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Abstract

Purpose: Transcriptomics has been revolutionized by the development of microarray
technology, which makes it possible to simultaneously measure thousands of genes' levels
of gene expression. This innovation holds an immense potential in understanding
cardiovascular diseases such as Ischemic Cardiomyopathy (ICM) and Non-Ischemic
Cardiomyopathy (NICM), which present substantial health concerns on a global scale
implying the need for studying ICM and NICM exhaustively. The primary objective of
this proof-of-concept paper aims at uncovering potential biomarkers and learn using data-
driven method to identify important genes that are differentially expressed.

Methods: Microarray data from Gene Expression Omnibus (GEO) repository provided
the dataset, which includes expression data from peripheral blood mononuclear cells
(PBMC) of patients with ischemic and non-ischemic cardiomyopathy as well as a control
group that was age and gender-matched. This research paper endeavours to conduct
comprehensive microarray data analysis for transcriptomic profiling aimed at the
identification of differentially expressed genes (DEG) associated with cardiomyopathy.
Leveraging a data science process model, this study delves into the exploration and
interpretation of a specific dataset, GDS3115, curated for its relevance to cardiomyopathy.

Results: In total, five DEG showing significant differences in their Gene Expression
Profiles to make diagnostic / prognostic analysis were identified. The inferences are
tabulated and plotted the DEG in volcano plot as an interpretation of result obtained.

Conclusion: Candidate biomarker genes such as CX3CRIC,
HSPAI1L///HSPA1B///HSPA1A, JUN, ZNF331, RORA are ICM’s therapeutic targets.
This study identified several DEG that may be involved in the pathogenesis of
ICM/NICM. This abstract synthesizes the research idea, workflow, methodologies
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employed, and the potentialimplications of the study in identifying cardiomyopathy
related genes via Biological analysis usingthe GDS3115 dataset.

Keywords: ischemic cardiomyopathy, drugs, non-ischemic cardiomyopathy, Robust
Multi-Array(RMA), IQR, Gene Filtering.

Introduction:

The last stage of coronary artery diseases are ICM which have coronary artery
constrictions, reactive cellular hypertrophies, myocyte deaths, and ventricular scars as
characteristics [9]. This kind of cardio myopathy carries a significant danger to one's
health because of the high rate of sudden cardiac death among ICM patients worldwide
[1]. Surgical vascular bypass, interventional angioplasty, and medication therapy are the
three main traditional treatment modalities for ICM [2]. Nonetheless, certain patients'
vascular lesions reveal tiny vessel illnesses that are unsuitable for

vascular obstructive intervention or surgery [12]. Therefore, novel treatments for ICM
that meet present clinical requirements are required.

The etiology of cardiomyopathy has been successfully predicted by gene expression
profiling [5]. Furthermore, the topological structure of biological networks has been used
to identify a few putative disease-related gene markers [7, 8]. Hence, applying a
bioinformatics method might help identify new biomarkers for treating cardiomyopathy.
This work used microarray data analyses based on gene expression profile (GDS3115) in
order to explore and identify novel biomarkers. Additionally, it was envisaged that by
screening the new biomarkers, additional understanding of the molecular underpinnings
of ICM would be obtained. This might aid in the development of new medicines for ICM
as well as the selection of a suitable treatment plan. Patients are not [5] receiving treatment
in a timely manner and there are very few treatment options because to the uncertain
mechanism behind ICM. Novel biomarkers are therefore important to research and find
because they can help with ICM/NICM diagnosis and preventive care.

GEO database provided microarray data for this investigation where DEG associated with
ICM/NICM were determined. Figure 1 displays the flowchart of this work’s suggested
design.
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Figure 1: Proposed Workflow Architecture

In the study, the research methodology involves the application of robust statistical
algorithms, notably the Robust Multi-Array (RMA) algorithm and interquartile range
(IQR), to pre-process and eliminate noise from the microarray data, ensuring the reliability
of subsequent analyses. Hierarchical clustering, specifically using the complete linkage
method, is utilized to reveal distinct gene expression patterns among different patient
cohorts, potentially illuminating biomarkers or pathways relevant to different forms of
cardiomyopathy. Principal component analysis, downstream analysis, and functional
enrichment analysis were used in investigations of ICM’s underlying mechanism. Future
research may find it useful to refer to medication predictions associated with gene
identifications and obtain information required for this study i.e. identifying new
biomarkers and treatment targets for [CM/NICM.

