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Abstract

In this article, the authors set up an optimal control for a class of neutral Stochastic

Integro-Differential Equations (SIDEs) with infinite delay and deviated arguments driven by

Rosenblatt process in Hilbert space. Sufficient conditions for the existence of mild solution are

formulated and proved by using fixed point theorem and stochastic analysis techniques. We have

used the axiomatic definition of phase space for infinite time delay process. We have extended the

problem in [5] to neutral SIDEs with infinite delay and have used modified techniques to make it

compatible with integro-differential system. In addition, the existence of optimal control of the

proposed problem is presented by using Balder’s theorem. Our result extends the work of [3, 5].

Finally, an example illustrates the potential of the main results.

Keywords: Optimal Controllability, Rossenblatt Process, Neutral functional Stochastic

integrodifferential equations, Resolvent operator
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1 Introduction

The concept of Differential Equations (DEs) with deviated argument is a momentous field of nonlinear

analysis that seems often in considering systems in the fields of science, engineering, statistics, and so

on [1]. In some real-life situations, the delay is not defined on time but also by an unknown variable.
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DEs with deviated arguments are a type of delay DEs in which the unknown quantity and its derivative

appear in different argument values. For real and fractional differential models, various controllability

features involving DEs with deviated argument are examined by authors, see [2, 3]. Moreover, the

study of SDEs is important in view of the fact that its applications can be found in biology, chemistry,

mechanics, and other fields. In the literature, there is a lot of information about SDEs with Brownian

motion, see [8, 16, 17, 23, 24] and the references therein.

Consider (ξn)n∈Z a stationary Gaussian sequence with correlation function holds

R(n) := E(ξ0ξn) = n
2H −2

k L (n), with H ∈
(
1
2 , 1
)

and L → ∞. Set G denote the Hermite function

of rank K . Also, if G admits the following,

G (x) =
∑
j≥0

cjHj(x), cj =
1

j!
E(G (ξ0H (ξ0))),

then K = min {j|cj 6= 0} ≥ 1, where Hj(x) is the Hermite polynomial of degree j is

Hj(x) = (−1)je
x2

2
dj
dxj
e−

x2

2 . Then by the Non-Central Limit Theorem, 1
nH

∑j=1
[nt] G (ξj) converges as

n→∞ in the sense of finite-dimensional distributions to the process

ZK
H (ι) = c(H ,K )

∫
RK

∫ ι

0

 K∏
j=1

(χ− yj)
−( 1

2
+ 1−H

K )
+

dχdB(y1)...dB(yK ), (1.1)

The (1.1) is a Wiener-Itô multiple integral of order K w.r.t the standard Bm (B(y))y∈R and c(H ,K )

is normalizing constant depends on H and K . The process (ZK
H (ι))ι≥0 is known as the Hermite

process.

• If K = 1, the process (1.1) is the fBm with Hurst index H ∈
(
1
2 , 1
)

[13].

• If K = 2, the process given by (1.1) is called the Rosenblatt process, and it’s not Gausian

process. (see [11, 12]).

Self-similar processes with long-range dependence are seen in a variety of fields, including

econometrics, internet traffic, hydrology, turbulence, and finance [14, 15]. The Rosenblatt process is

a self-similar process with stationary increments that occurs as the limit of long-range-dependent

stationary series. Still, it is not, a Gaussian process. However, in real situations when the

Gaussianity is not plausible for the model, one can use the Rosenblatt process. Comparatively,

Rosenblatt process gains its interest due to its convolution of the dependence structures and the

property of non-Gaussianity. Therefore, it seems stimulating to establish the SDEs with Rosenblatt

process. Following are some practical uses of Rossenblatt process:

1. Rossenblatt process is useful to study the wavelet expansion.

2. Limiting distributions of the parabolically rescaled solutions of the heat equation with singular

non-Gaussian data have similar behavior to the Rosenblatt distribution.
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3. The asymptotic distributions in the model are demonstrated to be functionals of Hermite

processes in the unit root testing problem with failures being nonlinear transforms of linear

processes with long-range dependency.

Many researchers have been established SDEs via the Rosenblatt process, readers one can obtained see

[8, 9, 17, 19]. The fractional stochastic optimal control problem refers to optimize the cost functional

subject to dynamical constraints on the stochastic control parameter and state variables that having

fractional models with noise. The essential purpose of optimal control is to find the ideal control values

for the dynamic system under open-loop control that maximize or reduce a particular performance

index. Because determining optimal control problems is more complicated than the nonlinear dynamic

systems and open-ended endeavors. Optimal control is subsequently applied to biomedicine in cancer

chemotherapy, and contemporarily applied to epidemiological models see [18, 21]. Recently, many

literature have been demonstrated the optimal control SDEs [22, 23, 24, 25, 26] and references therein).

Motivated by the above fact, we consider the neutral SIDEs with deviated argument governed by

Rosenblatt process of the form:

dι [x(ι) + h(ι, xι)] =

[
A [x(ι) + h(ι, xι)] +

∫ ι

0
Λ(ι− χ) [x(χ) + h(χ, xχ)] dχ

+ f(ι, xι, x($(x(ι), ι))) + B(ι)u(ι)

]
dι+ σ(ι, xι)dZH (ι), l = ι ∈ [0,T],

x(ι) = x0 = φ ∈ Bh, ι ∈ (−∞, 0]; (1.2)

where the deviating argument x($(x(ι) ∈ C(X, l) is one whose range $(H, l) is disjoint from l. A :

D(A) ⊂ H → H generators a strongly continuous semigroup {S(ι)}ι≥0 in H. Let ZH (ι) be a K-

valued Rosenblatt process with parameter H ∈
(
1
2 , 1
)

where K is an another real separable Hilbert

space. Let (Ω,F,P) be a complete probability space and for {=ι}ι≥0 be the σ-field generated by

{ZH (χ), χ ∈ [0,T]} and the P-null sets. Let U be the Hilbert space and B ∈ L(U,H) be bounded.

