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1 Introduction

The concept of impulsive differential equations has gathered a lot of attention in recent
times, considering its significance for the precise mathematical modelling of a variety of
real-world situations, including epidemics, population ecology, optimal control, mechan-
ical engineering, astronomy, and others [1, 2]. In particular, impulsive fractional differen-
tial equations (FDEs) have proven to be an efficient tool for describing the hereditary and
memory properties of evolutionary systems characterised by sudden changes in their state
at various instants. A non-instantaneous impulse refers to a force or an impulse exerted
on a system over a finite duration. Hernandez and O’Regan [3] introduced the theory of
non-instantaneous impulsive differential equations. We refer to [4—6] for recent studies
on the non-instantaneous impulsive FDEs.

Sequential FDEs can capture the combined effects of multiple fractional derivatives.
The sequential FDEs have several applications in real-world problems and can be used to
model complex dynamics. For example, the Langevin equation, developed by Langevin,
explains the progress of physical processes in changing environments [7]. An essential
feature to be examined is the existence of such physical problems [8—14].

The study of qualitative aspects of the solutions to mathematical problems is crucial in
various fields due to its implications for the understanding, analysis, and application of
mathematical models [15, 16]. For investigating the existence of solutions, several meth-
ods, including fixed point theory, monotone iterative technique, topological degree theory
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(TDT), etc., are employed. The advantages of topological degree theory in investigating
FDEs lie in its abstract framework, adaptability to infinitedimensional spaces, ability to
handle nonlinearity, and applicability to global and qualitative analysis of solutions. It of-
fers a powerful and unified approach to study the qualitative aspects of solutions. Atta
Ullah et al. [17] investigated the impulsive Caputo FDE under Robin boundary conditions
using the TDT. J. Xie and L. Duan [18] established the existence results via TDT for a
coupled system of Caputo FDEs.

While there are several fractional derivatives available to investigate the FDEs, the /-
Hilfer fractional derivative proposed by Sousa and Oliveira in [19] has the advantage of a
choice of the differential operator. Only a few researchers have used degree theory to study
the FDEs [20]. There are numerous applications for FDEs with integral boundary condi-
tions in viscoelasticity, optimisation theory, fluid mechanics, etc. [21-23]. Motivated by
the above works, we consider the coupled system of i -Hilfer sequential fractional bound-

ary value problems with non-instantaneous impulses

HphLeny (HD?;““” + d1><p(s) = f(e, (&), (), € € [£),5]], j=0,1,.,7,
Hpuhy (”fo;ﬁ 2y dz),O(S) =g(&,0(8), p(e)), € € [¢),5], j=0,1,..,71,

@(e) = M(e,0()),  p(e) =Nj(e,p(e)), €€ (51,8, j=12,.,1 1)
12 .
0(@)=0, ¢(5) = 3 Anl " 06n)

q .
p@) =0, p(s) ="l p(&), @< CmyEn <5, j=0,1,.7,
n=1

where # Dzi‘a”l', H Di%’”"/', H D;ﬁ’ﬁ Y and D:f;ﬂ 2V are the ¥ -Hilfer fractional derivatives of
order 41, 83, 71 and Ty, respectively, with 0 < 81,89, 71, T2 < 1 and type 0 < a3, 2, B1, B2 <1
suchthat1<68; +8,<2,1<71 + 12 <2. Iz’f"/’ and I;’i’:w are the ¥ -Riemann-Liouville (RL)
fractional integrals of order 6,, and 7, respectively. a =gy <sp< €1 <51 < <& <5, =D,
di,dy € R\{0} and A,, u, € R*. Also, &,y € [a, b]. The state variables ¢, p : [a,b] —> R,
and the functions f,g : [4,b] x R x R - R and M;, N, : [s,_1, ;] x R — R are continuous
forallj=1,2,...,r.

We highlight that the present study is novel and makes notable contributions to the
existing literature on the topic. The proposed problem includes:

+ A coupled system of fractional differential equations in which fractional derivatives

appear sequentially.
« y-Hilfer fractional boundary value problems with non-instantaneous impulses.
+ Investigation of the existence of a solution to the coupled system with

non-instantaneous impulses via topological degree theory.

2 Preliminaries
The fundamental ideas, theorems, and lemmas that influence our analysis are stated be-
low:

Let 7 = [a, b]. Denote by C(T, R) the space of all continuous functions, and by AC(T, R)
the space of all absolutely continuous functions. Let X be a Banach space, and let B C P(X)
denote the family of all bounded subsets of X. Also, let ¥ € C(7,R) be an increasing
function such that ¥'(¢) >0 foralle € T.
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Definition 1 [24] Let F : X — X be a bounded continuous map, where X C X. Then F
is
1. o-Lipschitz if there exists k > 0 such that o (F(S)) < ko (S) for all bounded subsets
SCK;
2. astrict o -contraction if there exists 0 < k < 1 such that o (F(S)) < ko (S);
3. o-condensing if o (F(S)) < o (S) for all bounded subsets S C K with o (S) > 0. In other
words, o (F(S)) > o(S) implies o(S) = 0,

where o is the Kuratowski measure of non-compactness.

Proposition 1 [25] IfF, G: KK — X are o -Lipschitz with respective constants a; and as,
then F + G is o -lipschitz with constant a; + as.

Proposition 2 [25] If F : K — X is Lipschitz with constant a, then F is o -lipschitz with
the same constant a.

