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Abstract

We present a framework of studying the mild solution to non-instantaneous impulsive
stochastic integro-differential equations (SIDEs) with state-dependent delay and the mixed
Brownian motion in Hilbert spaces. The solvability of the proposed stochastic system is obtained
using stochastic analysis, fixed point theorems, and the resolvent operators. Furthermore, under
some reasonable assumptions, the Trajectory controllability [T-controllability] of the investigated
system is established using extended Gronwall’s inequality. Finally, an example is provided to

demonstrate the theoretical findings.
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1 Introduction

Unexpected fluctuations are inherent and prevalent in both natural and man-made systems which lead
to study stochastic models rather than deterministic ones. Stochastic evolution equations are natural

generalizations of ordinary differential equations incorporating the randomness into the equations.
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Thereby, making the system more realistic, several authors ([, 2, [, [4, 5] 6, [7] and the references
therein) explore the qualitative properties of solutions for stochastic differential equations (SDEs). It
has been established that stochastic systems are effective tools with more reliability for formulating
and analyzing phenomena, such as population modeling, stock prices, heat conduction in memory
materials, etc. Fractional Brownian motion (fBm) was introduced by Kolmogorov [40], and studied
by Mandelbrot & Van Ness [41], it is a family of centered Gaussian processes with continuous sample
paths indexed by the Hurst parameter H € (0,1). The fBm is a generalization of classical Brownian
motion, it admits the stationary increments, self-similarity and has a long-memory when H > % and
it reduces to Brownian motion when H = % The fBm make this process a natural candidate as
a model for noise in a wide range of phenomena, especially in financial markets, communications

networks, traffic networks, and medicine, etc., see [8,9]. SDEs with fBm have been considered greatly

by research community in various aspects, see [10} [1T], 12} 211 28§].

Impulsive differential equations play a crucial role in population dynamics, medical science and
any other engineering domains. Naturally, all physical systems which evolve with respect to time are

suffered by small abrupt changes in the form of impulses. These impulses are divided into two types:

(i) Instantaneous impulse differential equations (IIDEs)- that causes sudden changes, and it persists

shortly in their states at certain moments

(ii) Non-instantaneous impulse differential equations (NIIDEs)-an impulsive action which starts

arbitrarily at a fixed point and remains active on a given time interval.

On the other hand, Control system is an interconnection of components forming a system
configuration that will provide a desired system response. The ability to steer a dynamic system
using the set of permitted controls from an arbitrary initial state to an arbitrary final state is known
as controllability, and it is one of the structural features of dynamical systems. The concept of
controllability [introduced by Kalman 1960] leads to some very important conclusions regarding the
behavior of linear and nonlinear dynamical systems. The controllability of fractional dynamical
systems represented by fractional differential equations is an essential subject for many practical
applications because control theory produces better results using fractional order derivatives and
integrals calculus. There are different notions of controllability like complete [23], approximate
24, 25], exact [26L 27], null controllability [28], etc. T-controllability, a modern concept of
controllability, has been offered as a new direction in the domain of control theory. This new notion
puts us in a position to answer several natural questions which arise in connection with control
theory. In T-controllability problems, we look for a control which steers the system along a
prescribed trajectory rather than a control steering a given initial state to a desired final state.

The advantages of studying T-controllability are as follows:

hD



1. It may minimize certain cost involved in steering the system from initial state to final desired

state.

2. It may also safeguard the system.

For example, while launching a rocket in space sometimes it may be desirable to have a precise path
along with desired destination for cost effectiveness and collision avoidance.

Chalishajar et al.[30] faced challenges of T-controllability to identify control that steers the system
along a prescribed trajectory to the final state instead of navigating a given initial state to the required
final destination. It should be noted that Chalishajar et al. [30, 31] has demonstrated the formulation
of first and second order T-controllability problems for the nonlinear integro-differential equation in
both finite and infinite-dimensional spaces. In [32] authors have recently looked at the T-controllability
for nonlinear fractional differential equations using Gronwall’s inequality. In the present literature,
many papers concerned to investigate T- controllability of FSNIIDESs, see [33] [34] and the references
therein. Nevertheless, the T-controllability results on impulsive stochastic integro-differential equation
with state dependent delay still exists, a fact that inspired the current work. The primary contribution

and benefit of this manuscript are listed as follows:

e First, the control model is presented with a NIISIDEs with state dependent delay. We extracted
this kind of SIDES with noise and fBm.

e To the best of author’s knowledge, there is no work for solvability and T-controllability results

of NIISIDEs with state dependent delay, which were inspired by the studies previously stated.

e The obtained results which will generalizes the existing work of [7, [34].
This work’s innovations are as follows:

e T-controllability is new to the NIISIDEs with state dependent delay driven by fBm.

e To obtain the existence results, we have used the ideas of resolvent operator technique via
stochastic techinque and fixed point theorems(FPTs). The T-controllability of the system
under consideration is also established using the generalized Gronwall inequality under some

appropriate assumptions.

e The obtained results are applied to the stochastic heat equation.

Now, we study the existence of mild solution and T-controllability for NIISIDEs with state dependent
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delay via fBm:

d[3(t) + b, 3v,3))] = A[3(0) + b, 3g(,3,)) + €] de + /OL O — <) [3(<) + (s, 3u(s.3,))] dsde

+ (6 30,3,))de + 8t 3o(.,3,))dw(t)
+ o(t,390.3,))dB" (1), LE U o(si tiv], n EN;
3() = &i(t,390.3,)) Le UL (bissil;
3() = o) €2 L € (—00,0]; (1.1)

were the state u(.) takes values in Hilbert space (47, (.,.), ||.|[). 2 : D(2A) C S —  is the infinitesimal
generator of a strongly continuous bounded linear operator {7(¢) : ¢ > 0}. © is a closed linear operator
on .7 with domain D(©) D D(2) which is indepandent of ¢. Let (J¢, (.,.),||.||) and (#, (.,.), ||.||) be
another separable Hilbert spaces. Let {w(¢)},5 is a Wiener process defined on (2, 3, {30}, , P) with
the values in .#. Let B! is a fBm with Hurst indext H > 1 defined on (Q,S, {Su},50,P) with the
values in %. The history function 3, : (—o0,0] — # denotes the time history of the function 3
from —oo to the present time ¢ and defined by 3,(0) = 3(¢ + 0) for § € (—o0,0] in the phase space
2 which is defined later. The map h : J x P — , 0 : J X P — (—o0,b], f: Jx P — H,
0: I XD = LYK, ), 0:TxD — LYY, ) and &; : (1;,6] x D — H are the considered
functions . 0 =g =50 <11 <1 <1<+ <ilp <Gy < lpy1 < -+ <¢:=[0,b] =J are the impulsive
points ¢; and the effect remains on the interval (i;,;]. The control function € € L4(J,%). Here
E%(J, % ) is the space of all admissible control functions, which is square integrable and ,-adopted.

¢ is a bounded linear operator from Hilbert space % into 7.