The control function is u(·) ∈ L2=(l,U). The time history xι : (−∞, 0]→ H defined by xι(θ) = x(ι+ θ)

is in the abstract phase space Bh. The nonlinear functions h : l ×Bh → H, f : l ×Bh ×H→ H, and

σ : l×Bh → L02(K,H) are appropriate mappings and specified in the next section. Let C be the closed

subspace of all continuous process x that belonging to the space C((−∞,T],L2(=,H)) consisting of

=ι-adapted measurable processes {x(ι) : ι ∈ l} such that x is continuous.

Novelty of this research work:

• This work have obliterated the growth conditions utilized in [3, 4] and also added the efficiency

of deviating argument.

• The supplemental boundedness and range conditions used in [5] are removed, thereby modifying

the limitations on the nonlinearity operator.
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• In comparison to [3, 4, 5], we enhance the approach and ease the conditions.

• We have extended the problem in [5] to neutral SIDEs with infinite delay and have used modified

techniques to make it compatible with introdifferential system.

• Optimal controllability of neutral SIDEs with deviating argument have received little attention

in the literature. In order to bridge this gap, we have looked into the optimal controllability of

(1.2).

2 Notations and Preliminary

In this manuscript, we suppose that the phase space is defined axiomatically [27]. Assume that Bh

are developed for =0-measurable functions from (−∞, 0] equipped with the norm ‖·‖Bh
. Define the

abstract phase space for an infinite time delay process by

Bh =
{
ζ : (−∞, 0]→ X for any τ > 0 (E ‖ζ‖2)1/2 is bounded and measurable function

[τ, 0]and

∫ 0

−∞
h(ι) sup

ι≤τ≤0
(E ‖ζ(s)‖2)1/2dι < +∞

}
Clearly, Bh is a complete Banach space equipped with the norm

‖ζ‖Bh
=
∫ 0
−∞ h(ι) supι≤χ≤0(E ‖ζ‖

2)1/2dι

Lemma 2.1. Presume x ∈ H, then ∀ ι ∈ [0,T], xι ∈ Bh and

l(E(‖x(ι)‖2))
1
2 ≤ l1 sup

0≤χ≤ι
(E ‖x(χ)‖2)

1
2 + ‖x0‖Bh

,

where l1 =
∫ 0
−∞ h(χ)dχ <∞.

Proof: For any ι ∈ [0, a], yι is bounded and measurable on [−a, 0] for a > 0. Further,

‖|yι‖|Cb =

∫ 0

−∞
b(χ) sup

θ∈[χ,0]
E||yι(θ)||dχ

=

∫ −ι
−∞

b(χ) sup
θ∈[χ,0]

E||y(ι+ θ)||dχ+

∫ 0

−ι
b(χ) sup

θ∈[χ,0]
E||y(ι+ θ)||dχ

=

∫ −ι
−∞

b(χ) sup
θ1∈[ι+χ,ι]

E||y(θ1)||dχ+

∫ 0

−ι
b(χ) sup

θ1∈[ι+χ,ι]
E||y(θ1)||dχ

≤
∫ −ι
−∞

b(χ)

[
sup

θ1∈[ι+χ,0]
E||y(θ1)||+ sup

θ1∈[0,ι]
(E||y(θ1)||2)1/2

]
dχ+

∫ 0

−ι
b(χ) sup

θ1∈[0,ι]
(E||y(θ1)||2)1/2dχ

=

∫ −ι
−∞

b(χ) sup
θ1∈[ι+χ,0]

E||y(θ1)||dχ+

∫ 0

−∞
b(χ)dχ. sup

χ∈[0,ι]
(E||y(χ)||2)1/2

≤
∫ 0

−∞
b(χ) sup

θ1∈[χ,0]
E||y(θ1)||dχ+ l1 sup

χ∈[0,ι]
(E||y(χ)||2)1/2

=

∫ 0

−∞
b(χ) sup

θ1∈[χ,0]
||y0(θ1)||dχ+ l1 sup

χ∈[0,ι]
(E||y(χ)||2)1/2

= l1 sup
χ∈[0,ι]

(E||y(χ)||2)1/2 + ‖|y0‖|Cb
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Since φ ∈ Cb, then yι ∈ Cb. Moreover,

‖yι‖Cb =

∫ 0

−∞
b(χ) sup

θ∈[χ,0]
||yι(θ)||dχ ≥ ||yι(θ)||

∫ 0

−∞
b(χ)dχ E||y(ι)||

The proof is complete.

Now assume the following that, if x : (−∞,T) → H, T > 0 is continuous on [0,T) and x0 ∈ B,

then for ι ∈ [0,T), the following holds:

1. xι ∈ Bh. and ‖x(ι)‖ ≤ K ‖xι‖Bh
.

2. ‖x(ι)‖Bh
≤ M(ι− k) sup {‖x(χ)‖ : 0 ≤ χ ≤ ι}+ N(ι− k) ‖x0‖Bh

, where K > 0

3. M,N : [0,+∞)→ [0,+∞) is locally bounded and continuous.

K,M and N are independent of x(·).

Partial Integro-differential Equations: Let X and Y be two Banach spaces such that

|y|Y := |Ay|+ |y| for y ∈ Y.

and Λ(ι) are closed linear operators on X.

Consider the following system

du(ι) =

(
Au(ι) +

∫ ι

0
Λ(ι− χ)u(χ)dχ

)
dι, ι ≥ 0,

u(0) = u0 ∈ X. (2.1)

Definition 2.1. A resolvent for Equation (2.1) is a bounded linear operator valued function R(ι) ∈

L(X), ι ≥ 0, having the following properties:

(i) R(0) = I and ‖R(ι)‖ ≤ Neαι for all ι ≥ 0 for N ≥ 1 and α > 0

(ii) For x ∈ X, R(ι)x is continuous for ι ≥ 0

(iii) For x in Y, R(·)x ∈ C1([0,+∞);X)
⋂

C([0,+∞);Y) and

dR(ι)x =

(
AR(ι)x +

∫ ι

0
Λ(ι− χ)R(χ)xdχ

)
dι

=

(
R(ι)Ax +

∫ ι

0
R(ι− χ)Λ(χ)xdχ

)
dι.