Proposition 3 [25] If F: K — X is compact, then F is o -lipschitz with constant a = 0.
Let A ={(I-F,K,y): K € X open and_bounded, F e C,(K), y e X\ - F)(3K)} be the

fam_ily of admissible triplets, where C, (IC) represents the class of all o -condensing maps
F:K— X.
Theorem 4 [25] Let F : K — X is o -condensing and

A ={@ € X : there exists 0 < w < 1 such that ¢ = wF¢}.
If X is a bounded set in X, then there exists r > 0 such that A\ C B;(0) and

D(I - wF, B(0),0) =1 for all w € [0,1].
Thus, F has at least one fixed point, and the set of all fixed points of F lies in B;(0).

Definition 2 [26] Let (a,b) (—00 < a < b < 00) be a finite or infinite interval of the real
line R and ¢ > 0. The y-RL fractional integral Igi‘/j(-) of a function & € AC"([a, b],R) on
[a, b] is defined by

1 he) = ﬁ / W OWE) - ) s, € a0, ©)

o0
where I'(¢#) = [ #”'e'dt represents the Gamma function.
0

Definition 3 [19] Let [a, b] be the interval such that —-co < a<b < oo, neN,u-1< 9% <
n and & € C"([a, b]. The y-Hilfer fractional derivative HDZ;K”/’(-) of a function / of order
¥ and type 0 < k < 1is defined by

. . 1 d\~ .
H oY _ gk(n=9)y¥ (L) (n=0 )9
D, h(e)=1, <—W(€) d_s> 1. h(e), (3)

where n =[] + 1 and [¢] is the integer part of the real number ¢ with y =0 + k(n - ¥).
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Lemma 1 [26] For %, T > 0, we have the following semigroup property:

1 wlr Vh(e) = Iﬂ” Vh(e), &> a. (4)

Lemma?2 [19] Ifh € C"([a,b],R),n-1<P <nand0< k < landy =0 +k(n-"1), then

n y—k
LY DYV p(e) = h(e) - Mk“”“[ﬁ’”("’m;wh(a), (5)
; Ty-k+1) ¥

for all € € [a, b], where h["]h(e) ( 1 di) h(e).

Proposition 5 [19, 26] Let ¥ > 0, [ > 0 and ¢ > a. Then the -fractional integral and
derivative of a power function are given by:

L LY () - ¥ (@) 1(e) = g (¥r(e) = Yr(@)) L.

2. 1D (Y(e) — Y (@) e) = s (W (&) = (@) Is y =B+ (n = D),

3 Solution framework
The solution of the BVPs (1) is derived in this section.
Define Z = PC(T,R), the space of all piece-wise continuous functions, by

Z-= {(0 1T —R; ¢ € Clejye41), j=1,2,...,1, ¢(g]) and
@(e;) exist with ¢(¢;) = ‘P(gi)]’

with the norm ||¢| z = sup{|¢(¢)| : € € T}. Under this norm, Z is a Banach space. Conse-

eeT
quently, Z x Z is a Banach space with the norm ||(¢, p)||z = l¢llz +pllz, (¢, p) € Z x Z.
To demonstrate the existence and uniqueness of (1), it is essential to prove the following

lemma.

WDy @)* .

We consider the following notation throughout the paper: &(/,s) = *~% o)

Lemma3 Lety; =8 +a1(1-81), o =6 +aa(1=8), 1 =11 + B1(l —11), and vy, = 1o +
Bo(1—1). Let f,g: T x R xR — TR, and Al,, Azl.,Agj,A4i # 0. Then the solution of the
coupled sequential impulsive fractional BVPs (1) is given by

LY £, p(e),pe) - dullE ple) + Sere=l 1)( X o

X151+52+9m V£ 0 @(Em)) = 11 ‘”f(so, p(s0), w(ﬁo))

S Y () 4 d Y v(50)), e € [a,50],
m=1

LYY f(s, p(e), 0(e)) - di 122V g(e)

S(&,y1+02-1)6(g,y2-D-6 (6,12 -1 S (g),y1+52-1) 3
+ A1, 6(e12-D-A3, 6671 152-1) Z "

p(e) =
xﬁl*‘”*@m Y f s PG @) = Lt f (5700 (51% (57)

i 3 ol ) 4 I 0(5) + (81,6612~ 1)

m=1

~A56(e, v+ 8- D) (M 0060~ 11 £ 005, 0(67)
+d1123;¢(p(8j)), ¢ € (&), 5],

M['(gj: (p(gl))! S (sj—l! Sj]’ ] = 17 21~~~xr:
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I f(e,p(e), p(e)) - a2 ple) + STl “(Zu
xl””z*”" 8En 9(En), p(En) - [15Y (so, (50), p(50))
—dy 2 1l (&) + dzza%""p(sw), e € [a,50],

IV (e, p(e), 9(e)) — da 2 p(e)

Ser1+2-D)6(Ey2-D-6(&2-D6(g,y1+12-1)
+ 23,657~ D-Ag, 671 +02-1) Z Hn

ple) =
ngi”z*”"””g(smgo(sw,p(sn» e "’g(s,»,ms,),p(s,))

q .
—dy 3wl 2 pEn) + ol E p(s) + (Mg S(e, 72 - 1)
n=1
~Ay (71 + T2 = ) (Mo p(e) - L™ (e (e, p(e)
+do 2 o), 6 € (5),5),

M(‘?j! p(‘?]))) 2BS] (5j—1! 8j]rj = 1; 2r-~~1r1

where

p
Ay =6(sj, 71+ 8= 1) = Y 2nSGmv1 + 82 + 0 = 1),
m=1
q
Ay =651 + o= 1) = Y 11y S(En 1+ T2 + 11, — 1),
n=1

p
A3 =6(5;, 75 =D =Y A& v2 + 0 — 1),

m=1

q
Ay, =605 72 = 1) = ) pnS(En T2+ 1a=1), j=01or
n=1

Proof Let ¢ and p be the solution of (1).