In this article, for the aforementioned system , three existence results are investigated using
semigroup theory and FPTs. Initially, the sufficient conditions are framed to prove the existence and
uniqueness of the mild solution of using Banach Contraction Principle under Lipschitz conditions
on nonlinear terms. In the second and third existence results, we prove the existence of mild solution
via Darbo and Darbo-Sadaovskii fixed point theorems under non-Lipschitz conditions on nonlinear
terms. In the later part, the T-controllability of the proposed system is examined by employing
the Gronwall’s inequality:.

The following is how the paper is structured: In Sect 2, the fundamental concepts of the stochastic
analysis and semigroup theory is given. In Sect 3, the solvability of using FPTs is studied by
three different ways. In the Sect 4, the T- controllability of the system is proved. At the end of

Sect 5, the application is demonstrating the obtained theoretical results.



2 Preliminary and Notations

Lemma 2.1. [13] If o : [0,1] — LYY, ) satisfies [, Ha(g)Hig < 00, then the sum in (2) in [13] is

well defined as F€-valued random variable and we have
E |lo()aB® ()" < 20 [ (o) g de.
0

For details on basic preliminaries of fBm, one can refer to [10] 11}, 12].
Consider the Banach space 2% (), which is the space of all &, —adapted measurable, .7 —valued
stochastic processes {3(¢) : ¢ € [0,b]} such that 3 is continuous at ¢ # ¢;, 3(z;) = 3(¢;) and 3(:;)

exists for all ¢ = 1,2,--- ,n endowed with the norm,

1/2
131l 26 = (Sup Ellu(b)!2> -
0<:<b

In order to deal with the infinite delay, we will consider the phase space 2 which was described by Hale
and Kato in [35]. The abstract phase space is a seminormed linear space (Z, ||.|#) of Sp—measurable

functions which maps (—o0, 0] into . which satisfies the following axioms:

(a) If 3 : (—o0,b] — A is a continuous function on J such that 3 |;€ C(J, %) and 3¢ € &, then
for every ¢ € J the following conditions hold:
(i) 3visin 2,
(i) [I3() < K|[3.]|z, where K >0,
(iii) |13.llz < H(e)||30ll2 + A () sup{[|3(s)]| : 0 < s <¢}. H: [0,00) — [0, 00) is locally bounded,
A :[0,00) — [0,00) is continuous, H and .4 are independent of 3(.).

(b) The phase space Z is complete.

(¢) The function ¢ — ¢, is well defined from the set R(¢7) = {¥(s,w) : (s,w) € J x Z} into Z and
3 a continuous, bounded function J¥ : R(97) — (0,00) 3 [|¢.ll2 < J?()|l¢lle ¥V e € R(W7).

Lemma 2.2. [36] Let 3 € (—o0,b] — 2 be a function such that 30 = ¢ and 3 | ;€ PC(J, 7). Then
I13:ll7 < (o + I?)ll¢llo + Apsup {|3(7)]| : 7 € [0, max{0,¢}]}, ¢ €R@™)UJ;

where J¥ = sup J?(v), Hy = supH(s), A% = sup A (¢).
LER(YT) eJ eJ

Definition 2.1. [7/ The Hausdorff measure of noncompactness (HMNC) B of the set B € S is,

B(B) = inf{e > 0:B has a finite € — net in S}

for every bounded subset B in .
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Definition 2.2. [7] A bounded and continuous map Q : D C X — X is known as B— contraction if 3

O<k<1l>

B(Q(B)) < xB(B)

for any noncompact bounded subset B C . To express the HMNC C([0,b], 5) and PC(J¢), ¢ and

Bpc are used.
Lemma 2.3. [7] For any bounded set 2, 3(2) = 0 if and only if A is precompact.

Lemma 2.4. (Darbo)[13] If D C X is convex and closed, 0 € D, the map Q : D — D is continuous ad
B—contraction set {u € D : u = AQu} is bounded for 0 < A\ < 1, then the map Q has a fized point in
D.

Lemma 2.5. (Darbo-Sadovskii)[13] If D C X be bounded closed, and convex. If the continuous map
Q: D — D is a B—contraction, then Q has a fized point in D.

Lemma 2.6. [11] Fort > 1 and - valued predictable process h(.),

2 L T
sup B <e( [ E@itd) . v e
s€[0,4] w 0 2

/ (1) (1)
0

where Cy = (t(2v —1))*.

Definition 2.3. [38] A one parameter family {Z(.): 1> 0} of bounded linear operators, is called

resolvent operator for

‘C% -9 [3@) + /OL@(L - <)3(<)d§] ,

if
(i) Z(0) =1, | Z(1)|| < MeM for some constant A\ and M > 1.
(it) ¥ 3 € A, H#(1)3 is strongly continuous for ¢ € 1.
(iii) YV v €l, #(v) € L(KH). Y 3e€X, Z()3€Cl,#)NC(,*) and

af@(LB

2A [%(L)B + /OL O(L — ¢)%(s)3ds

= Z(1)A3+ /OL,@(L —¢)AO(s)ds, v € L.

For more details on the resolvent operator, we refer to [37, [38].

Definition 2.4. Let 3 : (—o0, b] — S is known as mild solution of if

(1) 3(¢) is measurable and ,—adapted for each v > 0.



(11) 3(¢) has cadlag paths on ¢ € [0,b] a.s. satisfies the integral equation

$(1), L € (—00,0];
(1) [$(0) + 5(0, (0))] — (2, 39(..3,))

+ Jo 20 = 9)f(s, 379(<,3<))d§

+ Jo Z (0 = )€(S)ds + [y Z (1 — (S, Bo(s,30))dw(s)

+ Jo 2= <)ols, 319(q,3<))dBH(L)a L€ [0, u];
Gi(L, 39(.,3,)); v € Uy (b, sili
2L — i) [(‘51(%7319(9,3%)) + b(ci,?)qs(gi,agi))} —b(t 390.3,))

+ 2 R = <)F(S, Bu(e,30))ds + [ (e —<)€(s)ds

+ [L 2= 6)8(s, 3u(c,30))dw(s)

+ng R~ §)J(§,3,9(§,3§))dBH(L), L€ (G, Ligl-

3 Existence Results

Consider the space % : 3 : (=00, b] — S such that 30 € 7,3 o€ £ ([0, b], #) with seminorm

[l is

13]le = 1302 + sup (E(13()2))"*, 3 € %.

s€[0,b]

Consider the operator @ : Z, — % is

P(v), L € (—00,0];
(1) [6(0) +5(0,6(0))] = b(z, 39.,3,))

+ Jo 20— (s, 3§(<,3<))d€

+ Jo Z(0 = )€(S)ds + [y (1 = 9)a(s, Bo(e,3,))dw(s)

+ Jo Z(t = <)als, 319(<,3§>)dBH(L), L €[0,u];
&1, 39(.,3.))» v € Uiy (44 Gil;
(L= <) ["51'(% 39(.3.)) +b(si, 319(%3%))} —b(t,390,3,))

+ Jo R = 9)i(S, Bu(e,30))ds + [ (e —<)€(s)ds

+ LR = 9)0(s, 39(c,30))dw(s)

|+ S5 2(0 =) (S 3(e,3,))dB™ (1), L€ (6, tis]-

Set ¢(.) : (—o0, b] — 7 is defined by

=



L dy = 0.
If 3 hold , we can decompose 3(t) = ¢() + (1), t € (—o0, b] iff ro = 0 and

