∥∥∥∥∥∥
2

+ 9E
∥∥∥∥∫ ν

0
(ν − ζ)α−1V(ν − ζ)n

(
ζ, zρ(ζ,zζ)

)
dω(ζ)

∥∥∥∥2

≤ 9M 2E‖z0‖2 + 9M 2Mµ(1 + r∗) + 9M 2E ‖l(0,Φ)‖2 + 9M 2
βMl(1 + r∗)

+
9M 2

1−βM
2b2α−1

(2α− 1)Γ2(α)
Ml(1 + r∗) +

9M 2
B2M 2b2α−1

(2α− 1)Γ2(α)
‖u‖2L2F

+
9M 2λ∗b2α−1

(2α− 1)Γ2(α)
Mm(1 + r∗) +

9mM 2b2α−1

(2α− 1)Γ2(α)
Mn(1 + r∗) + 9M 2n

n∑
i=1

Mkr
∗.

If we assume that Φ(Br) * Br, then for every positive constant r > 0 3 E‖Φzr‖2 > r,

r < E‖(Φzr)(ν)‖2 ≤ 9M 2E‖z0‖2 + 9M 2Mµ(1 + r∗) + 9M 2E ‖l(0,Φ)‖2 + 9M 2
βMl(1 + r∗)

+
9M 2

1−βM
2b2α−1

(2α− 1)Γ2(α)
Ml(1 + r∗) +

9M 2
B2M 2b2α−1

(2α− 1)Γ2(α)
‖u‖2L2F + 9M 2n

n∑
i=1

Mkr
∗

+
9M 2λ∗b2α−1

(2α− 1)Γ2(α)
Mm(1 + r∗) +

9mM 2b2α−1

(2α− 1)Γ2(α)
Mn(1 + r∗)

Dividing by r throughout and let r→∞,

1 < 9

[
M 2Mµ + M 2

βMl +
M 2b2α−1

(2α− 1)Γ2(α)

(
M 2

1−βMl + λ∗Mm +mMn

)
+ M 2n

n∑
k=1

ηk

]
,
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which contradicts our assumption. Thus, Φ(Br) ⊂ Br, ∀ r > 0.

Step 2: We prove that Φ is continuous in Br. Let {zn} → z in Br (as n→∞), then

E ‖(Φzn)(ν)− (Φz)(ν)‖2 ≤ 6E ‖U(ν) [µ(zn)− µ(z)]‖2 + 6E ‖l(ν, znν )− l(ν, zν)‖2

+ 6E
∥∥∥∥∫ ν

0
(ν − ζ)α−1A V(ν − ζ)

[
l(ζ, znζ )− l(ζ, zζ)

]
dζ

∥∥∥∥2

+ 6E
∥∥∥∥∫ ν

0
(ν − ζ)α−1V(ν − ζ)

(∫ ζ

0
λ(ζ − τ) [m(τ, znτ )−m(τ, zτ )] dτ

)
dζ

∥∥∥∥2

+ 6E
∥∥∥∥∫ ν

0
(ν − ζ)α−1V(ν − ζ)

[
n(ζ, znρ(τ,zτ ))− n(ζ, zρ(τ,zτ ))

]
dω(ζ)

∥∥∥∥2

+ 6E

∥∥∥∥∥∥
∑

0<νk<ν

U(ν − νk)Ik [zn(νk)− z(νk)]

∥∥∥∥∥∥
2

≤
[
6M 2Mµ + 6M 2

βMl +
6M 2b2α−1

(2α− 1)Γ2(α)

[
M 2

1−βMl + λ∗Mm + Mn

]
+ 6M 2Mk

]
E ‖zn − z‖2

→ 0 as n→ ∞.

Thus E ‖(Φzn)(ν)− (Φz)(ν)‖2 → 0 as n→∞ which implies Φ is continuous.

