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Abstract: Probiotics are living microbes that impart overall health benefits when introduced 

appropriately. They play important roles in activating the immune system, inhibiting pathogens, 

balancing gut microbiota, providing relief from inflammatory diseases, and helping prevent chronic 

conditions such as cancer. In this manuscript, we address the multifaceted uses of probiotics in 

medicinal, food, and cosmetic industries, emphasizing new encapsulation techniques that improve 

their stability and effectiveness. Demonstrating their uses in food enrichment, disease prevention, and 

delivery systems, the manuscript offers valuable recommendations for the use of probiotics in different 
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fields. It also anticipates future directions, such as the invention of new encapsulation techniques, the 

use of probiotics as personalized nutrition, and the application of their therapeutic benefits to new areas 

such as metabolic and neurodegenerative diseases. The paper demonstrates the potential of probiotics 

as promising candidates for the promotion of animal and human health in the modern era. 

Keywords: Clinical applications; encapsulation; food supplements; immune system; gut microbiota; 

probiotics 

 

1. Introduction 

Probiotics have become a crucial component in the development of functional foods and are well-

known for their beneficial health effects. [1,2]. Lilly and Stillwell [3] were the pioneers in defining 

probiotics as living microbes that provide health advantages to the host. The Food and Agriculture 

Organization (FAO) and the World Health Organization (WHO) subsequently defined probiotics as 

"living microorganisms that, when administered in adequate amounts, offer health benefits to the host" [4]. 

The word "probiotic," coming from the Latin pro and the Greek βιο (meaning "for life"), was first used 

by Werner Kollath in 1953. He described probiotics as biologically active substances that play a crucial 

role in promoting health [5]. Various bacterial genera have been recognized as possible probiotics, 

including Pediococcus, Lactococcus, Enterococcus, Streptococcus, Propionibacterium, and Bacillus [6]. 

Nonetheless, the predominantly utilized strains are from Lactobacillus and Bifidobacterium [7], which 

are involved in the biotransformation of mycotoxins present in food [2], the production of essential 

vitamins such as vitamin K, riboflavin, and folate [2,7], and the fermentation of non-digested dietary 

fibers in the colon [8]. Probiotics additionally promote host health by preventing the establishment of 

harmful microorganisms. This is achieved via competitive inhibition at mucosal binding sites and the 

adjustment of host immune responses, thereby enhancing intestinal barrier function [9]. Probiotics are 

especially beneficial in managing clinical issues like irritable bowel syndrome, inflammatory bowel 

disease, obesity, Parkinson's disease, diabetes, Alzheimer's, colic in infants, and rheumatoid        

arthritis [10–17]. Probiotics offer health benefits such as the regulation of gut microbiota, reduction of 

lactose intolerance symptoms, improved absorption of macro and micronutrients, and a lower 

incidence of allergic reactions in sensitive individuals [18]. Probiotics are usually obtained from 

fermented foods or dietary supplements, including dairy and non-dairy options [19]. They likewise aid 

in preserving a healthy gut microbiome and have clinical uses, such as treating or preventing issues 

like Helicobacter pylori infection, diarrhea, hypertension, ventilator-associated pneumonia, acute 

pancreatitis, diabetes, migraines, autism, and colon cancer [20]. Probiotics can greatly affect the 

makeup of specific gut microbes, although they may not change the whole microbial community. They 

have antimicrobial characteristics associated with their generation of hydrogen peroxide, organic acids, 

ethanol, or protein mechanisms (bacteriocins) [21,22]. Consequently, probiotics are being incorporated 

more frequently into various food products, including drinks, yogurt, ice cream, and baked goods. 

Despite their various advantages, a key difficulty in utilizing probiotics is their sensitivity to food 

processing conditions and gastrointestinal (GI) stresses. Recent advancements in technology, such as 

nanoencapsulation and genetic engineering, have greatly enhanced the resilience of probiotic strains 

in adverse environmental and physiological conditions [23]. They have antimicrobial characteristics 

associated with their generation of hydrogen peroxide, organic acids, ethanol, or protein-based 

mechanisms (bacteriocins) [24]. The advancement of microencapsulation methods is essential for 

safeguarding probiotics against environmental stressors [22–26]. Probiotic therapy is essential for 
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promoting healthy growth in both humans and animals. In recent decades, probiotics and other 

beneficial microorganisms have significantly enhanced human health and the quality of food and 

nutrition. Although the health benefits of probiotics vary depending on the strain, food products should 

contain approximately 106 live bacteria per gram or milliliter [27]. Probiotics have demonstrated 

promising effects in the prevention and management of various clinical disorders, including 

rheumatoid arthritis, obesity, Parkinson's disease, diabetes, Alzheimer’s disease, infantile colic, and 

irritable bowel syndrome [11–17,28]. The applications of probiotics extend beyond human health, 

playing a key role in livestock, aquaculture, and poultry management, as well as in the prevention and 

treatment of both communicable and noncommunicable diseases, such as bacterial, viral, parasitic, or 

fungal infections, nervous system disorders, obesity, cancer, and allergic conditions. They also show 

promise in pre-operative and post-operative processes. Recently, probiotic-rich diets have become vital, 

with elevated levels of probiotic consumption through animal products, fermented fruits, juices, and 

other food items [29]. Numerous studies have highlighted the role of probiotics in preventing and 

managing inflammatory diseases and allergic disorders such as atopic dermatitis and rhinitis, as well 

as in the prevention of diarrheal diseases, infection control, and as natural antibiotics. Probiotics have 

also been shown to aid in the treatment or prevention of colon and bladder cancers [30,31]. In this 

review, we emphasize the gaps, such as the multifaceted role of probiotics in health promotion, 

focusing on their mechanisms in disease prevention, potential to enhance food products, and the 

emergence of innovative delivery systems. We mostly contribute comprehensive insights into 

probiotics, including their types, methods of administration, encapsulation in functional foods, and 

their clinical applications for the treatment or prevention of various diseases, and provide a 

comprehensive analysis of the mechanisms involved and the current perspectives on the therapeutic 

applications of probiotics. We also delve into their safe integration into major food matrices and assess 

their role in preventing diseases and promoting health.    