The reader is recommended to [6] for more information on the resolvent operator. We use the

following assumptions to deal with the existence of a resolvent operator:

(A1) For all ι ≥ 0, Λ(ι) ∈ L(Y,X) denotes a closed, continuous operator. For any y ∈ Y, the map

ι → Λ(ι)y is bounded, differentiable, and its derivative dΛ(ι)y/dι is bounded and uniformly

continuous on [0,∞).
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The following theorem provides sufficient criteria for the existence of the resolvent operator of (2.1).

Theorem 2.1. Assume (A1) hold. Then, ∃ a unique resolvent operator for the Cauchy problem (2.1).

Theorem 2.2. Assume (A1) hold. Then, the corresponding resolvent operator Λ(ι) of (2.1) is

continuous for ι ≥ 0 on the operator norn, namely for ι0 ≥ 0, it holds that

lim
γ→0
‖Λ(ι0 − γ)− Λ(ι0)‖ = 0.

Theorem 2.3. Assume (A1) be satisfied. Then ∃ C > 0 3 ‖Λ(ι+ ε)− Λ(ε)Λ(ι)‖ ≤ Cε.

Lemma 2.2. If Ξ : l → L02(K,H) satisfies
∫ T
0 ‖Ξ(χ)‖2L02 dχ < ∞. Then, (1.1) is well defined and

H-valued random variable and

E
∥∥∥∥∫ ι

0
Ξ(χ)dZH (χ)

∥∥∥∥2 < CH ι2H −1
∫ ι

0
‖Ξ(χ)‖2L02 dχ.

Definition 2.2. A H-valued stochastic processes x : (0,T] → H is called a mild solution of equation

(1.1), if (ι) = x0 = φ ∈ B, ι ∈ (−∞, 0],

(i) x(ι) is measurable and =ι-adapted, ι ≥ 0

(ii) For ι ∈ l a.s., x(ι) ∈ H has a Cadlag path and for every ι ∈ l, x(ι), satisfies

x(ι) = R(ι) [φ(0) + h(0, φ(0))]− h(ι, xι) +

∫ ι

0
R(ι− χ)f(χ, xχ, x($(x(χ), χ)))dχ

+

∫ ι

0
R(ι− χ)B(ι)u(ι)dχ+

∫ ι

0
R(ι− χ)σ(χ, x(χ))dZH (χ). (2.2)

3 Main Results

In this section, we prove the existence of the mild solution for system (1.2). In the whole of this work,

we assume (A1) and (A2) are true. The following assumptions are necessary to prove the main results:

(H1) R(ι) is compact, for ι > 0.

(H2) The function f : l ×B ×H→ H satisfies, ∀ x1, x2 ∈ B and x́1, x́2 ∈ H

E ‖f(ι, x1, x́1)− f(ι, x2, x́2)‖2 ≤ Θf

[
E ‖x1 − x2‖2B + E ‖x́1 − x́2‖

]
.

(H3) Let $ : H× R+ → R+ satisfies and with constant Θ$ > 0 such that

E ‖$(x1, χ)−$(x2, χ)‖2R+ ≤ Θ$

[
E ‖x1 − x2‖2B

]
.

and $(·, 0) = 0.
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(H4) The function h : l ×Bh → H is continuous. Moreover,

(i) h(·, x) is strongly measurable, ι ∈ l.

(ii) For x1, x2 ∈ Bh, h(ι, ·) satisfies, Θh > 0,

E ‖h(ι, x1)− h(ι, x2)‖2 ≤ ΘhE ‖x1 − x2‖2Bh
,

E ‖h(ι, x)‖2 ≤ Θh

(
1 + E ‖x‖2

)
.

(H5) The function σ : l ×Bh → L02 satisfies, for every x1, x2 ∈ Bh,

E ‖σ(ι, x1)− σ(ι, x2)‖2 ≤ ΘσE ‖x1 − x2‖2Bh
.

(H6) The linear operator W from L2(l,U) into L2(W,H), defined by

Wu =

∫
l
R(ι− χ)Bu(χ)dχ

has an induced inverse W−1 which takes values in L2(l,U)/ ker W and ∃ two +ve constant MB

and MW such that

‖B‖ ≤ MB,
∥∥W−1∥∥ ≤ MW.

Theorem 3.1. Under (H1)-(H6) hold, then there exists a mild solution of (1.2) on l provided that

D = 2ΘhMT + 2ΘfT
2Θ2

R

[
2Θ$r̃ + MT

]
.

Proof . Let BT be the set defined by BT =
{
x : (−∞,T]→ H 3 x|(−∞, 0] ∈ Bh, x|l ∈ C

}
.

Define the operator Φ : BT → BT by

(Φx)(ι) =


0, ι ∈ (−∞, 0],

R(ι) [φ(0) + h(0, φ(0))]− h(ι, xι) +
∫ ι
0 R(ι− χ)f(χ, xχ, x($(x(χ), χ)))dχ

+
∫ ι
0 R(ι− χ)B(ι)u(ι)dχ+

∫ ι
0 R(ι− χ)σ(χ, x(χ))dZH (χ), t ∈ l.

Using (H6), we get

E
∥∥∥∥∫ ι

χ
B(χ)u(χ)dχ

∥∥∥∥2 ≤ Θ2
RT ‖B‖2 ‖u‖2L= .