Step 3: We show that Φ(Br) is equicontinuous on J . Let ξk ≤ ν1 < ν2 < ξk+1, k = 0, 1, 2, · · · and

z ∈ Br then for zBr , we have

E ‖(Φz)(ν2)− (Φz)(ν1)‖2 ≤ 7E ‖U(ν2 − ν1) [z0 − µ(z)− l(0,Φ)]‖2 + 7E ‖l(ν2, zν2)− l(ν1, zν1)‖2

+ 7E
∥∥∥∥∫ ν1

0
(ν1 − ζ)α−1 [A V(ν2 − ζ)−A V(ν1 − ζ)] l(ζ, zζ)dζ

+

∫ ν1

0

[
(ν2 − ζ)α−1 − (ν1 − ζ)α−1

]
A V(ν2 − ζ)l(ζ, zζ)dζ

+

∫ ν2

ν1

(ν2 − ζ)α−1A V(ν2 − ζ)l(ζ, zζ)dζ

∥∥∥∥2

+ 7E
∥∥∥∥∫ ν1

0
(ν1 − ζ)α−1 [V(ν2 − ζ)− V(ν1 − ζ)] Bu(ζ)dζ

+

∫ ν1

0

[
(ν2 − ζ)α−1 − (ν1 − ζ)α−1

]
V(ν2 − ζ)Bu(ζ)dζ

+

∫ ν2

ν1

(ν2 − ζ)α−1V(ν2 − ζ)Bu(ζ)dζ

∥∥∥∥2

+ 7E
∥∥∥∥∫ ν1

0
(ν1 − ζ)α−1 [V(ν2 − ζ)− V(ν1 − ζ)]

(∫ ζ

0
λ(ζ − τ)m(τ, zτ )dτ

)
dζ

+

∫ ν1

0

[
(ν2 − ζ)α−1 − (ν1 − ζ)α−1

]
V(ν2 − ζ)

(∫ ζ

0
λ(ζ − τ)m(τ, zτ )dτ

)
dζ

+

∫ ν2

ν1

(ν2 − ζ)α−1V(ν2 − ζ)

(∫ ζ

0
λ(ζ − τ)m(τ, zτ )dτ

)
dζ

∥∥∥∥2

+ 7E
∥∥∥∥∫ ν1

0
(ν1 − ζ)α−1 [V(ν2 − ζ)− V(ν1 − ζ)] n

(
ζ, zρ(ζ,zζ)

)
dω(ζ)
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+

∫ ν1

0

[
(ν2 − ζ)α−1 − (ν1 − ζ)α−1

]
V(ν2 − ζ)n

(
ζ, zρ(ζ,zζ)

)
dω(ζ)

+

∫ ν2

ν1

(ν2 − ζ)α−1V(ν2 − ζ)n
(
ζ, zρ(ζ,zζ)

)
dω(ζ)

∥∥∥∥2

+ 7E

∥∥∥∥∥∥
∑

0<νk<ν

[U(ν2 − νk)− U(ν1 − νk)] Ik(z(νk))

∥∥∥∥∥∥
2

.

By the continuity of U(ν, ζ) and V(ν, ζ) of the assumptions (H1), and by assuming the hypotheses

(H1)-(H5), and Lebesgue dominated convergence theorem, as ν2 → ν1 on J ,

E ‖(Φz)(ν2)− (Φz)(ν1)‖2 → 0.

This proves that (ΦBr) is equicontinuous on J .

Step 4: We show that Mönch condition holds.

Let B = Co ({0} ∪ (Br)). For any D ⊂ B, without loss of generality, we assume that D = {zn}∞n=1. It

is obvious that, Φ maps D into itself and D ⊂ Co ({0} ∪ (Br)) is equicontinuous in J . Now we show

that β(D) = 0, where β is the HMNC.