(

() 60, (0)] = b[e: by, 5,+¢) + Eo(ud,42)

+f0 f[57¢19 §¢§+FG +x19(§ ¢<+?<)]dg
+ Jo Z(v — <)€(<)ds

+ Jo Z( = 8[5: by 5 1) T Foegrr0)](S)

(x) (L) = %(b - Cz) |:®’L (gla 519(9 75%_ +I§i) + ;19(%,5% +F§i))
+h <§7J7 619(%- ’5% +I€i) + ;19(%,5% +F<i)> :|
_h [L’ gﬁ(L,Ebﬁ‘h) + Fﬂ(“af"h)]

+ f:z %(L o §)f [S’ $§(<76§+;<) + xﬁ(ﬁag"rk)] dC

+ [o (0= )€(s)ds

+ [, 2 —<als, 519(9@4—&) + ?ﬁ(c@ﬂg)} dw(s)

We may define -@E? ={t€%y:10=0¢€ Z}. For any 1 € @8,

G; [t b0, 3,40 T E0(3,41)) Le Ui,

+Jo 2 =)o [8: S5 4e) T Fote, 40 BT (), L€ [0, s

(4, i);

(3.2)

+ [ R = )05, by g sr) T Eoeg e 4B (), L€ (Sis ti1]-

lelle = lzollz + sup (E (Je(©)2))"* = sup (E (Ie(©)?)"?, € %

s€[0,6] ce[O,b}

It is easy to verify that (@8, ||||_@8) is a Banach space. For each v > 0,
0 2
Be={reZy :Elle” <,

then for each ¢, B, is a bounded closed convex set in @8. By Lemma 2.3,

2

quﬁ(u@ﬂm) T 8908, +1.) 2
s 2 2
2 (19005, e0ll? + a5, 10 12)

< 4| B + 3B, + A2 s B [6)|

T (Hy + J*)VE|lso]% + A2 sup E\Ix(g)llz]
0<s<e

AP+ (MEMP 7+ (Hy + T2)2)|18]5] =%, ¢ € [0, b].

(3.3)



Define the operator ® : .@E — @E

;

() [h(0,9(0))
+Jo 2 = s Py 5 1r0) + Fotepren]ds

+ fé%(L —<)€(s)ds

1= 06690345 T F003,41)

+ o 2= <)8[5: By re) + Foedten) (S)

+ fob‘%)(L - g)a[s’gﬂ(c@gﬂc) + xﬂ(c@gﬂc)]dBH(L)’ v € [0, ul;
Gilt, 690345 T ¥, 410 L€ Uiy (4, sl
(@) () = { 2 =) {Qsi (Sis Poei 3., +ee) + Fo(cide,2)) (3-4)

+bh (§ia$§(%$§i +re;) + xﬁ(q@gi +X<i)) ]

=[6 o5, 10) + T340

S A CE | ENCIT S ST S [
+ JL R(—<)€(s)ds

+ Jo R = )85, Py 5t T Eo(cd.4n0)] W (S)

TR0 015: Do e T Eaisp e JABR (), L€ (Giy tiva)-

In order to show the existence results of system 1} we need to show that the operator ® has unique
fixed point.

Existence result based on Banach FPT:

We may take into account the following assumptions:
(A1) b:J x 2 — S is continuous and 3 a constant %, being +ve such that
Eh(31) = b(t 32)|* < % 131 = 315,
Ve Jand 31,32 € 2.
(A2) The continuous function f: J x 2 — S, 3 a constant .%; being +ve such that
E|[f(, 31) = f(+, 32) [ < 1131 = 35
Ve Jand 31,32 € 2.
(A3) The function g: J x 9 — LY(#, ) is continuous 3 a constant . +ve such that
Elg(t,31) —0(t, 32)lzg < % 131 — 3215 .

Ve Jand 31,32 € 9.
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(A4) The function o : J x 2 — LY(% , ) is continuous and 3 a constant ., being +ve such that
Ello(,31) = o0, 32)ll7g < % 131 = 3215,
Ve Jand 31,32 € 9.
(A5) The map &; : (4,6 X Z — A, 1 =1,2,---n are continuous and 3 .Z; > 0 such that
B[, 31) = 8i(1, 32)[* < £ 131 = 3,
Vi€ Jand 31,32 € 2.
Theorem 3.1. Assume that (A1)-(A5) hold. Then 3 unique mild solution of on J, provided
5A2[(1+2C%).Z +b6(C? + 1)[ L + &) + H2H - 1)0*M.Z, + (C* +1).4] < 1. (3.5)

Proof. In this part, we need to prove ® has a unique fixed point. For r,1 € @8 and ¢ € [0, ¢1]
— — 2
E [[(®r) () — (@0) (1)

IN

_ _ 2
4E Hh(“ o0+ T Eo0d+r)) ~ (6 Bo05 40 F 9905, 4v.) H

+ 4E' /0 %(l» - g) |:f(g7¢19(§’¢q+xc) + ;ﬂ(C@C-ﬁ-:ﬁg))
2

- f(§, ¢ﬁ(§1$c+nc) + Uﬂ(§7¢§+‘k)):| dg

/0 H(L— ) [g (g,%@@m) +?ﬁ(<,$g+x<))
2

+ 4E’

= 8( by a0 T %(c,¢<+ng>)]dw(<)

+ 4E' /0 e@(L - g) |:O-(g) aﬂ(§7$<+1§) + ;19(§7$§+F§))

2

= (b5t Uﬁ(<,¢<+nc))} dB (1)

2 L 2
2 2
< 4C°% H?ﬁ(b,%m) - %(L,%LUL)H@ +4C /0 2 H?ﬁ(c@ﬂg) Vo3 +v0) @dg
L 2
2
+ 4C /0 "?9 Hxﬂ(@aﬁ‘k) o Uﬁ(@&;‘r‘k) @dg
L 2
+ AC* (H(2H — 1)T*H 1) /0 Lo Foedtte) ~ Doedtne) @dg
< AP [C (L +u(G+ L) + HRH - D)E"L,) + L) B x() —(0)]*. (3.6)
For ¢« € U, (¢4, il,
— J— 2 —_
E[[(®r)() — (®n)(0)||” < E' G (4, Bo(u5,42,) T ¥o(13,41,))
- 2
- 67’ (L’ ¢19(L7$L+UL) + Uﬂ(L’aL—i_nb))
2
S BZL xﬁ(baaL-"_;L) - Uﬁ(b,ab-f—t],‘) _@
< LATE ) —n(0)]* (3.7)
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1%, for + € UPy (i tit1)s

E ||(@x)(0) — (Bn)(0)||”

S 5EH%(L B gz) |:®Z (<i7$19(§i,$§i +$<i) + ;ﬂ(gi’ggi'i';(i)) o ®Z (gi’aﬁ(%':agi +U<Z) + Uﬁ(%wagi +U§1))i|