Case 1: For ¢ € [a, 5], consider

D (MDY 1 dy )p(e) = fle, p(e) 9l

p
9(@)=0, 9(50) = ¥ ALy @(Lm).

m=1

Using Lemma 2 and applying operators Iji; Y and 123”1’ on both sides of the above sequential

differential equation, we have
0(e) = 12V f(e, ple), () — i [V p(e) + 16 (e, 11 + 8~ ) + 28(e, 1, = 1), (8)
When ¢(a) = 0, we get ¢, = 0. Then the above equation is reduced to

0(e) = LV f (e, p(e), 9(e)) — di LY ¢() + 16 (e, y1 + 83 — 1). ©)
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Applying the boundary condition and simplifying, we get
1 e 81482 +0msr 8148250
= [ DS A G () 00 = 1 50, (500, 00500
0 " m=1
p . .
Yl () - i p(s0) |
Thus,

p
o(e) =LV f (e, ple), p(e)) — di L7 w(e) + %mA—J:(SZ_l)<Z)‘m
0

m=1

XL (G, (), @) = I f (50, 0(50), 9(50))

r
Y Al 06 + L (o0 ), e € [a,50].

Similarly, for
A (DR 4 dy ) g(e) = gle,0(e), ple),

q
p(@) =0, p(so) = Y mulp” p(&y),

n=1

v o S,y 1,3
p(e) =LV f (e, ple), p(e)) — dal "”P@*%(ZW

n=1

x [P (e 0(E,), p(En) — I g(50, 9(50), p(50))

~dy Z unl 2 p(E) + dzlji“bp(so)), & € [a,50].

For ¢ € (0,11, (1) = Mi(g,9(e)), p(e1) = Ni(e, p(e)).

Case 2: For ¢ € (g1,51], consider
Dl (DR 1 dy )ple) = e, e ge))

P
pe1) = Maer, 9(e1), 9(51) = Y ks (&),

m=1

Repeating the same process as above, we obtain

Mi(er, 9(e1)) =L f(e1, pe1), p(e1) — di L7 o(er)

+016(eL Y1+ 02— 1) +6(e1, 2 - 1),

and

LY f(s1, 0(51), 9(51)) — i L7 @(51) + 16 (51,71 + 82 — 1) + 026 (51, 72 — 1)
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p p
=Y hndet LGy 0 9(En)) = D ol 0(E)

m=1

14 )4
61 MOyt +82 40— D+ Y A2 (G Vo + Oy — 1),

m=1 m=1
Solving for ¢; and ¢, and substituting, we obtain

L (e, p(e), 0(e)) — di 7Y g(e)

S +3-)S(e1 1o -D-6(ep DS eLy1 +82-1) (i N
A1y S(e1,y2-1D-A3; S(e1,y1+82-1) m

XL (G (G, 0(G)) = I3 fs1, p(1), 0(51))

ple) = " ‘
i Xl () 4 L (a0 + (A1, 66 72— 1)
=1

~ A3, &e, 71 + 8= D) (My(er,9(e0) = 11 flen, plengplen))

Similarly, for
ALY (MDY 4 dy ) (e) = gle,ge), plo))

q
per) = Ni(er, p(e)), ps1) =Y pallt™ p(&n),
n=1
1™V f (e, p(e), p(e) - dol 2 p(e)

S +12- DS (E17p-D-6 (e~ DS (171 +Ta— 1)) iu
A2y S(e1,2-1)-Agy S(e1,y1+12-1) "

© I g€, 0(E), p(50) — I3 g(s1, 0(51), p(51))
p(e) =
3 a2 p(6) + ol plan) + (0,86, 7= 1)

Ay &, 71+ = D) (Njer p(en) - L™ glen,p(en)s plen))

+d21;3;w,0(81)), € € (e1,51].

Generally, for & € (s/_1, &1, (gj) = M;(gj, ¢(¢))) and p(e)) = Nj(gj, p(e))).
Case 3: For ¢ € (gj,5;], consider

At (D2 1 dy )g(e) = e, ple), ge)),

b
@) = M), (&), @(5) = Y Al 9(G),

m=1

and

AP (DR 4 dy ) g(e) = gle,0(e), p(e)),

q
pe) = Nj(e p(e)), p(5) = Yl p(&p).

n=1

+d1 ry w§0(81)>, € € (e1,51].