Then, from the Bochner theorem, it follows that R(ι− χ)B(χ)u(χ) is integrable on l. The nonlinear

functions h, f and σ are continuous on l, and the set Φ(x) is well defined on l. Next, to prove that Φ

has a fixed point. For φ ∈ Bh,

φ̃ =


φ(ι), ι ∈ (−∞, 0],

R(ι)φ(0), ι ∈ l.
(3.1)
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Then, φ̃ ∈ BT. Let x(ι) = φ̃(ι) + ζ(ι), −∞ < ι ≤ T. It is clear that x(ι) satisfies Definition 3.1 iff ζ(ι)

satisfies that ζ(0) = 0 and

ζ(ι) = R(ι)h(0, φ(0))− h(ι, φ̃(ι) + ζ(ι)) +

∫ ι

0
R(ι− χ)f(χ, φχ + ζ(χ), φ̃(χ) + ζ(χ)($(φ̃(χ) + ζ(χ), χ)))dχ

+

∫ ι

0
R(ι− χ)B(χ)u(χ)dχ+

∫ ι

0
R(ι− χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ).

Let B0
T = {ζ ∈ BT, ζ(0) = 0 ∈ B}. For every ζ ∈ B0

T,

‖ζ‖T = ‖ζ0‖B + sup
0≤ι≤T

E ‖ζ(ι)‖ = sup
0≤ι≤T

E ‖ζ(ι)‖ .

Thus,
(
B0

T, ‖·‖T
)

is a Banach space.

Define the set Λr =
{

v ∈ B0
T, ‖v‖

2 ≤ r
}

, r ≥ 0. Then, obviously, Λr ⊂ B0
T is uniformly bounded.

Furthermore, we have ζ ∈ Λr,∥∥∥φ̃(ι) + ζ(ι)
∥∥∥2

B
= 2

(∥∥∥φ̃(ι)
∥∥∥2

B
+ ‖ζ(ι)‖2B

)
,

≤ 2

(
M2

T sup
χ∈l

E ‖ζ(χ)‖2 + N2
T sup
χ∈l

E ‖ζ(0)‖2 + M2
T sup
χ∈l

E
∥∥∥φ̃(ι)

∥∥∥2 + N2
T sup
χ∈l

E
∥∥∥φ̃(0)

∥∥∥2) ,
≤ 2M2

T

(
ζ + M2 ‖φ‖2

)
+ 2M2

T ‖φ‖
2
B ,

= r̃.

Now, we define the operator Φ̃ : B0
T → B0

T by

(Φ̃ζ)(ι) =



0, ι ∈ (−∞, 0],

R(ι)h(0, φ(0))− h(ι, φ̃(ι) + ζ(ι))

+
∫ ι
0 R(ι− χ)f(χ, φχ + ζ(χ), φ̃(χ) + ζ(χ)($(φ̃(χ) + ζ(χ), χ)))

+
∫ ι
0 R(ι− χ)B(χ)u(χ)dχ+

∫ ι
0 R(ι− χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ), t ∈ l.

Notice that Φ̃ is well defined on Λr, for r > 0. Note that Φ has a fixed point iff Φ̃ has a fixed point.

First, we decompose Φ̃ as Φ̃ = Φ̃1 + Φ̃2. Define

(Φ̃1ζ)(ι) = R(ι)h(0, φ(0))− h(ι, φ̃(ι) + ζ(ι))

+

∫ ι

0
R(ι− χ)f(χ, φχ + ζ(χ), φ̃(χ) + ζ(χ)($(φ̃(χ) + ζ(χ), χ)))dχ

(Φ̃2ζ)(ι) =

∫ ι

0
R(ι− χ)B(χ)u(χ)dχ+

∫ ι

0
R(ι− χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ).

Now, we shall show that the operators Φ̃1 and Φ̃2 satisfy all the conditions of Theorem 3.1.

Step: 1 Φ̃1 is a contraction on B0
T.
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Let t ∈ l and r1, r2 ∈ Br. Consider

E
∥∥∥(Φ̃1r1)(ι)− (Φ̃2r2)(ι)

∥∥∥2 ≤ 2E
∥∥∥h(ι, φ̃(ι) + ζ1ι)− h(ι, φ̃(ι) + ζ2ι)

∥∥∥2
+ 2E

∥∥∥∥∫ ι

0
R(ι− χ)

[
f(χ, φχ + ζ1χ, (φ̃+ ζ1)($(φ̃(χ) + ζ1(χ), χ)))

− f(χ, φχ + ζ2χ, (φ̃+ ζ2)($(φ̃(χ) + ζ2(χ), χ)))
]
dχ

∥∥∥∥2
≤ 2Θh ‖ζ1ι − ζ2ι‖2Bh

+ TΘ2
RΘf

∫ ι

0

[
r̃Θ$E ‖ζ1 − ζ2‖2Bh

+ E ‖ζ1 − ζ2‖2 + r̃Θ$E ‖ζ1 − ζ2‖2
]

dχ

≤ 2ΘhMT sup
χ∈(0,ι)

E ‖ζ1(χ)− ζ2(χ)‖2Bh
+ 2ΘfT

2Θ2
R

[
2Θ$r̃E ‖ζ1 − ζ2‖2Bh

+ MT sup
χ∈(0,ι)

E ‖ζ1(χ)− ζ2(χ)‖2Bh

]
≤ 2ΘhMT sup

χ∈(0,ι)
E ‖ζ1(χ)− ζ2(χ)‖2Bh

+ 2ΘfT
2Θ2

R

[
2Θ$r̃ + MT

]
sup
χ∈(0,ι)

E ‖ζ1(χ)− ζ2(χ)‖2Bh

≤
{

2ΘhMT + 2ΘfT
2Θ2

R

[
2Θ$r̃ + MT

]}
sup
χ∈(0,ι)

E ‖ζ1(χ)− ζ2(χ)‖2Bh

:= DE ‖ζ1 − ζ2‖2Bh
,

where D = 2ΘhMT + 2ΘfT
2Θ2

R

[
2Θ$r̃ + MT

]
.

We have D < 1, and thus, Φ̃1 is a contraction mapping.

Step: 2 Φ̃1 maps bounded sets into bounded set in Λr.

It is sufficient to show that there exists a +ve constant D1 such that, we have for any ζ ∈ Br,

E
∥∥∥(Φ̃2ζ)(t)

∥∥∥ ≤ D1.