Materials and Methods

Data pre-processes: Affy package [4] in R was used to pre-process raw CEL format data
which included background corrections and normalisations. Limma package [4] in R
statistically compared gene expression patterns of ICM and control groups. Genes were
deemed substantially different if its —log10 (p value) >5 and log2FC (fold change) > -1.1
and < 2. Using pheatmap of R[11], hierarchical clustering [15, 3] were carried out on
DEG expression levels based on Euclidean distances.

Proposed Architecture According to the architecture proposed in the Figure 1, the
workflow began with gene expression profiling and data pre-processing utilizing the
GDS3115 dataset consisting of 11 samples. This phase encompassed missing value
imputation, data normalization, log2 transformation, quality assessment, and gene
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filtering to ensure robustness and reliability in subsequent analyses. The following phase
is focused on identifying DEG as a critical feature extraction process. A top table was
generated, resulting in the identification of five DEG, comprising two up-regulated and
three down-regulated genes, providing initial insight into potential molecular signatures
associated with the studied cardiovascular conditions. Finally a comprehensive biological
analysis and interpretation were performed. Principal Component Analysis (PCA) was
utilized for dimensional reduction and visualization, providing an overview of sample
relationships. Subsequently, downstream analyses, including Hierarchical Clustering,
offered insights into potential gene expression patterns and clustering within the dataset.

R Programming: R is a versatile statistical programming language commonly used in
bioinformatics for analyzing microarray data, offering a rich ecosystem of packages like
limma and DESeq?2 that facilitate differential gene expression analysis and visualization
through statistical models and graphical representations.

Python: Python, with libraries such as pandas, NumPy, and scikit-learn, is increasingly
utilized in transcriptomic analysis for preprocessing microarray data, conducting
statistical tests, and performing machine learning algorithms, providing a flexible and
powerful environment for gene expression studies.

Hierarchical Clustering: Hierarchical clustering, using the complete linkage method,
organizesgenes or samples based on their similarity, forming clusters by considering the
maximum distance between all possible pairs of elements from two different clusters,
commonly employed in microarray data analysis to identify distinct expression patterns
among genes or experimental conditions.

Robust Multi-Array (RMA) Algorithm: RMA is a robust preprocessing algorithm
widely applied in microarray data analysis, known for its ability to normalize and
summarize probe-level intensities, reducing technical variations across arrays, and
enhancing the accuracy of detecting DEGby improving data quality.

Interquartile Range (IQR) in Microarray Data Analysis: The IQR, a measure of
statistical dispersion, is used in microarray data analysis to identify outliers and filter noise
by calculating the range between the first and third quartiles of expression values, aiding
in the identification of significantly DEG by minimizing outlier value impacts for
improved robustness of analyses.

The integration of R programming facilitated the workflow, allowing for statistical
analyses and visualization, while Python aided in generating essential visualizations like
scatter plots and volcano plots. The utilization of multiple analytical tools and
methodologies provided a holistic understanding of the molecular landscape associated
with ICM, NICM, and healthy controls.
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Data Science Process Model
Using the above concepts data science process model is designed to identify the
differential expression genes. The data science model of the study is presented in Figure

@8 i B

Objective Data collection Exploratory Data Dimensionality Reduction Model Building

Figure 2: Data Science Process Model

Objective of the model: The primary objective of this proof-of-concept aimed to uncover
potential biomarkers and gain insights into the molecular mechanisms underlying using a
comprehensive data- driven approach.

Description of Data Collection: The dataset GDS3115, obtained from the GEO
Repository and originating from human (Homo sapiens) samples, comprises 11 distinct
samples intended for analysis. These samples were segregated into three patient groups for
study:

1. ICM: This subset involved 12 individuals diagnosed with ischemiccardiomyopa-
thy.

2. Non - Ischemic Cardiomyopathy (NICM): Consisting of 12 individuals diagnosed
with non-ischemic cardiomyopathy, specifically NYHA II-IV CHF patients.

3. Control Group: Comprised of 12 age- and gender-matched individuals, this group
served ascontrols for comparative analysis.

This dataset, with its comprehensive analysis of gene expression in PBMCs from
individuals with heart failure and matched controls, provides valuable insights into the
molecular mechanisms underlying different forms of cardiomyopathy. It serves as a
resource for researchers investigating genetic and molecular under pinnings of heart
failures and potentially contributes to the identificationof novel therapeutic targets or
diagnostic biomarkers for this prevalent cardiovascular condition.

Exploratory Data Analysis (EDA) is the third step in the data science process model as
represented in Figure 2. It is the statistical approach of analyzing the data. This step plays
a vital role in understanding of the data and summarizing the data through visuals. The
graphs and plots provide crisp insights about the data as represented in Figure 3.