2
+ %(L - §1) |:h (g% ¢19(§ia$§i+}"<i) + Fﬂ((hgci +F§i)) B h(g“ ¢ﬂ(§i’$§i+0<i) + Uﬁ(gi’ggi +U§i)):|
B . 2
oo H‘J(L, 003,41 T 800.3,400) ~ (6 @905, 40) T 990,3,40,)) H
+ 5E' / (L — i) |:f(§i7¢19(gi,¢%+xgi) + xﬂ(cz@gﬁki))
Si
B 2
- f(gz‘, %(gi@qﬁggi) + Uﬁ(q,qﬁgﬁnci))} d
+ 5E' / R(L— ) {g (cz',%(gi,ggiﬂgi) + ?ﬁ(ci@giﬂ%))
Si
B 2
G Uﬁ(civfbgﬁnci))] duw(s)
+ 5E' / ACRE) [a (G@',%(Q,g%ﬂ%) + ?ﬁ(ci@iﬂci))
Si
2
— O'(gia ¢19(gi7$%_ +g,) + 019(%,5% +U<i)):| dBH(L)
< 5CE A2 [52 + L+ (tig1 — )G+ L) + H2H — 1) (ig1 — )"y
x Ele() =)l o

Therefore, V 1 € J,

2
I

E |[(6r)() = (69)(2) < B [(1 +2C%).2 + b(C? + 1)L + L] + HH - )67,
+ @4 DH[E RO -0 (39
Thus ¢ is a contraction mapping and has unique fixed point r € .@8.

O

In order to prove the existence results of system (1.1)), under non-Lipschitz continuity of nonlinear
term, we will utilize Darbo and Darbo-Sadovskii fixed point theorems.
Existence result based on Darbo’s FPT:

Let us consider the following hypotheses:
(A’1) The function b : J x 2 —  is continuous and 3 % > 0 such that

E [0, 3)II* < %1 +3]%), ¥ €0,6] and 3 € 2.

(A’2) The map f: J X P — S satisfies the following :
(a) § hold the Caratheddory type condition (i.e.) f(¢,.) : Z — J€ is continuous for a.e., ¢ € J

1



and V 3 € 2, the function f(.,3) : J — . is strongly measurable.
(b) 3 a continuous nondecreasing function m; : [0,00) — (0,400) and a +ve integrable function
¢ : L1([0,6],RT) such that

E[I§(, 3)1* < o0)ms(13]1%).

(A’3) The map g: J x Z — LY(H , H) satisfies the following
(a) g satisfies the condition (i.e.) g(i,.) : 2 — L(#, ) is continuous for a.e., 1 € J,¥V u € 2,
the function g(.,3) : J — LY(#, ) is strongly measurable.
(b) 3 a continuous nondecreasing function my : [0, 00) — (0, 400) and a +ve integrable function
v : L1 ([0,b],RT) such that
Ela(s,3)1* < v(e)mg([I3]2)-

(A’4) The map oJ x 9 — LYY, ) hold the following
(a) o satisfies the condition (i.e.) o(,.) : @ — LY(¥, ) is continuous for a.e., ¢ € J,¥V 3 € 2,
the function o(.,u) : J — LY(#, ) is strongly measurable.
(b) 3 a continuous nondecreasing function m, : [0,00) — (0, +00) and a +ve integrable function
B : LY (J,RT) such that
E[lo(,3)]1* < B(e)mo(13]15)-

(A’5) The function &;(ti,| X 2 — i = 1,2,--- ,n are continuous and 3 ., > 0,7 =1,2,---,n
such that
E(8:i(t,3)[1* < L1+ 13]1%), V ¢ € (5] and 3 € 2.

Theorem 3.2. Let 3¢ € L3(0,50), (A1), (A5) and (A’1)-(A’5) gets satisfied. If

dx

I worrmetormere = o and

24,2 [(1+2C%).% + (1+2C*) 4] < 1, (3.10)
then system has at least one mild solution on J.

Proof. To prove the main results. Our proof will split into several steps.
Step 1: To claim the set {r € 2% :t = A¢r, for 0 <\ <1} is bounded.
Let T be a solution of A\¢r for 0 < A < 1,

- = 2 2 (1=112 2 2 2 »\2 2
S [Go(e5, 5500 + Faern|, < 4 | AEIEI + (AEMPH? 4 (Hy + 397 9013 ]
where [[€) = sup [[E(s)]|>.
0<s<
Consider,
p() = 4 [ MEEP + (HZMEH? + (Ho + 192 |6l%] ¢ € [0,b]. (3.11)

—_
[\)



For ¢ € [0, u1]:

E l£(4)[I”

_ 2
< 6 E 12000, 60N + B[00 o545 + o700
2

/OL%(L —¢)€(s)ds

2
+E

+E /0 %(L_g)f(g’aﬂ(c,$q+fg) +f19(<7$<+?<))d§
2

+E /0 %(L — g)g(g)$§(§7$<+ig) + fﬁ(§’$<+?§))dW(§)

}
)
+c{[v@mmm»k+cmmﬂ—nﬁﬂ*A%@mam¢m§

)

+E /0 R(1 =)o (S, by 545, +f19(<,$<+f<))dBH(L)

< 6{@2.,%(1 +181%) + %4 (1 +

‘%Wﬁz + 503,43

+@A%@mwmx+@AﬁWkwk

<o{ L+ 1618) + % (1+ [oezan, + Foony

BRI < % (14 [Goigen +Eoeman

Zi(1+p(1)).

+ (C2BEH(€(L)H%2$ + C?b [o(e)ms + v(1)mg
2

2H y =
+ H(2H — 1)b™ f.m, {H%(mm T 890848,

For v € U ;(4,¢i], we have

2
9

IN

1%, for v € UL, (Gi, tit1),

EH?(L) ||2 S 6{EH%(L o gi) l:ﬁl <§i + aﬁ(cz',acﬁfq) + fﬁ(givqurici))
2 B ~ 2
+E H 0(t:So05,47) + Fo ) H

+ h(si+ %(q@. +5,) T ;ﬂ(cm%ﬂ%))}
2 2
+E ‘

+ E / A — g)f(%&g(g’ggﬁg) + fqg(g,g#gg))dC / (1 —¢)€(s)ds
Si Si

2

+ E / H(L— g)g<g’$ﬁ(<:5<+i<) +fﬁ(§’$g+&))dw(g)
i

}

< 6{2(32%(1 + () +2C24 (1 +p(0) + (1 +p(0) + C* (i1 — <)

B [ 0= 906807, 1) + Foan) B0
Si

<[ e Omi(plds + Cluinr — ) [ B ds
i IS Ry

13

=) [ o(mglp(c))ds



+ CHEH - o) [ ,L5<<>mo<p<<>>d<}.
Thus Vi € J,
El(0)|* < @+ Zp()+12C° [Zp(1) + Lp ()] + 6.%p(0) +6C25/L (c)mi(p(s))ds
+ 6(C2b/obv(g)mg(p( ))de + 6C2H( bZH/ B )my (p(<))ds:

where,

R = (12C* +1).%, + 6C* L (1 + ||4l|7) + 6[(2C* + 1).%;] + 6C*bE(| % 2 -
Substituting the values in (3.11f), we obtain

p(e)