E
∥∥∥(Φ̃2ζ)(ι)

∥∥∥2 ≤ 2E
∥∥∥∥∫ ι

0
R(ι− χ)B(χ)u(χ)dχ+

∫ ι

0
R(ι− χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ)

∥∥∥∥2
≤ 2TΘ2

R ‖B‖
2 ‖u‖2L= + 2CH ι2H −1ΘσΘ2

RE
∥∥∥σ(χ, φ̃(χ) + ζ(χ))

∥∥∥2
≤ 2TΘ2

R ‖B‖
2 ‖u‖2L= + 2CH ι2H −1ΘσΘ2

R r̃

≤ 2Θ2
R

[
T + ‖B‖2 ‖u‖2L= + 2CH ι2H −1Θσ r̃

]
:= D1.

Step 3: The operator Φ̃2 is completely continuous.

First, we show that Φ̃2 maps Br into an equicontinuous family. Suppose if 0 < ε < γ < γ + T < T
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with ε > 0 and T > 0.

E
∥∥∥(Φ̃2ζ)(γ + T )− (Φ̃2ζ)(γ)

∥∥∥2
≤ E

∥∥∥∥∫ γ+T

0
R(γ + T − χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ)−

∫ γ

0
R(γ − χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ)

∥∥∥∥2
≤ E

∥∥∥∥∫ γ

0
[R(γ + T − χ)−R(γ − χ)]σ(χ, φ̃(χ) + ζ(χ))dZH (χ) +

∫ γ+T

γ
R(γ + T − χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ)

∥∥∥∥2
≤ 3CH ι2H −1 sup

χ∈[0,γ]
‖R(γ + T − χ)−R(γ − χ)‖2

∫ γ

0
E
∥∥∥σ(χ, φ̃(χ) + ζ(χ))

∥∥∥2
L2=

dχ

+ 3CH ι2H −1Θ2
R

∫ γ+T

γ
E
∥∥∥σ(χ, φ̃(χ) + ζ(χ))

∥∥∥2
L2=

dχ

≤ 3CH ι2H −1 sup
χ∈[0,γ]

‖R(γ + T − χ)−R(γ − χ)‖2 r̃γ + 3CH ι2H −1Θ2
RT r̃.

Applying Lebesgue’s dominated convergence theorem, we conclude that the right-hand side of the

above results tends to 0 as T → 0. Thus, Φ̃2 is continuous from the right in (0,T]. A similar

argument prove that it is also continuous from the left in (0,T]. Therefore, Φ̃2 maps bounded sets

into an family of equicontinuous family.

Step 4: Φ̃2Br is relatively compact.

Let ι ∈ l be fixed and ε ∈ R be a number satisfying 0 < ε < ι.

For any ζ ∈ Br, we define

(Φ̃ε
2ζ)(ι) =

∫ ι−ε

0
R(ι− χ)Bu(χ)dχ+

∫ ι−ε

0
R(ι− χ)σ(χ, φ̃(χ) + ζχ)dZH (χ)

= R(ε)

[∫ ι−ε

0
R(ι− χ− ε)Bu(χ)dχ+

∫ ι−ε

0
R(ι− χ− ε)σ(χ, φ̃(χ) + ζχ)dZH (χ)

]
= R(ε)(Φ̃ε

2ζ)(ι− ε).

Since R(ε) is compact, the set Gε(ι) =
{

(Φ̃ε(ζ))(ι) : z ∈ Br

}
is the precompact in H for every ε with

0 < ε < ι. In addition, ζ ∈ Br, we have

E
∥∥∥(Φ̃2ζ)(ι)− (Φ̃ε

2ζ)(ι)
∥∥∥2 ≤ E

∥∥∫ ι

0
R(ι− χ)Bu(χ)dχ+

∫ ι

0
R(ι− χ)σ(χ, φ̃(χ) + ζχ)dZH (χ)

−
∫ ι−ε

0
R(ι− χ)Bu(χ)dχ+

∫ ι−ε

0
R(ι− χ)σ(χ, φ̃(χ) + ζχ)dZH (χ)

∥∥2
≤ E

∥∥∥∥∫ ι

ι−ε
R(ι− χ)Bu(χ)dχ+

∫ ι

ι−ε
R(ι− χ)σ(χ, φ̃(χ) + ζχ)dZH (χ)

∥∥∥∥2
≤ Θ2

R ‖B‖
2 ‖u‖2L0= ε+ Θ2

RCH ι2H −1Θσ

∫ ι

ι−ε
dχ

≤ Θ2
R ‖B‖

2 ‖u‖2L0= ε+ Θ2
RCH ι2H −1Θσ r̃ε.

As ε approaches to 0, the right-hand side of the preceding inequality tends to 0. These are arbitrarily

close precompact sets to the sets
{

(Φ̃2ζ)(ι) : ζ ∈ Br

}
. Hence, the set

{
(Φ̃ε(ζ))(ι) : ζ ∈ Br

}
is

precompact in H.
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Step 5: The operator B0
T → B0

T is continuous.

Let {ζ}∞n=1 in B0
T with ζn → ζ ∈ B0

T. Then, r > 0 s.t ‖ζn(ι)‖ < r, ∀n and ι ∈ l a.e., so ζ, ζn ∈ Λr

σ(ι, φ̃ι + ζnι)→ σ(ι, φ̃ι + ζι) as n→∞, ι ∈ l.

Since

E
∥∥∥σ(ι, φ̃ι + ζnι)→ σ(ι, φ̃ι + ζι)

∥∥∥2 ≤ ΘσE ‖ζnι − ζι‖2Bh
,

by dominated convergence theorem,

E
∥∥∥(φ̃ι + ζnι)(ι)− (φ̃ι + ζι)(ι)

∥∥∥2 ≤ E
∥∥∥∥∫ ι

0
R(ι− χ)

[
σ(ι, φ̃ι + ζnι)dZH (χ)− σ(ι, φ̃ι + ζι)dZH (χ)

]∥∥∥∥2
→ 0 as n→∞.

Thus, Φ̃2 is continuous. Therefore, Φ̃2 is completely continuous.