Page 7 of 21
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Proceeding in the same way, we obtain (6) and (7), which are the solutions of the impulsive
fractional BVPs (1).
Conversely, by using standard steps, we verify that (6) and (7) satisfy (1). O

4 Main results
The existence of a solution to (1) are determined in this section.

We transform our system into a fixed-point problem.
Define the operators F,G,J : Z x Z — Z x Z by

F(p, p)(e) = (Filp, p)e), Fale, p)(e)), G, p)(&) = (G, p)(€), Ga(@, p)(€)),
T (@, p)(e) = Flp, p)e) + G(p, p)e),

where F1, F3,G1,G, : Z —> Z are given by

r
- 81+82+6m;
SR (52 2l f s ) 9

S ]//f(ﬁo,/)(ﬁo) 9(s0)) - di Z oLV ()

+dil i”/ftp(ﬁo)) ¢ € [a,50],

(G(F V1+82-1)6 (8,12 -1)-6 (6,2 -1)S (¢j,y1 +82— 1))( Z 3
A1;6(12-1)-A3; S (g1 +82-1) m

Fro(e) =
xl““‘””’m V£ s pEm), 9(G)) = L1 ¢f(5,, p(s,>, 0(5)

i 3 ol ) 4 i 0(5) + (81,86 v~ 1)
m=1

-A3,6(e, 1 +82 - 1)) (Mj(sj,go(Sj)) o1+ ‘bf(a], (&), (&)
+dy I ‘”w(s,)), £ € (g5,
M/’(Sj, (8]))r S (5j—1)8j]y j: 1,2,...,r

_ q )
e O A GG

20 n=1

IV gs0, pls0), p(50) —da 3 pnl 2 pe)
n=1
rdy 1P p(50)> ¢ € [a,50],

S(er1+2-D6(Ey2-D-6(62-DS (71 +12-1)
A2,6(e12-D-A4, 6,7 +72-1) Z Hn

Faple) =
A Y g o) - 117 g, 0009, (5)

3wl ple) + a3 p(5)) + (Mg S, - 1)

n=1
~Ag (e, 71 + 72 = 1)) (N o) ~ 112 g(e (e, o)
+d21§3;wp(8}-)), & € (¢, 5],
,/\/j(gj, p(&)), e€(s-1,6, j=12,...,1,

LYV (e, pe), 0(e) - di L2 o(e), e € [a,50],
Gip(e) =1 I f(e,ple),p(e) -di L3 oe), &€ (s8]

0, e e (51'_1,8,‘],
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1;1+T2;wf(81 p(&), (P(S)) - dZIg;wp(E)! NS [ﬂr 50]!
Gp(e)=1 L™ f(e, pe),p(e) ol p(e), €€ (e,
0, & € (51,8

The fixed points of the operator equation 7 (¢, p) = (¢, p) are the solution of equation (1).
In order to obtain the existence results, we need the following hypotheses:
(H;) Letf,g€ C(T x R x R,R). For each (¢,¢9,0) € T x R x R, there exist constants
Iy by My, by, Loy, My € [0,1) such that

[f (& 0,0)| < ls | p(e)] + Uy l(e)] + My,
lg(e, ¢, 0)| < Ly ()] + Ly, | p(e)] + M.

(H) Letf,g € C(T x R x R,R). For each (¢,¢,p),(e,¢,p) € T x R x R, there exist
constants Ay, A2 € [0, 1) such that

If (e, 0,0) —f (&, 5, @) < M (lp(e) — p(e)| + lo(e) — @(e)]),
88,0, p) — g(&, @, D) < Xa(l0(e) — @(&)] + | p(e) = p(e)]).
(Hs) Let M;,N; € C((sj-1,¢]1 x R, R). For each (g,9,p) € T x R x R, there exist con-
stants L1, M1, Ly, M, € [0, 1) such that
IMi(e, )| < Lilo(e)| + My,
INj(e, p)| < Lyl p(e)| + M.

(Hy) Let M;,N; € C((sj-1,&] X R, R). For each ¢ € (s;-1,¢;], and @, @, p, p € R, there
exist constants Ppq;, Py; € [0, 11 such that

r

|Mj(e, ) = Mj(e, @) < Pag;lp(e) — g(e)l,

\WNij(e, p) = N, )| < Paslp(e) = p(e)].

For easy understandability, we use the following notations:

14
Ay =Y S G 81 + 83+ O) + (53,81 +8), j=0,1,...,7,

m=1

p
Ay =d1 Y 3mS(Lms 82 + ) + 6(51,8), j=0,1,...,7,

m=1

q
Agj = Z nSEp 1+ 0+ 0,) +6(s, 11 +12), j=0,1,...,7,

n=1

q
A4]' :dZ ZMVIG(S}U Ty + 7771) + 6(5j1 T2)’ ] = O) 1’ PRy £

n=1
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®, = max {6(8,,51 +8), )= 1,2,...,r}, ®, = max {d16(s,«,82),j: 1,2,...,r},

®3 = max [6(8,, T +T), )= 1,2,...,r], ®4 = max {d26(ej, ), j= 1,2,...,r}

P1 = max {PMI.,jz 1,2,...,r}, P, = max {PN].,jz 1,2,...,r},
6(50, Y1+ 52 — 1) 6(50, );1 + Ty — 1)
El=——7"—F——, Ey=—""— -
Alo A20

S(sj,y1+ 62— 1)6(gj, 12 = 1) = 6(s55, 2 — DS (gj, 1 + 62 = 1)
AyS(E =1 = A36(, 1 +82- 1)

’

j:1,2,...,r},

54 = max {Ale(ﬁj,)/z - 1)— A3j6(5j’7/1 +82 - 1),j= 1,2,...,7’},

&3 = max{

6(5]‘, ]71 + Ty — 1)6(8,’, )72 - 1) - 6(5]', );2 - 1)6(8]', )71 + Ty — 1)
A3 S(gj 2 — 1) = Ay S(gj, y1 + T2 — 1)

)

j=1,2,...,r},

66 = max {Az}.@(ﬁj,fz - 1)— A4/.6(5/,)71 + Ty — 1),j: 1,2,...,7‘}.