Dimensionality Reduction: At this stage, an analysis of the relationship between
variables is very essential. The significance of using this step before model building is to
analyze the relationship between variables, identifies the underlying patterns, and aims at
reducing the number of dimensions by replacing them with latent variables called factors.
The output of this step is represented in Figure7 and 8.
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Model Building: The Naive Bayes algorithm and Random Forest is used as a classifier
to measurethe performance of the dataset GDS3115. The Classifiers both used are
supervised learning technique that can be used for both classification and regression. It is
considered one of the fastest and most accurate algorithms used in prediction, especially
for large datasets. The Naive Bayes algorithm

technique could be used for multi-class classification (when the response variable is not
binary and has more than two classes) also. This is based on Bayes Theorem. In the
machine learning context, ais the response variable and b; are the predictor variables
representing bi, bz, bs... bn. The Naive Bayesformula is as follows:

a by P(a)
Pl—=)= P(—) — 1
(b) a) “P(b) 1)
Where : P(a) implies probabilities of response variables, P(b;) represents probabilities of
predictors, P(a/b;) stands for conditional probabilities of response variables assuimg

variables for predictors (predictions), P(bi/a) implies conditional probabilities of
occurrence of predictor variables given response variables (training data).

Future directions for investigation: In the near future, many longitudinal samples will
need to undergo additional experimental validations of presented results. The expression
levels of biomarkers identified in this investigation should be assessed in people with ICM
or in high-risk persons for novel gene treatments and preventions of the illness [33].

Statistical Analysis The significant differences between two groups were examined using
t-test. Corrected P-values were computed using Benjamini and Hochberg approach to
control error rates. Statistical significances were defined as an adjusted P-value < 0.05

[5].

Results
The study initiated by pre-processing and quality-checking the GDS3115 dataset,
ensuring the reliability and consistency of the data. Subsequently, differential expression
analysis is done toidentify genes that exhibit significant changes in expression levels
under specific experimental conditions like t-test, Benjamini and Hochberg. The results
of each phase are represented in the form of visualization as follows.

Gene Expression Profiling (Data Pre-processing)
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Figure 3: A. Missing Value Imputation B. Histogram for Normalized Expression Data
C. Histogram for after Log2 Transformation D. Box plot after Log2 Transformation E.
Hierarchical Clustering for log> Transformation Data F. Quality Assessment Report

before and after Normalization using RMA Algorithm.
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Quulity Assessment before Normabization (Raw Data) This report has been created with armyQualityMetrics 3520 under B version

4.2,

Section 1; Between arrav comparism

Figure 1: Distances herween arrays.

Flgure 1: shows a false cobor heammap of the distances berween arays, The color

-scale is chosen to cover the mnge of distances encountered in the dataset. Patterns

i this plet can indicate clustenng of the amys either becaise of ntended
biclogical  or  unimended  experimental  factors (boich  effects),  The
distance d,. between two  armayss and bis computed as the mean  obsolute
difference (L -distarce) between the data of the armys (usimg the data from all
probes without filtering). In formula, o = mean | 4, - My |, where M, is the value
of the i-th probe on the g-th array. Outlier detection was performed by looking for
arrays: for which the sum of the distainces 1o all other arrays, 8= oo was
exceptiomally large, One such array was detected, and it is marked by an astensk,*.

Figure 2: Principal Component Analysis.
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-5 1] L]
Pei

Figure 2 shows a scatierplot of the amavs along the first two principal
componems. This plot 15 used o expbore if the wrmays cluster, and whether this 18
according o an imended experimental factor {such a faewor is indicated by color
wsing the ‘migroup’ argument.

Principal component analysis @50 dimension reduction and visualisation technigue
ihat i3 here used 1o project the multivariate data vectos of each aray info-a two-
dimensional plot, such that the spatial arangement of the poinis in the plot retlects
The overall dta (disysimilurity between the armys,

Section 2: Array intensity distribations

Figure 3: Boxpluts,
—
I
" —
g =1}
ST
* —

Figure 3 shows hboxplots  representing  summories of  the signal  mtensity
distribations of (he arfoys. Ench box comesponds 1o one array. Tyvpically, one
expects the boxes 1o have similar positions and wicths, 1T the distnbution of an
array is very different from the others, this muy indicate an experimental problem,
Outher  detection  was  performest by computing the  Kofmogoray-Smirmay
statistic K, between each mrray's distribution and the distribution of the pooled
dinkn.

Figure 4: Density plots,

(=]

Doty
B
N
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Figure 4 shows density cstimates (ssmoothed: histograms) of the data, Typically,
the distnbutiong of the arrays should have similar shapes amd mnges. Amavs whose
distributions are very different from the others should be considered for possible
problems. Variows features of the distributions can be indicative of quality related
phenomena.  For instance, high lewels of background will shifi an army's
distribution 1o the righi, Lack of signnl diminishes s nghi wal, A bulge o the
wpper end of the imensity range often indicates signal saturation.