Step 6: The set ∆ =
{
ζ ∈ B0

T : x = λΦ̃1
ζ
λ + λΦ̃2ζ

}
, λ ∈ (0, 1) is bounded on l. Let ζ ∈ ∆ and for

some 0 < λ < 1,

E ‖ζ(ι)‖2 ≤ 5E
{
‖R(ι)h(0, φ(0))‖2 +

∥∥∥h(ι, φ̃(ι) + ζ(ι))
∥∥∥2

+

∥∥∥∥∫ ι

0
R(ι− χ)f(χ, φ(χ) + ζ(χ), (φ̃(χ) + ζ(χ))($(φ̃(χ) + ζ(χ), χ)))

∥∥∥∥2 dχ

+

∥∥∥∥∫ ι

0
R(ι− χ)B(χ)u(χ)

∥∥∥∥2 dχ+

∥∥∥∥∫ ι

0
R(ι− χ)σ(χ, φ̃(χ) + ζ(χ))dZH (χ)

∥∥∥∥2}
≤ 5

[
Θ2

RΘh(1 + ‖φ(0)‖2) + Θ2
RΘh(1 + r̃)

+ TΘ2
R

∫ ι

0

{
E
∥∥f(χ, φ(χ) + ζ(χ), (φ̃(χ) + ζ(χ))($(φ̃(χ) + ζ(χ), χ)))

− f(χ, 0, (φ̃(χ) + ζ(χ))($(φ̃(χ) + ζ(χ), 0)))
∥∥2 +

∥∥∥f(χ, 0, (φ̃(χ) + ζ(χ))($(φ̃(χ) + ζ(χ), 0)))
∥∥∥2}dχ

+ TΘ2
R ‖B‖

2
∫ ι

0
‖u(χ)‖2 dχ+ Θ2

RCH ι2H −1Θσ

∫ ι

0
E
∥∥∥φ̃(χ) + ζ(χ)

∥∥∥2 dχ

]
≤

[
Θ2

RΘh(1 + ‖φ(0)‖2) + Θ2
RΘh(1 + r̃)

+ TΘ2
RΘf(1 + Θ$r̃)

∫ t

0
E
∥∥∥φ̃(χ) + ζ(χ)

∥∥∥2 dχ+ TΘ2
RΘf

∫ ι

0
f0dχ+ TΘ2

R ‖B‖
2 ‖u‖2L=

+ Θ2
RCH ι2H −1Θσ

∫ ι

0
E
∥∥∥φ̃(χ) + ζ(χ)

∥∥∥2 dχ

]
≤ 5

[
Θ2

RΘh(1 + ‖φ(0)‖2) + Θ2
RΘh(1 + r̃) + T2Θ2

RΘff0 + TΘ2
R ‖B‖

2 ‖u‖2L=

+
{

TΘ2
RΘf(1 + Θ$r̃) + Θ2

RCH ι2H −1Θσ+
}

Tr̃

]
:= D2.

Thus, ∆ is bounded on l. Hence, by Krasnoselskii-Schaefer fixed point theorem [26], ∃ a mild solution

for (1.2) on l.
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4 Optimal Control

Using the Balder’s theorem, this section investigates the existence of optimum control for (1.1). Here

u(·) is the control function which takes values in a separable Hilbert space Y, B ∈ L∞(l,L(Y,H)),

‖B‖∞ stands for the norm of operator B on Banach space L∞(l,L(Y,H)), where L∞(l,L(Y,H))

denote the space of operator valued functions that are measurable in the strong operator topology

and uniformly bounded in l. Let L2=(l,Y) be the closed subspace of Y consisting of all measurable and

=ι-adapted, Y-valued stochastic processes satisfies
∫ ι
0 ‖u(ι)‖2Y dι <∞ and with the norm

‖u(ι)‖L2=(l,Y) =

[∫ ι

0
‖u(ι)‖2Y dι

] 1
2

Let v(·) be a nonempty closed bounded convex subset of U. Define Gad =
{
u(·) ∈ L2=(l,U) : u(ι) ∈

Gad, a.e, ι ∈ l
}

.

(H4) B ∈ U∞(l,L(U,H)).

Consider the Bolza problem P̃ (see [22]), which is to find an optimal pair (x0,u0) ∈ B×Gad such that

G(x0,u0) ≤ G(xu,u), ∀u ∈ Gad where the cost functional

G(xu,u) = E
∫ ι

0
J (ι, xuι , x

u(ι),u(ι))dι+ EΘ(xu(T)).

We introduce the following hypotheses:

(1) The functional J : l ×B ×H× U→ R ∪ {∞} is Borel measurable.

(2) J (ι, ·, ·, ·) is sequentially lower semicontinuous on B ×H× U for almost all ι ∈ [0,T].

(3) J (ι, x, xι, ·) is convex on U for each x ∈ B and almost all ι ∈ l.

(4) There exist constants d, e ≥ 0, j > 0, µ0 is non negative and µ0 ∈ L1([0,T];R) such that

µ0(ι) + dE ‖x‖2 + eE ‖xι‖2 + jE ‖u‖2U ≤ J (ι, x(ι), xι,u(ι)).

Theorem 4.1. Assume that the assumptions in Theorem 3.1 and (H1)-(H6) are fulfilled and B is

strongly continuous operator, then the Bolza problem has at least one optimal pair on B × Gad.

Proof . If inf {G(u) : u ∈ Gad} = +∞. Then there is nothing to prove. Assume that

inf {G(u) : u ∈ Gad} = ε <∞. Using (H5), we have ε > −∞. By definition of infimum, there exists a

minimizing sequence feasible pair {(xn,un)} ⊂ Gad ≡
{

(x,u) : x is a mild solution of the system (1.1)

corresponding to un ∈ Gad
}

, such that G(xn,un) → ε as n → +∞. Since un ∈ Gad,

{un}n≥1 ⊂ L2(l,U) is bounded. Thus, ∃ u0 ∈ L2(J,K) and a subsequence extracted from un such

that un
w→ u0 weakly in L2(l,U). Since Uad is closed and convex, the Mazur lemma forces us to

conclude that u0 ∈ Gad. Suppose that xn and x0 are the mild solutions of (1.2) corresponding to un
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and u0, respectively. Let xn and x0 satisfy the equations

xn(ι) =


0, ι ∈ (−∞, 0],

R(ι) [φ(0) + h(0, φ(0))]− h (ι, xnι ) +
∫ ι
0 R(ι− χ)f(χ, xnχ, x

n($(xnχ, χ)))dχ

+
∫ ι
0 R(ι− χ)B(χ)un(χ)dχ+

∫ ι
0 R(ι− χ)σ(χ, xnχ)dZH (χ), ι ∈ l.