Es = max{

Theorem 6 The operator F is Lipschitz with constant w . Consequently, F is o -Lipschitz

with the same constant @ and satisfies the growth condition

15 Pz = Lrgli(@, p)llz + Mrg, where
Lrg =max {E1 A1,y + 1) + Ea Az gy + ) + E1 Ay + ErAu,,
(E3 A1y + E4O1) Uy + 1) (Es Ay, + EeO3) Uy, + ) + EnAsy
+ Es Ay + EaLy + EeLy + E4©s + E6Ou, Ly + Ly} and
M zg = max {51A10Mf + E A3y My, (E3A1; + E401)My + (E5. A3, + E6O3)M,
+ EaMy + EeMa, My + M}

Proof Let ¢,¢,p,p € Z. Using (H;) — (Ha4), we proceed as follows:
Case 1: For € € [a, 5¢],

|F1(9, p)(&) = F1(@, p)(E)]

< G(e,y1 +8, - 1)

r
n (D o G p (G 9o
1o

m=1

— f s ), BEm )| + A2V [ (b, p(50), 9(50)) — £ (b, 5(50), §(50))]

p
by Y 3l 19En) = @G| + L2 lg(s0) - Gl0)] ).
m=1
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I F1(¢, 0) = F1(@, Pl 2

< 6(50, "+ 52 — 1)

14
< T (D ki + 52+ a0 = Al = + g 1)
0

m=1

r
+6(50,81 + 82 (lp = pllz + 9 - @l z) +da kaG(é“m,rSz +O0m)lle-0lz

m=1
+ 10,8l ~ 612

<&AM(lo-plz + g —@llz) + E1Ayllp - ol =.
Similarly,

I Fa(@, 0) = F1(@, p) 2 < EaAsgha(llg — @l z + lp = pll2) + EaAsyllp — Pl =
Thus,

IF (@, p) = F(@, 0l z < (E1A1ghs + EaAsgha + E1. Az + EsAu)(lo =@l z + lp - pll2).
Case 2: For ¢ € (g, 5],

|F1(e, p)(&) = F1(g, p)(e)

(6(8, Y1 +82 - 16,12 —1) - 6(e, 2 — 1DS(gj, 71 + 82 - 1))
A1/.6(8j, Y2 — 1) - Ang(Sj, Y+ 82 - 1)

<

p
X (D ot 1 G 0 0En)) = f Conr 5, PG + 17
m=1

p
X [f (5 p(5), 0(5)) = £ (5 55, GEN] + i Y Aoz " |0(Gon) = (G|

m=1

+ i |p(s) - 5&) + (A S(e,v2 = 1) - A3 S(e 1 +6- 1)

8

x (IMej e = Myt @] + 1 If 5 006, 0(6)
= f(ep e, @) + il (e - (e))).

I F1(p, 0) = F1(@, P)|| 2

< (6(5,‘, Y1+ 52 - 1)6(8/‘, V2 — 1) - 6(51', Y2 — 1)6(8/‘, "+ 52 - 1))
- A1j6(6‘]’, Y2 — 1)—1\3}.6(8]‘, "1 +52— 1)

r
X (D 2n® (81 + 82+ 021 (0 = pllz + llp ~ §2) + S (55,81 +82)

m=1

14
xr(lp-plz+le-0¢lz)+d kaG(Cm,Sz +0mlle —¢lz +di16(s;,85)

m=1
Xl =@llz) + (&G 72 = DAL - S(5; 71 + 82 - DA, ) (Pag, o - 7l 2

+6(g5, 81+ 8)M (o= pllz + o - Pllz) + diS(ej &)l —</3||z>
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< (&AL +EODM(lp = pliz + 9 = Bliz) + (E3Ay + EP1 + E402) |9 - 6 =
Similarly,

IFa(, 0) = Fa(@, p)ll z < (Es.As, + EsO3)ha(llg = @l z + o = pllz) + (E5. Ay,
+EPa+EOu)lp—pllz.

Thus,

17 (@, p) = F(@, Pl z < (E3 Ay A1 + EsAz Az + E4O1h1 + EO3hz + E3 Ay + Es Ay

+E4P1 + EPy + E4O7 + 5664)(”(0 -olz+1lp- /5||Z)'
Case 3: For ¢ € (s;_1, ],
IF1(p, p) = F1(@, Pl z = Pagillo = @l 2, 1F2(@, p) = Fa@, 0 2 < Pallp = pllz.