Section 3: Variance mean dependence

Figure 5: Standard devistion versus rank of the
[T

immime i

Figare 5 shows a density plot of the standard devistion of the infensitics scross
armivs o the y-axis versus the rank of Ueerr mean on the c-pxs. The fed dids,
connected by lincs.. show the minning medion of the standord deviation. After
i lisation and transformstion to a logarithm (<like) scole, one typically expects
ihe red line do be approximately barzonial, thar s, show no substantial wend, In
some cases. 8 hump on the nght hand of the x-axis can be observed and is
sympiomatic satumiion of the intensities.
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Section 4: Affvmetrix specific plots

Figure 6: Relaiive Log Expression (RLE).

e

Flgare 6 shows the Relaiive Log Exprossion (RLE) plol. Asrays whose boxes e
centered away from 0 ond‘or ore more spread out are potentnlly  problematic.
Outher detection was performed by computing  the Kolmogerov-Smimov
statistic &, between cach array's BLE values and the pooled, overall distribution
of RLE wahues:

Figure 7: Normalized Upscaled Stondard Error

(NUSE),
L
1
=
: i L= 13
—
P [
- VIR

Figure 7 shows the Normalized Unscaled Staomdard Ercor (NUSES plot. For each
arvay, the boxes showld be centered sround 1. An amay were the vilues are
clevated relative tothe other nrmuys is typically of lower quality. Outlier detection
wiss performed by compaiting the 75% quantile M. of each
arcay's WUSE values and looking for arrays with large N,

Figure #: RMNA digesiion plot.
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Flgure 8 shows the BNVA digestfon plot. The shown values are compuied from the
pre-processed data {after background correction and quoniile normalisaion,
Esich arvay 15 represented by o single ling; move the maess over the lies 0 see
their corresponding sample names. The plot can be wsed to identify aray(=) that
havie a shope very different from the others. This could imdicate that the RNA used
for that array has been handled differently from what wis dong for the other
HITHYE.

Figure %: Perfect mutches and mismatches.

Figure % shows the density distnibutions of the log. intensities grouped by the
matching type of the probes. The blue line shows a density estimate (smoothed
histogram } from intensitics of perfect match probes (PM), the grey line, one from
the mismatch probes (MM) We expect that MM pobes have poorer
liybisdization tsan PM probes, aisd thus that te PM ciirve be to the right of the
MM curve

Section 5: Individual array guality

Figure 10: MA plois.
Lo DREE L, Lty

;---

Figure 10 shows MA plots. M and A are defined as:

M= Tog 201} = bog2(12)

A= 102 (log2{ 1 pHop2(12]),

where 1 15 the miensity of the wmay studdied, and 1 s the mensiy of o "psewdo”-
areiy that consisis of the median across armays, Typically, we expect the mass of
the distribution in on MA plog to be concentrated along the M = 0 axis, and there
shauald b no trend a0 M oas & lunction of AL 1] there 85 8 trend 10 the low'er range
of A, this ofien indicates that the anys have different background intensities; this
may be addressed by background comection. A trend in the upper range of A can
inshicate saturation of the measurements, i mild coses, this may be addressed by
rwsts-lisear pormalisation (e.g. quantile normalisation),

Outhier detection was performed by computing Hoeffding's statistie D, on the
joint dstabution of A wed M for each armay, The value. of £, 15 shown mthe
panel headings. U arcays had 200,15 and were marked as outliers.

Fignire 1 1: Spatinl distribeution of M.

Figare 11 shows fulse color representations of the arrays" spatial distributions of
feature mlznsities (M), Normally, when the feateres ore distributes) rmdomly on
the arrays, one expects 1o see a uniform disribution; control featwres with
particularly high or low intensities moy stand out. The cobor scale 35 proportional
tr the ranks of the probe intensitics. Note thut the renk scale has the potential to
amplify patierns thai are small in amplifude but systematic within an army, I is
possible to switch ofi the mnk scaling by modifying the argument scale i the call
of the agm spatial lunction,

Cuthier detection was performed by computing F.. the sum of the absolutes value
of low frequency Fourier cocfficients, o5 a memsure of lorpe scale spatial s
tructures, The value of & 15 shown in the panc] hesduigs,
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3,520 umder B version 4,22

Cuality Assessment Afler RMA Normalization {Normalieed Datal: This report has been crented with aravOualinyMetrics ]