(4.1)

Similarly, corresponding to x0, ∃ a mild solution x0 of (1.2),

x0(ι) =


0, ι ∈ (−∞, 0],

R(ι) [φ(0) + h(0, φ(0))]− h
(
ι, x0ι

)
+
∫ ι
0 R(ι− χ)f(χ, x0χ, x

0($(x0χ, χ)))dχ

+
∫ ι
0 R(ι− χ)B(χ)u0(χ)dχ+

∫ ι
0 R(ι− χ)σ(χ, x0χ)dZH (χ), ι ∈ l.

(4.2)

By the properties of boundedness of {un} and
{
u0
}

, we can show that ∃ a +ve number β such that

E ‖xn‖2 ,E
∥∥x0∥∥2 ≤ β. For every ι ∈ l, we get

E
∥∥xn(ι)− x0(ι)

∥∥2 ≤ 4

{
E
∥∥h (ι, xnι )− h

(
ι, x0ι

)∥∥2
+ T

∫ ι

0
‖R(ι− χ)‖2 E

∥∥f(χ, xnχ, xn(a(xnχ, χ)))− f(χ, x0χ, x
0($(x0χ, χ)))

∥∥2 dχ

+ T

∫ ι

0
‖R(ι− χ)‖2 E

∥∥B(χ)un(χ)−B(χ)u0(χ)
∥∥2 dχ

+

∫ ι

0
‖R(ι− χ)‖2 E

∥∥σ(χ, xnχ)− σ(χ, x0χ)
∥∥2 dZH (χ)

}
≤ 4

{
E
∥∥h (ι, xnι )− h

(
ι, x0ι

)∥∥2
+ TΘ2

R

∫ ι

0
E
∥∥f(χ, xnχ, xn($(xnχ, χ)))− f(χ, x0χ, x

0($(x0χ, χ)))
∥∥2 dχ

+ TΘ2
R

∫ ι

0

∥∥B(χ)un(χ)−B(χ)u0(χ)
∥∥2 dχ

+ Θ2
RCH ι2H −1

∫ ι

0
E
∥∥σ(χ, xnχ)− σ(χ, x0χ)

∥∥2 dχ

}
≤ 4

{
ΘhE

∥∥xnι − x0ι
∥∥2 + Θ2

R

[
CH ι2H −1Θσ + TΘ$

] ∫ ι

0
E
∥∥xnχ − x0χ

∥∥2 dχ

+ TΘ2
R

[
Θf

∫ ι

0
E
∥∥xn($(xn(χ), χ))− xn($(x0(χ), χ))

∥∥2
− E

∥∥xn($(x0(χ), χ))− x0($(x0(χ), χ))
∥∥2 ]dχ+ TΘ2

R

∫ ι

0

∥∥B(χ)
[
un(χ)− u0(χ)

]∥∥2 dχ

}
≤ 4

{
ΘhE

∥∥xnι − x0ι
∥∥2 + Θ2

R

[
CH ι2H −1Θσ + TΘ$

] ∫ ι

0

∥∥xnι − x0ι
∥∥2 dχ

+ TΘ2
RΘf [rΘ$ + MT + 1]

∫ ι

0
E
∥∥xn(χ)− x0(χ)

∥∥2 dχ+ TΘ2
R

∫ ι

0

∥∥B(χ)
[
un(χ)− u0(χ)

]∥∥2 dχ

}
≤ 4MTΘh sup

ι∈l
E
∥∥xnι − x0ι

∥∥2 + 4TΘ2
R

∥∥B(χ)
[
un(χ)− u0(χ)

]∥∥2 dχ

+ 4

{
Θ2

RMT

[
CH ι2H −1Θσ + TΘ$

]
+ TΘ2

RΘf [rΘ$ + MT + 1]

}∫ ι

0
E
∥∥B(χ)

[
un(χ)− u0(χ)

]∥∥2 dχ
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≤ 1

1−∇1

{
∇2

∫ ι

0
E
∥∥xn(χ)− x0(χ)

∥∥2 dχ+ 4TΘ2
R

∫ ι

0
E
∥∥B(χ)

[
un(χ)− u0(χ)

]∥∥2 dχ

}
where

∇1 = 4MTΘh sup
ι∈l

E
∥∥xn(ι)− x0(ι)

∥∥2 , r = M2
T sup
ι∈l

E ‖xn(ι)‖2

∇2 = 4

{
Θ2

RMT

[
CH ι2H −1Θσ + TΘ$

]
+ TΘ2

RΘf [rΘ$ + MT + 1]

}
, 1−∇1 6= 0.

By applying Gronwall’s inequality, there exists ∇3 > 0 such that

E
∥∥xn(χ)− x0(χ)

∥∥2 ≤ ∇3

∥∥Bun −Bu0
∥∥2

Since B is strongly continuous, we have
∥∥Bun −Bu0

∥∥2 → 0 as n→∞. Therefore

E
∥∥xn(χ)− x0(χ)

∥∥2 → 0 as n→∞.