§4L%%%ﬂkmﬂfwﬁ%a+&%+J%ﬂH§ + 4457 [(1+2C%).Z + 6(1 + 2C*).% ] p(2)

+ 6C2b / L @()m;(p(s))ds + 6Cb /0 Lv(c)mg(p(c))dc

+ 6C?H(2H — 1)b* / B(s)m, (p

& &
<2 +1_§1/ P(6)milp(c))ds +

1—51/6 $Imo (p(<))ds:

&4
1-&

/'Lv<<>mg<p<c>>dc

where,
& o= 4’ e [(1+2C%).% +6(1+2C%).%4)] <1,
6 = 4[%293* + (IAEM2A 4 (8 + 39 |13,
€3 = 6C2%b; & = 6C2b; & = 6C>*H(2H — 1)b%H,
with ¢(0) 15251.
O < B pmip() + —0(Omg(p()) + — B)me(p(1))
14 f 1-& g 1-& 7
< {80, 00, 2 50 b Im(p(0) + me(o(0) + o0
Thus,

@ ds b &3 &4 &s }
/C(o) (5) T Mgls) 1 Mo (<) </o max{l—&“”(”’1—&“”’1—&5(” di < oc.

Thus ¢(¢) is bounded on b which implies p(¢) is bounded thereby r(.) is bounded in b.

Step 2: To claim ¢ : @E? — @8 is continuous.



Let {t(V}ien € 29 such that {3V} — 1€ 2 as vt — co. 3 q > 0 such that [t (:)]| < q V¥t and as.

v € [0,6]. By (33)

2

A

<r.

‘MW@ﬂmHﬁw@ﬂm

Using Lemma 2.2,

Y 1Y — xo

Yo, ~ 0B

Os) &)} + HOP|

IA
[\
1
—
X
~
N—
wn
o

o
~

2
2

)~}

IN

2442

By the Caratheddory functions f, g and o,

. - (t) - 4
Jim § (L’ Pop T Fop ‘))) f <L’ o034 F xﬁ(wﬁﬁm) ’

: Py (v) _ - -~
tli>rél<>g <L’ ¢ﬁ(bv$L+FEt)) - ; ( ,qS -‘,—; r))> - g <L7 ¢ﬂ(L7¢z,+FL) + Fﬁ(bv(ﬁfi‘?n)) ’

. oy (v) _ - _
lim o <Lv Lo g+ T %(L,@ﬂgt))) =0 (L’ Po(u,+r) T Fﬁ@,dgm)) :

By apply Young’s inequality and Lebesgue dominated convergence theorem,
for « € [0, ¢1],
E||(6:) () = (0)()|I*

(@) () = (0) (0|

2

IN

- (¥) =z _
4[EHh (L’%(L,mﬂﬁ‘)) T <‘>)> 0 (4B, 50) + Fot05,0)

* il ©
E /0 K1 g)[f(%@ Ld)ﬂ())“‘ﬁ (7¢+;(t))>
. 2
—fQ@mmﬂfﬂw¢mQP§
V 4 (v)
/'%7 N [ ( ¢ (e, +u )+%(L¢L+;£t>)>
. 2
- g (L7 qbﬂ("vaf'!‘h) + xﬂ("v&f‘"?b)) :| dW(g)
. ¥ - (®)
E /0 Z(L— ) [0( Py, ) +?19(L,¢L+;Er)))
2
L LB = + - dBH( )
T\L Po(g,+1) T Fo(1,8,41.) S
E|[h +: =0 (B0 dre) * Fodire)
79(L b, +;(t)) Fqg( B4t (l)) > PI(e,p,4r0) ;ﬂ(b,(}SL‘f’IL)

©)

2 Py ( b - _
s oEHf<“¢ﬂw+xE”>“m ty) =1 (B0 o)

2

IN

2
ds




2
ds

2 [* © _ )
+ C /0 E Hg < ¢19( 841 +F19( Bt (t))> (L7¢§(L7¢L+;L) +?19(L,¢L+xb))

2 _1ym2H-1 ' &b - )
+ C2H(H - 1)T /O E|o <L’¢19(L,¢L+x§t)) T ¢L+zc£‘>>>
2

- 0 <L, P9(1,3,+1) T ?19(L,$L+m>

dg] —0 as v — 0.

For v € U, (4, il

@0 - @] - g

- ©
®; <L’ ¢19(L,¢L+n5‘)) + Fﬁ(a,@—kngt)))
2

-, (L,%(L,gﬁm) + &9<L,a+nL))

— 0 as v— oo.

I, for . € U? 1(%‘, tit1],

E || (4:™)( ol

IN

2 e ()
5 |:2(C |:EH 61 <§Z7 (;5 I(s; ¢< +;<l ) + Pﬁ(%(b% ‘H:cz)))
2

- &, (%% (cisde 1) T Fﬂ(ci,agiﬂgi))

(v)
+ Hf) (Cu i, +2D) +r ﬁ(gh%ﬂ% )>

T

- [] (gi) Qsﬂ(gi ’agi +;§i) + xﬁ(<i75gi +F§i)>

- (v)
+ EHh <L’¢19(L,¢L+zc5") T ¢L+x5“))>

2
- b (L, Poud,4+e) T xﬂ(ugﬂrh))

> [* = (©
+ C /gv E‘ f <§, ¢19(<7¢<+&f)) ( ,¢>§+;§t))>

2
ds

- T (g’ Pos gt + Fﬂ(cﬁdk))

L
2 N (t)

2
ds

| (C, ¢ﬁ(g’$§+;<) + gﬂ(g@ﬂ&))

D CZH(zH_ 1)T2H1(C2/ E
Si

— (¥)
o << ; %@,@ﬂé‘)) * Yo +x<‘>>>

2
— 0 <§, ¢19(§,$§+&) + }319(§7$§+k)> d§} —+0 as v — oo.

This implies that ¢ : @[? — _@g is continuous.

Step 3: To claim ¢ is B—contraction.



We my decompose ¢ = ¢; + ¢, for 1 € J where

(10)() =

(5123)(5) =

+ Jo Z(1 — )€ (s)ds,

& (18005400 +Eo0die)

(L — <) [(’Z‘ <§i,$19(<1.7$% +r) T Yoo, +x<i))
+h (Cz',%(gi,ggiﬂ%) T893, +x<i)) ]

_h <L7 ¢§(L7$L+;L) + x’ﬂ(L,ab"FIL)) + fCLZ E@(L - g)%(g)dg7

fob %(L — §)f(§7¢19(<7¢§+;§) + xﬁ(c,aﬁd-;c)) ds

+Jo #(=<)g (g Dot T xﬁ(c@m)) dw(s)
+Jop 2= <)o <§7$19(<7$<+xg) - Z‘ﬁ(c@ﬂq)) dBH (),

0,

fci' H(v—<)f (g’aﬂ(cﬁqﬂc) T ;ﬁ(c,@ﬂc)) ds

+ f:z Z(=<)g( s, ¢19(§,$<+I<)

+ ?mc,qsgm) dw(s)

L + fct H(1—<)o (g’aﬁ(c@gﬂg) T xﬂ(agd—xg)) dB(s),

Claim 1: To prove ¢, is Lipschitz continuous.