Section 1: Befween array comparison

Figure 1: Distances beiween arrays.
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Figure 1 shows a false cobor heatmap of the distances between arrays. The
color scale is chosen to cover the mnge of distances encountered in the
dntuset, Patterns in this plot can indicate clustering of the amays either
because of infended baological or unintended experimental factors: (batch
effeciz), The distance ol between two arrays & and b is computed a5 the
mean abselute difference (Li-distance) between the data of the ormays (using
the dats from all probes withoul ihemng). o fosimala, d. = mean | A, -
M |, where M, is the value of the i-th probe on the e-th amray. Outlier
detection wos performed by looking for arrays for which the sum of the
distances to all wher amays, 8= Lyody wis exceptionally lirge. No such
arrmys were detected,

Figure I: Principal Component Analysis.

Figure 3 shows-a scatterplot of the: areayi abong the first two principal
components. This plot is used 1o explore if the armys cluster, and whether
thiz 1= sroording to an imtended experimendal factor (such o factor - s
indticated by color psing  the  fimigroup’  argument),
Principnl component analvsis is & dimension reduction and visualisation
technicue that 1s here used 1o project the mulivenate datn vector of each
acray inte & two-dimensional plot, such that the spatial arrangement of the
poits i the plot reflects the overal] data (disisimilority between the armys

Figure 3 shows boxplots representing summaries. of the signal intensity
distribations of the arrays. Each box corresponds 1o-one armay. Typically,
one expects (he boxes to have similar positions and  widshs! 1T the
distnbution of an array 15 very different from the others, s may mdicate
on experimental problem, Outlier detection was performed by computing
the Eolmagomy-Smimov statistic &, between cach army's distribution and
the diztribution of the pooled dati.

Figure 4: Dengity phois,

5 il Am T

|

£ § [l L {1

Figure 4 shows density estimates (smwoothed losograms) of the data
Typically, the dismibutions of the srrays should have similar shapes sad
mnges. Armays whose distnbutions are very different from the others should
be considered for possible problems. Varous fewtures of the disarbutions
can be indicative of quality related phenomena. For instance, high levels of
background will shift an army's distribation 1o the right. Lack of signal
diminishes it raght il A bulge o1 the upper end of the intensity mnge often
idicares signil saturation.

Section ¥: Variance mean dependence

Figure 5: Standard deviation versus rank of the
Mmean.

e —

Figure § shows a density plid of the standand deviation of the intensites
ACTORS arrays on the y-axis versus the rank of their mean on the v-axis. The
red dbots, connected by lines, show the runming median of the standard
devintion, Afier pormalisation -and ransformation 1o & logarithm -like)
scale, one typically expects the red line 1o be approsimately horizontal, that
1%, show nio substantinl rend. In some cases, o humpon the rght hand of the
xeaxis can be observed and is symplomatic of a ssturston of the intensites.

F. Quality Assessment Report

Gene Filtering
Filtering Low Variance Probe Sets in Microarray Data Analysis
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Microarray data analysis often involves preprocessing steps to filter out probe sets with
low variability across arrays. In this study, filtering step is performed to remove probe sets
exhibiting low variance, specifically those falling below the 0.25 quantile threshold across
the entire dataset. Initially,the dataset is comprised a total of 22,283 probe sets. To ensure
the reliability of subsequent analyses and to focus on probe sets exhibiting substantial
variability, a filtering criterion based on variance is implemented. Probe sets with variance
values below the 0.25 quantile threshold were deemed to have low variability and
consequently removed from the dataset.
Upon implementing the filtering criterion, the dataset underwent a reduction in the
number of probe sets. The total number of rows post-filtering amounted to 16,712,
indicating the removal of 5,571 probe sets with lower variance levels.

Quantification of Filtering:
The reduction from 22,283 to 16,712 probe sets equates to a filtering percentage of
approximately 75%. This quantifies the impact of the filtering process, illustrating that
approximately three-fourthsof the probe sets were eliminated due to their lower variance
levels falling below the 0.25 quantile threshold.

Significance of Filtering:
Filtering out probe sets with low variance is a crucial preprocessing step in microarray
data analysis. This step helps in streamlining the dataset by focusing on probe sets with
higher variability, which areoften more informative and likely to represent genes or
genomic regions displaying meaningful differences across experimental conditions or
samples.

Filtering Probe Sets without Gene Annotation Information in Microarray Analysis
Accurate gene annotation is crucial in microarray data analysis to ensure the relevance
and interpretability of results. In this study, a filtering step is performed to eliminate probe
sets lacking gene annotation information from the dataset. Initially, the dataset consisted
of 22,283 probe sets derived from microarray data. Recognizing the importance of gene
annotation for meaningful analysis, filtering process is initiated to exclude probe sets that
lacked associated gene annotation information.