Let us consider Ψ = Ψ1 + Ψ2 + Ψ3, where

Ψ1(ν) = U(ν) [z0 − µ(z)− l(0,Φ)] + l(ν, z(ν)) +

∫ ν

0
(ν − ζ)α−1A V(ν − ζ)l(ζ, zζ)dζ,

Ψ2(ν) =

∫ ν

0
(ν − ζ)α−1V(ν − ζ)

(∫ ζ

0
λ(ζ − τ)m(τ, zτ )

)
dζ,

Ψ3(ν) =

∫ ν

0
(ν − ζ)α−1V(ν − ζ)n

(
ζ, zρ(ζ,zζ)

)
dω(ζ) +

∑
0<νk<1

U(ν − νk)Ik(z(νk)).

By Lemma 2.1 and Lemma 2.7, we have

β ({(Ψ1z
n)(ν)}) ≤ M 2

β

∫ ν

ν0

β
({

l(ζ, znζ )
}∞
n=1

)
dζ

≤ M 2
β

∫ ν

ν0

Kl(ζ) sup
−τ≤θ≤0

β
(
{znζ (θ)}∞n=1

)
dζ

≤ M 2
β ‖Kl‖L1(J ,R+) sup

ν∈J
β ({zn(ν)}∞n=1)

β ({(Ψ2z
n)(ν)}) ≤ M 2b2α−1

2α− 1

∫ ν

ν0

Km(ζ) sup
tau≤θ≤0

β
({

znζ (θ)
}∞
n=1

)
dζ

≤ M 2b2α−1

2α− 1
‖Km‖L1(J ,R+) sup

ν∈J
β ({zn(ν)}∞n=1)

β ({(Ψ3z
n)(ν)}) ≤ M 2b2α−1

2α− 1
β

(∫ ν

ν0

n
(
ζ, zρ(ζ,zζ)

)
dζ

)
≤ M 2b2α−1

2α− 1
K∗n sup

ν∈J
β ({zn(ν)}∞n=1) .
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Therefore,

β ({(Ψzn)(ν)}∞n=1) ≤ β ({(Ψ1z
n)(ν)}∞n=1) + β ({(Ψ2z

n)(ν)}∞n=1) + β ({(Ψ3z
n)(ν)}∞n=1)

≤
[
M 2

β ‖Kl‖L1(J ,R+) +
M 2b2α−1

2α− 1
‖Km‖L1(J ,R+) +

M 2b2α−1

2α− 1
K∗n
]

sup
ν∈J

β ({zn(ν)}∞n=1)

≤ H sup
ν∈J

β(D(ν)).

Therefore we have,

β(D) ≤ β
(
Co ({0} ∪ Φ(D))

)
= β(Φ(D)) ≤ H sup

ν∈J
β(D(ν)) = Hβ(D) < β(D),

which implies β(D) = 0, the set D is a relatively compact set. Thus Φ has at least one fixed point z

in Br. thus the proposed system (2.1) has at least one mild solution. This completes the proof.

4 Trajectory Controllability

The control system (2.1) is said to be trajectory controllable on J if for every $ ∈ T, such that the

mild solution z(·) of (2.1) satisfies $(ν) = z(ν) almost everywhere.

Definition 4.1. Let $(ν) be the given trajectory on ν. The control system (2.1) is said to be T-

controllable on l, if for every $ ∈ V, such that the mild solution z(.) of (5.2) satisfies $(ν) = z(ν)

almost everywhere.

By applying Gronwall’s inequality, T-controllability of the system (2.1) gets satisfied.

Theorem 4.1. If the hypotheses (H1)-(H6) hold, the aforementioned system (2.1) is T-controllable

on J .

Proof . For β ∈ (0, 1), we consider the feedback control u(ν) for the prescribed trajectory $(ν) on J

as

u(ν) = B−1

[
cDαν [$(ν)− l(ν,$ν)]−

[
A$(ν)−

∫ ν

0
λ(ν − ζ)m(ζ,$ζ)dζ

]
dν − n

(
ν,$ρ(ν,$ν)

)
dω(ν)

]
.