For ¢+ € [0,41], (A1), Lemma 2.3 and 2.5 and u,0 € 20,

(1) [6(0) + (0, 6(0)] = b (1 By, 10) *+ Fouses))

L€ [0,u1];

L e U?:l(bi') gl]7

L € (Siy Lig1]-

€ [0, ¢1];

L€ Uiy (b sils

L€ (SiyLig1)-

@0~ GO < [£]b (4 Fu0s 00 + o050)

b (M%(L,am) + %@,wm))

]

2
= gh Hul9 (1,p,+1,) Uﬁ(bagﬁ‘m) 9
< A2 sup Ellu) — ()]

1€[0,e1]

For v € U, (44, i),

1%, for 1 € UL

E || @w)(0) - @) )]

IN

IN

IN

1€ (4,54

1(Si, ti],

17

M908, 4u) T P90, +0.)

N2L, sup Elu(t)

_ 2
E H@ (L’ Po(u,3,+v) T ?ﬂwﬁm) H

2

v ()]



E | (@1)() — @) 0)||”

< 2 [EH%(L - <) |:®i <§i’$§(%$q +ug,) T Y9(c.d., +ugi))

&, (% ¢g(gi,$ci+ngi) + Uﬁ(q,gcﬁngi))

+ h (gia gbﬁ(gi,a(ﬁrugi) + uﬁ(§i75gi+ugi))
2

- [] (§ia ¢’l9(§i,$gi+bqi) + nﬁ(§i:$gi +U<i)) :|

+ EHh (L,%(L,wub) +%<L@+ut)) *‘)(L’aﬂ(uwm T "19<L,¢>L+0L))H2]

< o {2"%”%(%@#%) - Uﬁ(q,% +ug;) 1%
2
+ 2.;%{] Huﬁ(%ggi-i-uci) - nﬁ(cz',agi—i-ugi) 2
2
+ 4 Huﬂ(%aﬂrun) = %9,8,40) ||
< 2AICLSECHDA] sw Elu) - o)
LE(Sistit

Thus, Vi € J,
— — 2
E[[(610)(2) = (¢10)(1)]|” < 247 [(1 +2C).% + (2C% + 1) 4] S%I;}Ellu(b) — ()%
te|0,
Taking sup over ¢,
[f1u = @10l < 5w — o],
where £* = 242 [(1 + 2C?).%; + (2C* + 1).4] .
Thus from 1| £* < 1, we get ¢, is Lipschitz continuous.
Claim 2: To claim {¢ox,r € 9[9 } is an equicontinuous family of function on b.
Let s < € <t < tit1, ©=0,1,2,--- nand d > 03 |[y(m)—~vy(m2)|| < ¢, for every mj,my €
U?:l(g‘, Li+1] with |m; — mg‘ < 4. Forr e @g, 0< ‘h’ <d,t+pE€ U?:1(§i,1,i+1],

E[|(@20)(+ o) — (G200

2

t+o _
< 6]]“_‘:’ / %(L + 00— C)f (57 ¢§(g7$<+;g) + ;ﬁ(c,gngk)) ds
. 2

+ GE’ / (Z(t+0—¢)—Z(L—9)]f (S’$ﬁ(§,$g+§g) + Iﬁ(g7$<+;§)> ds

Si

2
+ O6E

t+eo —
/ #(e+e—<)g (5’ Posgotr T Iﬂ(cﬁﬁk)) d(s)

2
+ O6E

/ [%Z(+0—<) = Z(1—)] g (s, Potegtr) T ch@ﬂc)) (<)
Si

2

tt+o _
+ 6IE’ / KL+ 0—3)o <5» Po(cdtr) T Fﬁ(c,@ﬂ&)) dB (<)

—_
(0)e]



IN

_'_

o2

/ (#(+0=5) = A= (5.8 4r) T Eatc4n) BE)
Si

2

t+o L
6Cmy(§) [ pS)ds -+ 6me) [ 120+ 0~ 5) — F(e— ) ple)is

L

6([221119(%) /L+Q (¢)ds + 6mgy (%) / [Z(1+0—¢)—Z(t— )] v(s)ds

6C?H(2H —

b2H 1

/ Bl

+ 6H(2H — 1)[12H*1mg(f) /’L [Z(L+0—¢)— Z(t— )] B(s)ds.

For sufficiently small €, (3.12) — 0 as h — 0. Hence, {¢or, r € 2} is equicontinuous.

Claim 3: To prove ¢, maps @8 onto a precompact set in @g .

Consider the set Q(v) = {(¢or)(¢) : t € 20} is relatively compact.

Clearly, Q(0) = {0} is compact. Let & is real number and ¢ € (g, ¢j41] be fixed with 0 < £ < .

E (@00 -

0

@00

/L—E

Si

/L—e
<

J

/L—E
Si

Since %(1) is compact, the set Q%(1) =

<

IN

(L= <)f (Q%(c,&ﬂc) T ?ﬁ(cﬁgﬂc)) d
Z(L—<)g (9 Posdotr) T ?w<s,¢g+x<>> du(s)

R = )0 (5 Bue e + Eoteir ) BBHE).

{(¢21)(1) 1 x € 2P} is relatively compact set V &.

(t=)f <§’ Poed+re) T Fﬂ(c&ﬂc)) d
2

3E‘

1=£

Z (L —<)f (9 Pocd+r0) T ?ﬂ(@gﬂa) o

/g. (1= <) <<’5ﬁ<<,$<+;g) o) 40)
J
¢

i

3E

2

700~ 985 ot a0 + S an0 ) 216

L — H
/{v H(L—<)o (ga ¢ﬂ(g7$g+;§) + xﬁ(c@g-l—xc)) dB7(<)
J

1=¢

Sj

3E

2

_ H
S %(L - g)O’ <§, ¢ﬁ(§7$§+3<) + F'ﬂ(g,ac'i'k)) B (g)
J
2
3E

/L—g A1 —<)f <§’$z9(c,$g+x<) + ?ﬂ(cﬁdk)) o
3]1«:‘ / . Z(1—<)g <€  Poegore) T ?wwﬁrq)) ()

(t=<)o ¢ 9(s,pe+re) T E(,p+re )) dB" (<)

2

2
3E

—_
(o)



< 3C%m;(x) /L§¢(g)dg+3<c?§mg(t) [g v(s)ds + 3C*H(2H — 1) 3511 / B(s
— 0 as £—0.

Hence relatively compact {(&3;)@) 11 € 29} are arbitrarily close to the set {(¢or)(¢) : ¥ € Z0}. Thus

the set is precompact in @g .

Let B be an arbitrary bounded subset of @8. Using precompactness of ¢,, we get

Bpc(oB) Bpc(¢1B + ¢4 B)
Bpc(¢1B) + Bre(paB)
= Bpe(¢B)

< & Bpe(B).

IN

Thus ¢ is S—contraction. Hence by Lemma ¢ has at least one fixed point t* € U C @[? . Let
u(t) = ¢(1) +1*(¢), ¢ € (—o00,b]. Then u is a fixed point of ¢, i.e. u is the mild solution of (1.1]).