Quantification of Filtering:

The reduction from 22,283 to 15,992 probe sets signifies a filtering percentage of
approximately 72%.This quantifies the impact of the filtering process, illustrating that
nearly three-fourths of the probe sets lacking gene annotation information were excluded
from the dataset.

Significance of Filtering:

Filtering out probe sets without gene annotation information is essential to ensure that
subsequent analyses focus on annotated genes, facilitating meaningful interpretation of
gene expression data. Genes with proper annotations provide valuable insights into
biological functions, pathways, and associated molecular mechanisms.
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Filtering Probe Sets with Multiple Gene Symbols in Microarray Data Analysis
Accurate gene annotation and assignment of probe sets to specific genes are crucial for
meaningful interpretation in microarray data analysis. In this study, filtering process is
initiated to exclude probe sets associated with multiple gene symbols, aiming to ensure
clarity and specificity in gene identification. Initially, dataset contained 22,283 probe sets
derived from microarray data. Recognizing the need for precise gene attribution, a
filtering criterion is implemented to remove probesets linked to multiple gene symbols, as
these cases might introduce ambiguity in gene identification.

Quantification of Filtering:
The reduction from 22,283 to 9,982 probe sets represents a filtering percentage of
approximately 45%. This quantifies the impact of the filtering process, demonstrating that
nearly half of the probe sets linked to multiple gene symbols was eliminated from the
dataset.

Significance of Filtering:
Filtering out probe sets associated with multiple gene symbols enhances the specificity
and accuracy of gene attribution in microarray data analysis. The removal of ambiguous
or non-specific gene assignments ensures that downstream analyses focus on probe sets
uniquely associated with individual genes, thereby improving the reliability of biological
interpretations.

DEG(Feature Extraction)

Heat maps are used to identify genes which are regulated and associated with particular
condition[14]. A heat map displaying the differential expression of 250 genes from the
top table has been generated, employing various statistical measures such as adjusted P-
values, P-values, and F-values. The values ranged from -0.75 to 1.00, with negative values
indicating down regulated genes, positive values signifying up regulated genes, and the
magnitude representing the extent of expression changes.The heat map of 250 DEG’s

from 22283 rows of data are depicted in Figure 4, which illustrates distinct gene
expression profiles between ICM samples and normal controls [13].

Heat map for 250 DEG’s from 22283 rows of data

Figure 4: Heat map illustrating DEG. The color gradient, ranging from yellow to green,
indicates the gene expression values relative to the ischemic cardiomyopathy group
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compared to control groups, representing down to up regulations, respectively.

Distribution of Statistical Significance (-log10(P-Value)) Among Top Genes
The analyses of differential gene expression often involves the identification of
statistically significantgenes. In this investigation, a top table comprising 250 genes
extracted from a dataset containing 22,185 rows of data were analysed. The visual
representation of the distribution of statistical significance using a histogram plot based
on the negative logarithm of the p-values (-log10(P-Value)) derived from the top table is
Histogram of Jog10{top_tablesP.Value)

fistogram of fold-chango{Biological Skgnific
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Figure 6: Histogram of fold-change (biolgical

| Figure 5: Histogram Plot using top table P valuez |

The histogram depicts a distribution of statistical significance among the top 250 genes. The x-axis
range from 4 to 16 signifies varying degrees of statistical significance, with higher values
indicating increased significance. The y-axis illustrates the frequency of genes falling within these
significance levels. The peak in the histogram between the -log10(P-Value) range of 12 to 13
indicates a concentration of genes with extremely high statistical significance in the dataset. When
the value exceeds 13 and reaches towards 16, it indicates that these genes have extremely low p-
values.

This visualization aids in understanding the range and frequency distribution of statistical
significance levels, contributing to the identification and prioritization of genes with
higher levels of statistical confidence in the context of differential expression analysis.

1. Likelihood of True Association: The peak in this range suggests that a substantial
number of genes within the top 250 genes exhibit exceptionally strong evidence
of differential expression or association with the studied conditions or factors.

These genes are likely to be highly relevant or crucial in the context of the
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biological phenomena being investigated.

2. Potential Biological Significance: Genes with such high statistical significance
(representedby -log10(P-Value) in the range of 12 to 13) might indicate important
regulatory mechanisms,key molecular players, or biomarkers associated with the
experimental conditions. These genes could potentially serve as targets for further
functional validation or exploration in subsequent studies due to their robust sta-
tistical support.

In summary, the peak in the histogram within the 12 to 13 -log10(P-Value) range signifies
a notable concentration of genes displaying exceptionally strong statistical significance,
suggesting their potential importance and relevance in the biological context under
investigation.