Note that (1)-(4) implies that the assumptions of Balder’s theorem [26] are fulfilled. Thus, we can

deduce that (xι, x,u) →
∫ ι
0 J (ι, xι, x(ι),u(ι))dι is sequentially lower semicontinuous on L2=(l,U) ⊂

L1=(l,U). Hence, G is weakly lower semicontinuous on L2=(l,U) and G > −∞; thus, G attains its

infimum at u0 ∈ Gad, that is

ε = lim
n→∞

E
∫ ι

0
J (ι, xn(ι), xnι ,u

n(ι))dι+ lim
n→∞

EΞ(xn(T))

≥ E
∫ ι

0
J (t, x0(t), x0t ,u

0(ι))dι+ EΞ(xn(T))

= J (x0,u0) ≥ ε.

This proves that G attains its minimum at u0 and that (x0,u0) is the required optimal control pair.

5 Applications

Let us consider the controlled neutral partial SIDEs of the form

d
[
x(ι, y) + 2e3ιx(ι− φ, y)

]
=

∂2

∂y2

[
x(ι, y) + 2e3ιx(ι− φ, y)

]
dι+

[∫ ι

0
Λ̃(ι− χ)

∂2

∂y2

[
x(ι, y) + 2e3ιx(ι− φ, y)

]
dχ

]
+

∫ ι

0
G(χ, y)u(χ, y)dχ+

x(ι, sin ι |x(ι, y)|) + ι2x(ι, y)

5π
dι

+
eι |x(ι− φ, y)|

8
dZH (ι), ι ∈ [0, 1], y ∈ [0, π],

x(ι, 0) = x(ι, y) = 0, ι ∈ [0, 1],

x(ι, y) = φ(ι, y), ι ∈ (−∞, 0], y ∈ [0, π]. (5.1)

Let G : [0, 1] × [0, π] → R be a continuous function. Let H = U = L2([0, 1], [0, π]) and the operator

A : D(A) ⊆ H → H is defined by Ax = ∂2x
∂y2

, D(A) =
{
x ∈ H : x, x

′
are absolutely continuous,
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x
′′ ∈ H, x(0) = x(π) = 0

}
. Then, A generates a strongly continuous semigroup {S(ι, ι > 0)} which

is analytic, compact, and self-adjoint. Moreover, A has a discrete spectrum with the eigenvalues

−n2, n ∈ N with the corresponding normalized eigenvector en(x) =
√

2
π sinnx, n = 1, 2, · · · , where en

is an orthonormal base. For x ∈ D(A),
∑∞

n=1 < x, en > en and Ax = −
∑∞

n=1 n
2 < x, en > en, x ∈ D(A).

Here, the nonlinear functions are

f(ι, x($(x(ι, y), ι))) =
x(ι, sin ι |x(ι, y)|) + ι2x(ι, y)

5π
, σ(ι, x(ι, y)) =

eι |x(ι− φ, y)|
8

,

h(ι, x(ι, y)) = 2e3ιx(ι−φ,y).

The non-linear function h : [0, 1]×Bh → H and

E ‖h(ι, x1(ι, y))− h(ι, x2(ι, y))‖2 ≤
∫ 0

−∞
E
∥∥∥√2eχx1(χ− φ, y)−

√
2eχx2(χ− φ, y)

∥∥∥2 dχ

≤ 2E ‖x1(χ, y)− x2(χ, y)‖2

Thus, (H6) is fulfilled with Θh = 2.

Consider f : [0, 1]×Bh → H,

E ‖f(ι, x1($(x1(ι, y), ι)))− f(ι, x2($(x2(ι, y), ι)))‖2 ≤ E
∥∥∥∥x1(ι, sin ι |x1(ι, y)|) + ι2x1(ι, y)

5π

− x2(ι, sin ι |x2(ι, y)|) + ι2x2(ι, y)

5π

∥∥∥∥2
≤ 1

25
E ‖x1(ι, y)− x2(ι, y)‖2

Since

E ‖$(x1(ι, x), ι)−$(x2(ι, x), ι)‖2 ≤ E ‖sin ι |x1(ι, y)| − sin ι |x2(ι, y)|‖2

≤ E ‖x1(ι, y)− x2(ι, y)‖2 .

As a result, with Θf = 1
25 , Θa = 1, (H4) and (H5) are satisfied

Next, σ : [0, 1]×Bh → L02,

E ‖σ(ι, x1(ι, x))− σ(ι, x2(ι, x))‖2 ≤ 1

64
E ‖eιx1(ι− φ, y)− eιx2(ι− φ, y)‖2

≤ 1

64

∫ 0

−∞
e2χE ‖eχx1(χ− φ, y)− eχx2(χ− φ, y)‖2 dχ

≤ 1

64
E ‖x1(ι, y)− x2(ι, y)‖2 .

Thus, (H6) holds with Θσ = 1
64 .

As a result of combining the values obtained above, we have
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By Theorem 3.1, the solution of (5.1) exists if D < 1. Consider the cost function as follows:

G(xu,u)(y) =

∫ π

0

∫ 1

0
E ‖xu(ι, y)‖2 dιdy +

∫ 1

0
‖u(ι, y)‖2 dιdy.

Now, ∫ π

0

∫ ι

0
‖Bu(ι, y)‖2 dιdy ≤ Θ2

G ×mes(π)× ‖u(χ, y)‖2L2[0,1],[0,π] ,

where Θ2
G = max

{
‖G(ι, y)‖2 : ι ∈ [0, 1]

}
. Then, we can conclude that B is a bounded linear operator

in L2[0, 1], [0, π]. Furthermore, the Theorem’s assumptions are met, implying that at least one optimum

pair exists (xu(ι, y),u(ι, y)).

6 Conclusions

This article we have studied the optimal control for a class of infinite time delay neutral SIDEs with

deviated arguments driven by Rosenblatt process in Hilbert space using Balder’s theorem. The

practical importance of Rossenblatt process has been mentioned in the Introduction. The axiomatic

phase space definition has been proven in the Preliminary section. Optimal control with deviated

argument driven by Rossenblatt process has been an untreated article in the literature.

One can extend system (1.2) with the second order and study the optimal control using sine and

cosine operators. Also, the optimal control for a class of neutral Stochastic Fractional

Integro-Differential Equations (SFIDEs) with deviated arguments driven by Rosenblatt process for

infinite time delay and state delay are future works.
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