(4.1)

From (2.1),

cDαν [(z(ν)−$(ν))− [l(ν, zν)− l(ν,$ν)]] = A [z(ν)−$(ν)] +

∫ ν

0
λ(ν − ζ) [m(ζ, νζ)−m(ζ,$ζ)] dν

+
[
n(ν, zρ(ν,zν))− n(ν,$ρ(ν,$ν))

]
dω(ν).
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Let Ψ(ν) = z(ν)−$(ν),

cDαν [Ψ(ν)− [l(ν, zν)− l(ν,$ν)]] = A$(ν) +

∫ ν

0
λ(ν − ζ) [m(ζ, zζ)−m(ζ,$ζ)] dν

+
[
g
(
ν, zρ(ν,zν)

)
− g

(
ν,$ρ(ν,$ν)

)]
dω(ν)

4Ψ = Ik(Ψ(νk))

Ψ(0) + [µ(z)− µ($)] = z0 −$0 = 0.

Therefore the mild solution becomes,

Ψ(ν) = U(ν) [µ($)− µ(z)] + [l(ν, zν)− l(ν,$(ν))] +

∫ ν

0
(ν − ζ)α−1A V(ν − ζ) [l(ζ, zζ)− l(ζ,$ζ)] dζ

+

∫ ν

0
(ν − ζ)α−1V(ν − ζ)

(∫ ζ

0
λ(ν − τ) [m(τ, zτ )−m(τ,$τ )] dτ

)
dζ +

∫ ν

0
(ν − ζ)α−1V(ν − ζ)

×
[
n
(
ζ, zρ(ζ,zζ)

)
− n

(
ζ,$ρ(ζ,$ζ)

)]
dω(ζ) +

∑
0<νk<ν

U(ν − νk)Ik(Ψ(νk)), ν ∈J .

Hence the initial data is zero for ν ∈J . Thus we obtain %(ν) = 0.

Hence, zν = %ν + zν and $ν = $ν + %ν on J .

Therefore,

E‖Ψ(ν)‖2 ≤ 6E ‖U(ν) [µ($)− µ(z)]‖2 + 6E ‖l(ν, zν)− l(ν,$(ν))‖2

+ 6E
∥∥∥∥∫ ν

0
(ν − ζ)α−1A V(ν − ζ) [l(ζ, zζ)− l(ζ,$ζ)] dζ

∥∥∥∥2

+ 6E
∥∥∥∥∫ ν

0
(ν − ζ)α−1V(ν − ζ)

(∫ ζ

0
λ(ν − τ) [m(τ, zτ )−m(τ,$τ )] dτ

)
dζ

∥∥∥∥2

+ 6E
∥∥∥∥∫ ν

0
(ν − ζ)α−1V(ν − ζ)

[
n
(
ζ, zρ(ζ,zζ)

)
− n

(
ζ,$ρ(ζ,$ζ)

)]
dω(ζ)

∥∥∥∥2

+ 6E

∥∥∥∥∥∥
∑

0<νk<ν

U(ν − νk)Ik(Ψ(νk))

∥∥∥∥∥∥
2

≤
[
6M 2Mµ + 6M 2

βMl + 6M 2Mk

]
E‖Ψ(ν)‖2 +

[ 6M 2b2α−1

(2α− 1)(Γ2(α))

[
M 2

1−βMl + λ∗Mm + Mn

] ]
×

∫ ν

0
E‖Ψ(ζ)‖2dζ

≤ C ∗
∫ ν

0
E‖Ψ(ζ)‖2dζ,

where

C ∗ =

6M 2b2α−1

(2α−1)(Γ2(α))

[
M 2

1−βMl + λ∗Mm + Mn

]
1−

[
6M 2Mµ + 6M 2

βMl + 6M 2Mk

] ∫ ν

0
E‖Ψ(ζ)‖2dζ.

By generalized Gronwall’s inequality, E‖Ψ(ν)‖ = 0 a.e. As a result, the system (2.1) is T-Controllable

on J .
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5 Example

Consider the stochastic fractional integrodifferential equations with impulses and SDD of the from:

cDαν
[
z(ν, υ)−

∫ ν

−∞

∫ π

0
b(ν − ζ, η, υ)z(ζ, η)dηdζ

]
=

[
∂2

∂υ2
z(ν, υ) + µ(ν, υ) +

∫ ν

0
b(ν − ζ)