Exploring Biological Significance through Fold-Change distribution among top genes
Biological significance in gene expression analysis is often assessed through fold-change
values, indicating the magnitude of differential expression between experimental
conditions. In this analysis, the dataset comprising 22,185 rows were utilized and
extracted a subset of the top 250 genes based on differential expression. Histogram
graphic was used to show distributions of fold-change values amongst these top genes.
The distributions of fold-change values amongst top 250 genes were shown in histogram
graphic. The x-axis ranges from -4.0 to -1.5, representing different fold-change intervals,
while the y-axis illustrates the frequency distribution, spanning increments of 2000 from
0 to 10000.

This describes the significance of the histogram plot in visualizing distributions of fold-
changes amongst top genes and emphasized the purpose of using fold-change as a measure
to assess the magnitude of differential gene expression between experimental conditions.
A higher absolute fold-change value indicates a greater magnitude of differential
expression between experimental conditions. In this case, the peak in the range of -3.0 to
-2.5 signifies that a substantial number of genes among the top 250 exhibit moderate to
moderately high differences in expression levels. These genes are likely to have notable
biological significance and may serve as potential candidates for further investigation in
understanding their roles in the studied conditions or biological processes.

Below describes the histogram plot generated from the fold-change values of the top 250
genes derived from a dataset of 22,185 rows.
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Principal Component Analysis
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Figure 7: A. PCA Analysis with outliers B. PCA Analysis without outliers C. PCA
Graph of Variables D.

Scree plot of PCA E. Percentage of variance associated with each dimension of PCA

variable

Scatter Plot: Positive correlation exists: When the “y” variable tends to increase as the “x”

increases, we say there is a positive correlation between the variables. Few outliers are there.
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Figure 8: Scatter Plot between Control pool, NICM and ICM.

Results Identification of DEG’s in ICM/NICM samples compared with normal
controls: Between the ICM, NICM, and control groups, a total of 5 genes with DEG were
filtered out; 2 of these genes had up-regulated expression and 3 had down-regulated
expression [14]. Table 1 displays the DEG that were found to have significantly different
gene expression patterns. Figure 9 plots these DEG using a volcano plot to highlight the
different gene expression profiles between the ICM sample and the normal controls.

Gen Log2 |- Up/Do
S. I Gene wn
e . FC log10
No| D Sym Title Valu | (Pval | Regul
bol e ue) ated
Gene
1 | 205898 a| CX3CRI | C-X3-C motif chemokine 2.164 |5.303 |Up
t C receptor 1
HSPA] | Heat Shock Protein Family A
21 200800_s | JH (HSP 70) Member 1 like/// | 1.745 | 5.052 | Up
_at SPAIB/ Heat Shock Protein Family A
JHS (HSP 70) Member 1B/// Heat
PAIA Shock Protein Family A (HSP
70) Member 1A
3 | 201466 s| JUN Jun proto-oncogene, AP-1 | 158 | 5425 | Down
at transcription factor subunit
4 | 219228 a| ZNF331 | Zinc finger protein 331 -1.667 | 5.192 | Down
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Table 1: Identified DEG’s showing significant differences in their gene expression
profiles
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Figure 9: Volcano plot illustrating the up and down-regulated genes between ICM

and control pool

Performance measures: Precision, Recall, F-measure, Accuracy and Error have
been used to evaluatethe classifiers in this study. The outline of the confusion matrix is
revealed in Table 2.

Actual Class| | rediction Class
P N
F P FN
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The performance of classifiers was assessed using the following metrics: accuracy, f-measure, recall,

FP

TN

TABLE 2 CONFUSION MATR
IX IN THIS STUDY.

specificity, sensitivity, and precision. With the direction of the following equations (1-5),

Precision(P) =

Recall(R)/ Sensitivity(Sen) =

F — measure = 2.

Accuracy({Acc) =

Error =

TP

TP + FP

TP

TP +FN

Precision * Recall

Precision + Recall

TP+ TN

TP+ TN+ FP+FN
FP + FN

TP+ TN+ FP +FN

(6)

True Positive (TP) signifies that the positive samples' diagnoses were accurate.
False Negative (FN) denotes an inaccurate diagnosis of the positive samples. False
Positive (FP) denotes erroneous diagnosis of the non-positive samples. True Negative
(TN) signifies that the non-positive samples diagnoses were accurate.