Thus,

IF(@,0) = F@mlz < (Pi+Pa)(lo-dlz+llp-plz)

Consequently,

IF(@,0) = F @ 0)llz <@ (le-liz +lp-plz), where

w = max {51./410)\,1 + gQAgo)xg + glAzo + 52./440, (‘:3./41/.)\,1 + gS.Agj)Lg + 54@1)\1

+ 5663)\2 + 53./42]. + 55A4j + 54P1 + 567)2 + 54(92 + 56641 Pl + Pz}

Thus, F is Lipschitz with constant @ .
According to Proposition 2, F is o -Lipschitz with constant @ .
Next, we proceed to derive the growth condition.
Case 1: For ¢ € [a, 5],

|F1(@; p)(E)]

G 8 +8p+
% (Zk LY (G, p (G, (En))]

14
LY |f (5o, p(s0), (50D + ey Y Al oGl + i L3 g 50)) ).

m=1
10,0l 2
S(s0, 71 +82 - 1) /o
<O D (3 81+ 52+ ) + Slo0,81 +52) 2
1o m=1
S+ -1

p
(dl Z)\mg(gm» 82 + em)

0 m=1

+illollz + My) + X
1
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+d16(s50,5) ) g1z

5(51A101f1 +E1 Ay llollz + Er ALl llell z + E1AL,My.
Similarly,

| Fale, 0Nl z < (EaAsply + ExAs) @l z + Ea Az lg, 0l 2 + E2 A3, M.
Thus,

IF (@, )l 2z <(E1 AUy + 1) + EaAsy gy +1gy) + ErAzy + ExAs) (9l = + llpll2)
+ glAloMf + nggoMg.

Case 2: For ¢ € (g, 55,

[F1(, p)(e)l

- (6(8, Y +8—1)8(gj, 2 — 1) = B(e, v — 1)S(gj, 11 + 65 — 1)) (XP:A
- A S(sj, 75— 1) - A3 S(gj, 71 +85 - 1) "

m=1

p
X LAy p (), 9G] + LYY [f (5, 0(5)), @ (5| + i Y o

m=1

x L2 1)) + i3 ()] ) + (A1 Se, v~ 1) - Ay Se, 1 +8, - 1))

x (IMj(en ()] + L f g e e + a2 lo(ep) - 7))

I F1(p, 0l 2

(6(5]', "+ 52 — 1)6(8]‘, V2 — 1) — 6(5]', Y2 — 1)6(8]‘, "+ 82 — 1))
AyS(ej v —1) = A S(gj 1 +82 - 1)

<

r
X [ (D281 + 82+ 6,0 + S(s81 +82)) Uy o1z + Ly gz + Mp)

m=1

r
# (e ) 2 S(G 82+ 60) + 165,82l 2

m=1

+ (8572 - DAY -SG50 + 82— DA ) (Lullgllz + My
+6(g, 81 + 8)Up ol z + I llell = + My) + d16(8/,52)||€0||z>

< (&AL, + 0Dy + ) (Il z + 9l 2) + (E3Ay + ELy
+ &)@l z + (E3Ay + EaO DMy + E4M,.

Similarly,

IFa(, 0)ll 2 < (Es.As; + E6O3) Uy, + Iy (lpll = + |l 2) + (E5. Ay,
+ &Ly + EO)Ipll z + (Es.As; + E6O3)Mg + Eg M.
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Thus,
IF (@, o)llz < ((53/11,» + Oy + U )(Es A3, + E6O3) g, +1g,) + E3 Ay,

+ E5 Ay + E4ly + &Ly + E:05 + 604 ) (Il 2 + o1l )

+ (53./411. + 54@1)Mf + (55.143}. + 56®3)Mg + 54M1 + 56M2.
Case 3: For ¢ € (s5;_1, /],
IF1(e; 0l 2z < Lillellz + M, I F2(@, p)llz < Lallpllz + Mo.

Thus,

IF(@, oIz < (L1 + La) (lpllz + ol z) + My + M.

Consequently,

17 (@, p)llz = Lrgllte, Pz + MFg.
Hence the growth condition is satisfied. O
Theorem 7 The operator G is continuous and satisfies the following growth condition:
1G(p, 0l z < L (@, p)ll z + Mg, where
L% =max{6(e,81 + 82) s + 1) + &(e, 11 + )l + 1)
+d16(g,87) + dryS (g, 13), 0} and

Mg = max{S(e, 81 + 82)My + &(e, 11 + T2)M,, 0}.

Proof Consider a bounded subset B, = {[|[(¢, 0)llz < ¢ : (¢, p) € Z x Z]}.
Let {(¢n, pu)} be a sequence such that (¢, p,) — (¢, p) as 1 — oo within B.
To show that G is continuous. Let ¢, 9, p, p € B.
For & € [a,50] and ¢ € (¢, 5],

|G1(@ns ) (&) — Gi(e, p)(&)|

< I f (e, pa(e), gu(e)) — f (g, p(e), ()] + di L2 () — p(e)).

Using (H;) — (Hy), we obtain that

1G1(@n, o) = G1(@, Pl 2
< 6(&,81 + 8D (lpn— pllz + 0w — ¢llz) + di16S(,82)l0n — @l 2

—> Qasn — 0.

Similarly,

1G2(@ns o) — Gale, )l 2
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<6+ 1) (len—0llz + o —0¢llz) + d2S(e, )l pu—pllz

—> 0asn —> oo.
Thus,
196 o)~ G, )1z = (e 61 + 8201 + (e, 1 + T2

+d16(¢,62) + dr S (e, fz)) 1(@ns o) = (@, ) 2

—> Oasn —> oo.
For ¢ € (s;-1, /],
1G(@n, pu)(&) = Glg, p)(E)] 2 = 0.
Consequently,

1G (0> pn) — G0, P)Il 2z < max{S(e, 81 + 82)A1 + &(e, 11 + T2)Ay
+ d16(8:82) + d26(8, TZ)’ 0}”((0}17 pn) - (‘/’: p)”Z

—> 0asun —> o0.