∂2

∂υ2
z(ζ, υ)dζ

]
dν

+

[∫ ν

−∞
a(ζ − ν)z(ζ − ρ1(ν)ρ(‖z(ν)‖), υ)dζ

]
dβ(ν), ν ∈ l = [0, b],

∆z(νk, υ) =

∫ νk

−∞
Ik(νk − ζ)z(ζ, υ)dυ, k = 1, 2, ..., n,

z(ν, 0) = z(ν, π) = 0, z(ν, υ) = φ̃(ν, υ), −a ≤ ν ≤ 0, (5.1)

where ρ1 : [0,∞) → [0,∞), i = 1, 2, . Here a, b : R → R are continuous, 0 < ν1 < ν2 < · · · < νm < b

are prefixed numbers. Let β(ν) ∈ H = L2[0, π] described on (Ω,=,P) and φ̃ ∈ B. Define A ζ = ζ

involving D(A ) =

{
ζ ∈ H : ζ and ∂

∂zζ are absolutely continuous, ∂2

∂z2
ζ, ζ(0) = ζ(π) = 0

}
, then A

generators a strongly continuous semigroup T (ν), ν ≥ 0 given by

T (ν)ζ =

∞∑
n=1

e−n
2t 〈ζ, en〉 en, ζ ∈H ,

and en(υ) = (2/π)
1
2 sin(nν), n = 1, 2, ..., is orthogonal set of eigenvectors of A . Also, B : U → H

denotes by Bu(ν)(υ) = µ(ν, υ), 0 ≤ υ ≤ π, u ∈ U , where µ : [0, 1] × [0, π] → [0, π] is continuous.

Define the operator l, ρ : J ×B→H , n : J ×B→ LQ(K ,H ) and Ik : B→H by

l(ν, φ)(υ) =

∫ ν

−∞

∫ π

0
b(ν − ζ, η, υ)z(ζ, η)dηdζ,

n(ν, φ)(υ) =

∫ ν

−∞
a(ν)φ(ν, υ)dζ,

ρ(ν, φ)(υ) = ρ1(ν)ρ(‖z(ν)‖),

Ik(φ)(υ) =

∫ 0

−∞
Ik(−ζ)φ(ν, υ)dυ, k = 1, 2, ..., n.

Based on above considerations, we can symbolize (5.1) in the abstract from

cDαν [z(ν)− l(ν, zν)] =
[
A z(ν) + Bu(ν) +

∫ ν

0
λ(ν − ζ)m(ζ, zζ)dζ

]
dν + n

(
ν, zρ(ν,zν)

)
dω(ν)

4z|ν=νk = Ik(z(νk))

z(0) + µ(z) = z0 = φ̃ ∈ B. (5.2)

Besides, l, n, Ik are bounded linear operator, ‖l‖2 ≤ Ml, ‖n‖2 ≤ Mn and ‖Ik‖2 ≤ Mk, for every

k = 1, 2, ...,. Then, all the assumptions given in Theorem 3.1 are true and we conclude that equation

(5.1) has at least one mild solution on J . In addition, 6M 2Mµ+6M 2
βMl+6M 2Mk < 1. In the view

of generalized Gronwall’s inequality (Lemma 2.6 in [27]), we get E‖Ψ(ν)‖ = 0 a.e. and the hypotheses

of Theorem 4.1 are fulfilled, so (5.1) is T-controllable on J .
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6 Conclusion

This paper is concerned with the T-controllability of fractional order neutral impulsive stochastic

integrodifferential systems involving SDD and nonlocal conditions. The results are attained and the

T-controllability is constructed and established by semigroup theory, fractional derivatives, fixed point

approach and stochastic analysis techniques. To illustrate the significance of developed result, an

example is included. Furthermore, the contribution of this paper can be extended to damped dynamical

systems with different delay effects.
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