Now, we may prove the existence of solution with the help of Lemma

Existence result based on Darbo-Sadoskii’s FPT:

Theorem 3.3. Let ug € L3(Q,H) and the hypotheses (A1), (A5) and (A’1)-(A’5) hold on J, provided
that

4472 max <(1O(CQH).,%+5((2(C?+1)$) + 5C2 / ©(<)ds lim mf(T) + 5C? / Lv(c)dg
0

1<i< A T—00
« tim ™97 L se2pon - ,6’ e lim T )> <1, (3.12)

T—00 T T—00

then system has at least one mild solution on J.

Proof. By similar proof of Theorem 3.2, we may conclude that ¢ : .@[9 — @E? is continuous. Now
for v > 0, we need to show that ¢(B,) C B,. Let us suppose the contrary, then for any t > 0 3 & € B,

and i € [0,6] 3 v < E||(¢8)(?)||>. Thus for i € [0,41] and § € B,

v < E[@0)]

_ 2
< S[EIRG - Ol60) + 00,00 + B Hh (%0050 + B )|

2

—HE

+ E / % d§ )f (9519@5 +i¢) T iﬁ(@%f‘!‘fc)) ds

+ E /‘@L—g)@l(g P+t tEaes a0 ) (s

H(
+ E /‘% Jo ¢(<¢+r<)+;ﬁ<¢+k)dB

20



IN

5 {czzf,(l +11613) + % (1 + [0 (28065050 + Foezire)
Lo / E||ds + C7 /0 plo)m, (H%&,wﬁ Satsiart)
0
. B R 2
+ C /0 v(s)mg (H%(q,@m)“z%c:wic) 9) %

+ C2H(2H — 1)T?H! /0 Bs)mg <H¢19(g,¢g+g§) 863440

2
.)
2

> dg
_{/]

)4}

For i € (4,¢] and ¢ € B,

t <E||(8)(0)

2
4"

= <1 0 (285,480  Eocme0)
IIly, for i S Ulnzl(giv L’i+1]7
v < E|@0)]

S 10@2 |:"% (1 + Ha’ﬂ(gz 7$€i +f<i) ™ i19(9' 76% +i§i)

)]

)

T <1 1 NS I
+ 54 <1 + Hgﬂ(iﬁﬁiz) + iﬂ(i,zﬁﬁiz)H;)

+ /< ,Lw(g)mf <H¢19(c,¢g+ig) +Eo 480 1) ds
+ /g _L“(g)mg (H%(g,@m) + B gt 2) ds

+ C2H(2H — 1)T?H~! / Bls)me <H%(g,¢,§+gg) +E(6,3.+20)
Si

2
> ds.
9

~Vie [O, b],
T
<E||(@)@)| Ho + 19)?

< #1102, [4 (A2 (H2M2 + (B +39) ) (01

10, {4 (,/Vgt » (wﬁM?%Q T (Hy+ W)) 1612

+4.%, {4 (e + (H2MEH2 4 (B +39)2) ) 101

#1024 |12k (HEMCA? 4 00+ 3°F) I

#5C° [ toms |1 (A2 (AEMEH o+l 1 397) ) 113 e
0

50 [ otomy [4 (e + (HEMEH? 4l + 3°7)) 1012 ds
0

4 5C2H(2H — 1)p2H-! /O ' B(e)m, [4 (wb% n <%2M2%2 + (Hp + J¢)2>) W@] ds.  (3.13)



Dividing (3.13), by v and letting vt — oo, we get

1 < 442 max {( +10C?).%; + 5(2C? + 1).%, + 5C2 / )de lim 7T

1<i<H e T
+ 5@2/ v(s)ds lim MeT
0 T—00 T
+ 5C2H(2H — 1)b2-! / B(s)ds lim m"T}, (3.14)
0 T—00 T

which contradicts (3.12)). Therefore 3 a +ve constant v > 0 >
¢(B:) C B..

Similar to Theorem 3.2, by proceeding the same way, we may conclude that system ((1.1) has a mild

solution.

4 T- Controllability

This section is devoted to the study the T-Controllability for the aforementioned system ((1.1)) by using

generalized Gronwall’s inequality.

Definition 4.1. The system is known as T-controllable on [0, b], if for every p € V, such that
the mild solution r(.) of (1.1]) satisfies p(t) =x(t) a.e.

Lemma 4.1. (Generalized Gronwall’s inequality [34)]): If 5 > 0, a(v) is a non-negative function locally
integrable on 0 < 1 < b, some b < 400 and q(t) is a non-decreasing continuous function on 0 <1 < b,

q(t) < ¢ and suppose u(r) < a(r) + q(¢) fOL(/, — )37 1u(¢)ds, on this interval. Then
L) <a(e / Wr )(L—g)ﬁl()dg, 0<:<b.

In particular, when a(t) = 0, then ﬁ(L) =0V 0<:<b.

Theorem 4.1. Assume the hypotheses (A1)-(A5) holds, then the system 1s tragectory controllable

on J and
10(C? + 1).Z M2 +5452(2C* +1).4 < 1. (4.1)

Proof. Let u(¢) be the given trajectory on V. We may choose the suitable feedback control ()

as

€() = dp()+h (L Bop)] = [1() +0 (6 pogp))] de
— / Ot —¢) [1(s) + b(s, py(e )] dsde

- f (La Mﬁ(L,,uL)) de— (/'7 Nﬁ(L,uL)) dw(/‘) -0 ([/7 /’W(L,m)) dBH(l’)

2

[\)



Hence becomes
dlu() + b (s, uﬁ(a,ut))]

= Au(e) + b (1, ug(u,)lde + /OL Ot — )[u(<) + b (S, upe ) Jdsde 4§ (0, wo(,)) du
+ {d [M(L) +h (L, /“L'&(LHU,L))] -2 [M(L) +5 (L>/~L79(L,“L))] d
- /OL @(L B () [/L(§) + h((, //’ﬁ(c,,ug))] dedu

- f (La Mﬂ(L,uL)) de — g (Lv /’L’ﬂ(L,Mb)) dw(b) -0 (L7 ﬂﬁ(L,uL)) dBH(”)}

+ g (L,uﬁ(wb)) dw(L) + o ((,, ulg(L7uL)) dBH<[,).
Let =(¢) = u(¢) — p(t), we obtain

1[0+ (0 (1 800) = (o))
= A2+ (0 (- 80) 1 )]
00 =9 |20+ (5 () = (o t00)) |t
1 (t0) = 0 2000)) e [0 ) = (0 0) 0
e

(L uﬁ(b uL ) -0 (L 'u'ﬁ(b ML))] dBH(L)
720 =7 -0V =0, 1€ (—o0,0]. (4.2)

0+

The mild solution of (4.2)) is

[6 (4 o)) = b (6 o))

+Jo 20 =) [F (s wocu0)) = T (S5 o)) ] ds

+ Jo 2 =) [8. (6, tcu) = 855 o)) ] de(s)

+ Jo 20 =) [0 (6 mo(cu0) = 0 (S5 o)) | dBT(); v € (0,0,
G (1, upu)) — Bi (4 o)) s LE [Liy i),

KL — §i){ (83 (i uo(u)) — Bi (sis o)) ]

+ 16 (56 wy(n)) — b (o> o)) ] }

[1]

= [0 (e o0)) = b (6 o))

+ fo (t=¢ [f (9 U (c,uc) ) f (9 'LL"9(§7,U'G)):| ds
+ Jo (=) [0 (S5 Woeug) = 8 (S o)) ] dw(s)
|+ o 20 =) [0 (5 wacu0) = o (S5 (e 0)) ] dBY (<) L€ (0, ul.