= @ is continuous.
For & € [a,50] and ¢ € (¢}, 5],

1G1(@, p) < L2V |f (e, ple), (e + di L2 [g(e)].
Using (H;) — (Ha), we obtain

1G1(9, Pz <6(e,81 +8:)Us llpliz + by ol z + My) + diS(e, 8l =
Similarly,

1G2(0, Pz < & (e, 71 + 1)Uy @]l 2 + Ly 1 0] 2 + M) + da& (e, 12) 1 o 2.
Thus,

19,1z = (86,81 + 82)(Us + 1) + (e, 1 + )l +ley) + dr S(6,82)

+drS(e, 12)) (0, 0l z + &g, 81 + 82)My + G(e, Ty + T2)M,.
For ¢ € (s;-1,¢;],
1G(p, p)llz = 0.
Consequently,

1G(p: Pz = LG I(@, p)ll z + Mpg.

Hence the growth condition is satisfied. O
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Theorem 8 The operator G is compact.

Proof Let x C B, be bounded and {(¢,, p,)} be a sequence in x.
From the growth condition of G, it is clear that G x is uniformly bounded in Z x Z.
To show that G is equicontinuous.
Leta<e; <& <bh.

For ¢ € [a,50] and ¢ € (g}, 5;], we obtain

|gl((pm pn)(SZ) - gl(q)n: pn)(81)|

51+82 _ 51+52
sm[2(¢(82)_¢(51)) + (Y (&2) — ¥ (@)

~ (WD = V@) [ llpllz + gz + M) +

1 2
m[ (¥ (&2)

— YD) + (W) - ¥(@) - Wen) - @)
Using (H;) — (Hy), we get
1G1(@n> Pn)(€2) = G1(@ny Pu)(ED)] 2 — O as €2 —> £1.
Similarly,
1G2(¢ns Ln)(€2) = Go(@ms Lu)(ED)l| 2 —> O as €3 —> &1.

Thus,

1G(@ns Pu)(E2) — G(@ns pr) (D) 2 — O as e —> &1.

For ¢ € (s;-1,¢;],

1G (@, pu)(E2) = G(@, p)(ED)] 2 = 0.

Consequently,

G (@ns Pu)(E2) — G(@ns pu)(ED) |z —> O as &3 —> &1.

This implies that G is equicontinuous. By the Arzela—Ascoli theorem [27], G is compact.
According to Proposition 3, G is o -Lipschitz with constant 0. O

Theorem 9 If (H,) — (Ha) hold and w = max {Q, Y, A} € [0, 1), where

Q = E1 Ak + Ea Az g + E1Agy + E2 Ay,

Y = E3 A + EsAzha + EaO1h1 + EgO3ha + E3 Ay + Es Ay, + E4P1
+ &Py + E40, + EgOy and

A =P+ Py,
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then the coupled system has at least one solution (¢, p) € Z x Z and the solution set of (1)
is bounded in Z x Z.

Proof We observe that F is o -Lipschitz with constant @ € [0,1) from Theorem 6 and G
is o -Lipschitz with constant 0 from Theorem 7. By Proposition 1 and Definition 1, J is a
strict o -contraction with constant @ . Hence J is o -condensing.

Now consider the set

S= {((p,p) € Z x Z :there exists w € [0,1], (¢, p) =w j(qo,p)}.

We need to show that S is bounded in Z x Z.
Let (¢, p) € S. Then from the growth conditions of Theorem 6 and Theorem 7, we have

(0, 0) = T (9, p) = o(F(p,p) + G(@,p)),
and

1@,z =0T (9Pl 2
<o(IF @, )l1z + 19, 0)ll2)
<o(Lrgll(@ Pz + Mg + Ligll @, )]z + Mg )

=0(Lrol@ Pz + Ligl@:p)l1z) + 0 Mg + Mig)-

Thus, S is bounded in Z x Z. According to Theorem 4, there exists ¢ > 0 such that S C
B.(0), hence

DU -w J,B.(0),0)=1, forall w € [0,1].

Therefore, J has at least one fixed point, and thus the coupled system (1) has at least one

solution. 0

5 Example

In this section, we provide an example to demonstrate our results. The following bound-
ary value problem finds applications in various fields where complex dynamics, memory
effects, and non-local interactions play a significant role. A few examples include popula-
tion dynamics with delays, chemical reaction networks, epidemiological models, financial
systems with delayed reactions, and many more.

In particular, we can explain the following boundary value problem in the context of a
biological system. The state variables ¢(¢) and p(g) may represent the concentration of a
hormone in the bloodstream and the concentration of a cytokine produced by immune
cells in response to the hormone, respectively. The sequential derivatives corresponding
to ¢(¢) help to capture the complex temporal behaviour and memory effects of hormone
levels in the bloodstream, while the sequential derivatives corresponding to p(¢) model
the delayed and memory-dependent response of cytokine production. The functions M,;
and NV describe gradual changes in hormone and cytokine levels, respectively, over cer-
tain intervals. This model could be used to predict how the hormone and cytokine levels
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evolve over time, to design medical treatments by understanding the delayed responses
and interactions between hormones and cytokines, and to analyse biological rhythms and
cycles, where the past states significantly influence future behaviour.

Investigating the existence of a solution is essential for ensuring the mathematical va-

lidity, practical applicability, and predictive capability of the model.