. Precisi | Reca | F - Accura | Erro
DATASE Classifiers on n Measu cy T

T (%) (%) re(%) (%) (%)
Random Forest 87.2 87.2 93.2 87.2 14.8

3

GDS3115

Naive Bayes 83.3 85.6 84.4 85.6 15.9

0
GNN+SVM(Existi| 82.6 80.0 &1.3 84.4 15.5

ng) 6 4 5 7 3
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TABLE 3 COMPARATIVE PERFORMANCES OF THE PROPOSED

CLASSIFIERS WITHEXISTING
METHODS

PRECISION COMPARISON VS. CLASSIFIERS
88 -
87.2

87 -

86 -
X
s :j E Random Forest
5 | 5 Naive Bayes
£ 83 -
~ g - © GNN+SVM(Existing)

81

80 -

GDS3115

FIGURE 10 PRECISION COMPARISON VS. CLASSIFIERS

Figure 10 shows the precision comparison of classifiers like GNN+SVM, Naive
Bayes, and Random Forest with respect to gene dataset (GDS3115). Random Forest
classifier has produces highest precision results of 87.2 and GNN+SVM have lowest
precision of 82.66% for GDS3115 dataset (Refer Table 3).

RECALL COMPARISON VS. CLASSIFIERS
88 1 87.2
86 -
84 -
§ H Random Forest
= 82 -
;:, H Naive Bayes
80 - u GNN+SVM(Existing)
78
76 - .
FIGURE 11 RECAGBSOOGMPARISON VS. CLASSIFIERS

Figure 11 shows the recall comparison of classifiers like GNN+SVM, Naive
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Bayes, and Random Forest with respect to gene dataset (GDS3115). Random Forest

classifier has produces highest recall results of
and GNN+SVM has lowest recall of 80.04% for GDS3115 dataset (Refer Table 3).

F - MEASURE COMPARISON VS. CLASSIFIERS
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~

93.2

o O O
o O N

® Random Forest

o o0
NN

& Naive Bayes

= GNN+SVM(Existing)

F - Measure %
N o0 ©0
co O N

3
(@)

=2
N

GDS3115

FIGURE 12 F - MEASURE COMPARISON VS. CLASSIFIERS

Figure 12 shows the F — Measure comparison of classifiers like GNN+SVM,
Naive Bayes, andRandom Forest with respect to gene dataset (GDS3115). Random Forest
classifier has produces highest F — Measure results of 93.2 and GNN+SVM have lowest
precision of 81.35% for GDS3115 dataset (Refer Table 3).

ACCURACY VS. CLASSIFIERS

87.5 ~
87 A
86.5 -

87.2

o0
YN
[T RNCN

1

B Random Forest

(o)
W

H Naive Bayes
84.47 GNN+SVM(Existing)

Accuracy %

84.5 1
84 -
83.5 -
83 -

GDS3115
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FIGURE 13 ACCURACY COMPARISON VS. CLASSIFIERS

Figure 13 shows the accuracy comparison of classifiers like GNN+SVM, Naive
Bayes, and Random Forest with respect to gene dataset (GDS3115). Random Forest
classifier has produces highest accuracy results of 87.2 and GNN+SVM have lowest

accuracy of 84.47% for GDS3115 dataset (Refer Table 3).

ERROR COMPARISON VS. CLASSIFIERS

16
15.8 -
15.6 -
15.4 -
15.2 1

15 -
14.8
14.6
14.4 -
14.2 -

® Random Forest
u Naive Bayes
= GNN+SVM(Existing)

Error %

GDS3115

FIGURE 14 ERROR COMPARISON VS. CLASSIFIERS

Figure 13 shows the error comparison of classifiers like GNN+SVM, Naive Bayes,
and Random Forestwith respect to gene dataset (GDS3115). Naive Bayes classifier has
produces highest error results of 15.9% and Random Forest has lowest error of 14.83%
for GDS3115 dataset (Refer Table 3).

Conclusion

"In conclusion, this proof-of-concept-based investigation successfully identified DEG
that differentiate between patient groups and controls in the GDS3115 dataset, employing
a rigorous statistical framework and utilizing R programming and Python for differential
gene expression analysis. The meticulous data-driven approach exemplified in this
research emphasized systematic analysis methodologies, highlighting the significance of
identifying several DEGpotentially involved in the pathogenesis of ICM or NICM. The
exploration of transcriptomicdata sheds light on these genes, suggesting their potential
roles in clinical therapeutic strategies.

These findings not only provide biological interpretation and functional context but also
lay the groundwork for future investigations. This groundwork holds promise for
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discovering novel therapeutic targets and putative biomarkers in various biological
contexts related to cardiovascular disease research. Ultimately, this study's outcomes pave
the way for the development of innovative diagnostic or therapeutic approaches based on
the identified genes associated with ICM/NICM pathogenesis."
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