Hence for ¢ € (—o0, 0], the initial data to be zero, we obtain

®(1) =0, L € (—00,0].



For ¢ € [0, 1],

ElEW* <

+
<

For v € U, (4, il

For ¢ & Uznzl(gi; Li-l—l]a

4B 9 (1 8a000) = o)

2
E

/0 R =) [f (S o)) = F (S5 o)) ds
2
E

/OL%(L — <) [8 (S o)) — 8 (S5 oo )] dw(s)

E‘ /OL%’(L —) {0 (S wogeue) = 7 (S Hogepe)) ] dB"(<) 2}

LA MIEIEW + [C2Z + C°Z + CH(2H — 1)p* 1% ] / E[=(I
0

E =)

IN

2
E |6 (t:usn) — G (b o) ||
< ,32”1-,/1/52 sup E\|u(b)—ﬂ(L)H2'

LE(Lisi)

B ||E(L)||2 < 5E[H%(L - <) [051- (si,uﬁ(ghu%)) -6, (Q,Mﬂ(g,ugi))} Hz

Thus for ¢ € J,

E|=()|?

where,

+ H%’(L - Gi) [f) (Sivuﬂ(ci,uci)) —b (g,-, Mﬂ(q’m")) }

]
+ SB[ (6. upgu)) = b (b o)

+ bBE / %(L - §) |:f<§au79(§,u<)> - f <§’M19(§uu‘§)):| ds

+ 5E /%(Lc) [8 (S weue)) = 8 (S s )] A (<)
Si

2

2

2

+ 5B [ 209 [o (Sogean) 7 (5 nogean)] dBH)
Si

IN

AR [10C2Z,+ ) + SA] BIEOI + 42 5C1% + )

v 5C2H(2H—1)b2H_1.§fa] /LEHEHE(<)H2H2d<-
Si

< [(10C% 4+ 1).Z A2 + 542 (2C? + 1). 4] E|[E()||* + [5@2(;% + %)

b
+ 5«:2H(2H—1)52H1$a]</%,2/0 E[Z(s)|1*ds.

b
< A+ [ BIEE)IPds
0
Y [" 2
< E|= d
< 125 [ EIEe)R

7 = (10C? +1)ZAM2 + 542 (2C* +1).%,

Y% = 5CH L+ %) +5C?H(2H - 1)p?H 1 7,

2

W

2
9 -



Using generalized Gronwall’s inequality, E||Z||> — 0, i.e, u(t) = u(¢). Thus the control problem is

T-controllable.

O
5 Illustration
Consider the following impulsive neutral stochastic integro-differential equation with fBm
d |:3(L7F) + /_LOO eQ(ch)B (s — 79(2||E;3(L)!)7?)d§]
2 L _
5230 r) [B(L r) +/_ (25— 318 19(2’?(””)’?%] du + €1 7)
/ @ 3 2 (1,1) |:3(L r) +/ eQ(C—L)3(§ _19(2‘?( Il x )d§:|
/ 20 3 =9UB3WID.¥) ;o
e 9
-+ AL Sin(L — C) /goo 62(3*03 (3 — 19(!)3(@”)7?) dW(z)dC
s [OMONO, ) € Uil x 0,7
3 = [ o3BG (g € a6 0,7
3(:,0) = 3(¢e,m) =0, ¢>0,
3(t,x) = é(L,1), L € (—00,0]. (5.1)

0=1p=5<t1<¢ <2<+ <tp <G, <tpt1 = 1 are fixed real numbers. Define the operator

A: D) C A — H by Ay = 2" provided,
D) = {xr € 5 :r,x are absolutely continuous, ¢’ € 7, r(0) = r(r) = 0}.

then 2 generates an analytic semigroup 7 (¢) € . Moreover 2 has a discrete spectrum with
eigenvalues —n?,n € N with the corresponding normalized eigen functions 3, (r) = \/g sin(ny). Then,

the operator (21)/2 is given by
oo
1/2 Zn 2 5n n
n=1

on the space 2((2)Y/2) = {x(.) € 2, 320, n(x,3n)3n € #}. Moreover T (1) is given by

o0
= e (1 30)in-

n=1

Let © : D(A) C A — A be O@W)x) = O@)Ar and r € 2(A). Set p € [1,00), v € [0,00),

f:(—o00,—t) > R and g: (—oo, —t) — R be a nonnegative Borel measurable function which satisfies
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the conditions (H5) and (H6) in the terminology, see Hino et al. [39] i.e. g is locally integrable function
and 3 a nonnegative locally bounded function ¥ on (—o0, 0] such that g(6 + v¢) < 9(8)g(yp) V 6 <0
and 1 € (—oo, —t)/ Ay, where Ay C (—o0, —t) is a set with Lebesgue measure 0.

Consider the space 2 = C, x L%(g, ) of all classes of function 1 : (—o0,0] — X such that v [ENIE

C ([-r,0],22), ¥(.) is Lebesgue measurable on (—oo, —t) with the seminorm

—t 1/p
T p— r¢<v>||+</ gmwmn*’dr) |

T€[—1,0] —o0
As in the proof of [[39], Theorem 1.3.8], we may conclude that & is a phase space. Moreover, for t =0
and p = 2, we obtain Z = Cy x L2(g, #) with 7 =1, M(1) = 9(:) and # (1) = 1 + fELg(T)dT for
¢ > 0.
Set ¢(7)(x) = ¢(7,1) € Z and define

2 L 0
/OE(L7§a¢)(;)d§ = /OSin(L—C)/ 62p3i§6dpdg,

. —00
(1 d)r) = / 2

o, B)E) = / " TI(o)dBH (o).

— 0o
Then, (5.1) can be written in the abstract formulation of ([L.1)). We can check the values b,f, ¢, 0
and &; hold the hypothese (A1)-(A5). Hence (5.1) has a unique mild solution on [0,1] by implying
Theorem 3.1.

6 Conclusion

A new control model is presented with a SIDEs with state dependent delay driven by mixed
Brownian motion suffered by non-instantaneous impulses in Hilbert spaces. The solvability of the
proposed stochastic system is obtained using stochastic analysis, fixed point theorems, and the
resolvent operator approach. Furthermore, given some reasonable assumptions, the T-controllability
of the investigated system is established using extended Gronwall’s inequality. Finally, an example is
provided to demonstrate the theoretical findings gained. In future, the authors plan to develop
theoretical results in SIDEs with Lev’y noise. The above result can also be extended to second order

system using sine and cosine operators with Lev’y noise. Fractional order state dependent SIDEs
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with Lev’y noice and the numerical estimations of SIDEs will be an interesting work.
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