Example 1 Let us consider the coupled system of 1 -Hilfer sequential fractional boundary

value problem with non-instantaneous impulses

=12 £-12
DI (MDD gte) = fie, ple) oo, £ € 13, 21UL )
e-12 e=12
HpEE T (DI 1) pie) = gle o), e, < 14, 21U01, 2,
p(e) = Mj(e, 0(e)),  ple) = Nj(e, p(e)), €€ (3,11, (10)
3 &'85-12
(D=0 0(5)= XGRS o),
" 2 £-12

2 .76 .
p(1)=0, p(s) = S GCLPLT T p(%), j=0,1.
n=1

where
1 . cose 1+ |p(e)] 1
Fep@ @) = 1o sinlp@l+ o (o |WN) =
26, 0(8), p(e)) = sin® |p(e)] s lo(e)] . 1
T 12v5+¢2 (A+e)12+|pe)) 147
lp(e)l 1 £ lo(e)] 1
Mye,pe) = Ve +3( 20 ) 4 = Nie ple)) = —— (L) 4 —
(e, 9(e)) = Vet + <20+|<p(8)|>+11 (&:0(€)) £+1<16+|p(s)|)+18
Here,
A 1 2 5 9 p 1 4 3,1
= =—,01=—-0=-T=-,T=— = = =
1 9 2 5 1 2 3 1 2 10 1 2 2 4 1 7
d_l)\_Sm _m+4 _m _<n>2 _25_11
I R A L il Py Ll e
1 3
ﬂ=80=1<50=1<81=1<51=b=§.

We calculate:

y1 A~ 0.8333, 7, ~0.9333, 1, ~ 0.8125, 7, ~0.9750, Ay, ~ 0.0781, Ay, ~0.1421,
Agy ~0.0555, Ag, ~0.1086, Az, ~ 1.2463, A3, ~ 1.1693, A4, ~ 1.0803,

Agy 71,0549, Ay, ~0.0029, A;, ~0.0128, Ay, ~0.1133, Ay, ~0.2403,

Asy ~0.0025, Az, ~0.0105, Ay, ~0.0481, Ay ~0.1122, ©; ~0.0019,

®, A 0.0075, O3 ~ 0.0023, O4 ~ 0.0039, P; ~ 0.1000, P, ~ 0.0714,

&1~ 1.0078, £~ 1.0037, £~ 0.9752, £, ~ 0.0022, & ~ 0.9796, £ ~ 0.0013.
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Comparing with (H;) — (Ha), we observe that

NI SV DRI SRV BV S |

" Ty T e T e Ty e T 1 M T 1o

]\/Il=i Lz=i ]\42=i )\1=i )\2=i PM =i P_/\/’ i
11’ 14’ 18’ 13’ 15’ 171007 14

We determine @ = max {Q, v, A} =0.3462 < 1.

This implies that F is o -Lipschitz with constant 0.3462, and thus, G is o -Lipschitz with
constant zero. Consequently, J is o -Lipschitz with constant 0.3462.

Since § = {((p, p) € Z x Z :there exist w € [0,1], (¢, p) =w J (¢, p)}, by calculation, we
obtain ||(¢, p)|| ~ 0.0586.

Then S is bounded, and by Theorem 9, the BVP (10) has at least one solution.

Moreover, the numerical results of Q2 for all ¢ € [i, %] and Y forall ¢ € [1, %] for various
values of order 0 < 81,82, 71, T2 < 1 are obtained and are graphically presented in Fig. 1a
and Fig. 1b, respectively.

We observe that A =0.1714 for all ¢ € (%, 1].

We observe that for an increase in time, & increases gradually and is clearly less than 1.
Also, when the order increases, @ decreases gradually. The results are shown in Table 1

and graphically presented in 2.

5467 +7 €[1,2) b,+8,,m 47, € [1,2)

179 170t

(a) Qforalle € (i, %] and order € [1,2). (b) Y for all e € (1, %] and order € [1,2).

Figure 1 The Lipschitz constant in different time intervals

Table 1 @ for various orders of the FDE

& w

il E -5 —Z _o T} T} G Y]
0720 0720 0720 OiZO O720 0720 O720 0720 0720

0.25 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714
0.50 0.4886 0.3130 0.2035 0.1714 01714 0.1714 01714 0.1714 01714
0.75 0.5238 0.3929 03161 0.2561 0.2085 0.1714 0.1714 0.1714 0.1714
1.00 0.6412 0.5289 04366 0.3608 0.2984 0.2468 0.2042 0.1714 01714
1.25 0.7730 0.6522 0.5482 04596 0.3844 0.3210 0.2676 0.2228 0.1853
1.5 0.8912 0.7653 0.6524 0.5532 04672 0.3932 0.3300 0.2763 0.2308

10 denotes the order of the FDE.
2¢ denotes the time interval.
3w = max{2, T, A}.
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Figure2 @ =max{, T, A}

1.6

1.4
1.2

5,46y, 47, € [1,2)

6 Conclusion

In this paper, we investigated the coupled system of 1 -Hilfer sequential fractional BVPs
with non-instantaneous impulses. In a piece-wise continuous space, we derived the solu-
tion of the system. On the basis of TDT, the existence results of the system were proved.
An example was constructed to demonstrate the results. Additionally, a graphical analysis

was carried out to verify the results.
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