2. Characteristic features of probiotic bacteria 

The identification and functional attributes of probiotics are important criteria for the 

identification of beneficial microorganisms that enhance human health. Probiotics are consumable, 

non-toxic, and non-pathogenic. Significant features are their acid and bile salt resistance, which 

enables them to survive the harsh environment of the digestive tract [32]. In addition, probiotics must 

have the ability to survive and live on both the gastrointestinal and urinary tracts and find niches in 

them to exert favorable health benefits. Probiotics must be stable and remain alive for long storage, 

particularly in fermentation and food manufacturing. Another important feature of these microbes is 

their ability to synthesize antimicrobial compounds that help to repress pathogenic microorganisms [33]. 

They regulate the host immune system, promoting a balanced immune reaction and enhanced health [34]. 

In addition, probiotics play a role in repairing or replacing gut microflora, assisting in the maintenance 

of a healthy intestinal environment. Coupled with their microbial benefits, probiotics have been found 

to reduce cholesterol, providing cardiovascular protection [35]. They exhibit anti-carcinogenic and 

anti-mutagenic activities, which help in inhibiting cancer [36]. Probiotics are also known to reduce 

symptoms of irritable bowel syndrome (IBS) and yield therapeutic relief to individuals with 

gastrointestinal discomfort. Probiotics play a critical role in inhibiting the development of pathogenic 

organisms and hence promoting a healthy microbial balance and protecting the host from infections. 
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3. Probiotics: Possible mode of action 

The mechanisms through which probiotics operate involve several important processes that 

benefit the host. These include the release of antimicrobial substances, regulation of the immune 

system, reduction of allergic infection risks, enhancement of intestinal barrier functions, modulation 

of gene expression, suppression of harmful organisms, and the production of functional proteins like 

lactase and natural enzymes [31]. Probiotic microorganisms are decisive for improving the microbial 

stability within the host and protecting the intestinal epithelial membranes from detrimental pathogens. 

They produce short-chain fatty acids (SCFAs) such as lactic acid, propionic acid, butyric acid, and 

acetic acid, which help them thrive in low pH environments, regulate the host's immune response, and 

inhibit pathogen growth, highlighting the essential qualities of probiotics. These microorganisms 

generate antimicrobial substances that combat infections, prevent pathogen adhesion, address nutrient 

deficiencies, eliminate toxin receptors, and modulate the host's immune system. The action 

mechanisms of probiotics can be summarized as follows: Preventing pathogenic microorganisms from 

adhering to the intestinal epithelium, regulating SCFA production, enhancing immune responses, 

modulating lipid metabolism, and suppressing intestinal pro-inflammatory cytokine activity [37–39]. 

The effects of probiotics are closely linked to the species of organisms present in the gut. They promote 

host health by managing gut mucosal immunity, inhibiting pathogenic microorganisms, improving the 

gut microenvironment, strengthening the intestinal barrier, reducing inflammation, and enhancing 

antigen-specific immune responses [40,41]. Maintaining the intestinal barrier is crucial for ensuring 

intestinal integrity and function. GIT microbiota composition varies between individuals, with 

beneficial or pathogenic microbes engaging in symbiotic relationships. Probiotics can promote an 

increase in beneficial gut microbiota and inhibit pathogenic or opportunistic microbes. Moreover, 

probiotic therapy is an effective modern approach to treating intestinal infections, exerting its action 

through various mechanisms, including the production of antimicrobial substances, competition for 

nutrient substrates, competitive exclusion, enhancement of intestinal barrier function, and modulation 

of the immune system [42]. Probiotics bring about host health through several mechanisms, including 

intestinal microbiota modulation, immune homeostasis, enhancement of epithelial barrier function, 

and gene expression. The release of antimicrobial compounds (e.g., bacteriocins, organic acids, 

reuterin) that suppress pathogens like Staphylococcus aureus, E. coli, Salmonella, and Clostridioides 

difficile by disrupting membranes and inhibiting adhesion is one of the major mechanisms. They also 

bring innate immunity by stimulating Paneth cells to release antimicrobial peptides like defensins and 

lysozyme [43] (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 



606 

AIMS Microbiology                                                       Volume 11, Issue 3, 602–648. 

Table 1. Probiotics and their influence on plants and animals, and their key benefits. 

Type Microorganisms  Examples Key Benefits References  

Lactic 

Acid 

Bacteria 

(LAB) 

Lactobacillus L. acidophilus, L. casei, 

L. rhamnosus, L. 

plantarum 

Improves digestion, enhances immunity, and 

produces lactic acid 

[44-46] 

Bifidobacterium B. bifidum, 

B. longum, 

B. breve 

Colon health modulates the immune system 

and battles gastrointestinal infections 

[47,48] 

Streptococcus S.thermophilus Supports lactose digestion and is used in 

dairy fermentation 

[49] 

Enterococcus E. faecium, 

E. durans 

Gut health (especially in animals) inhibits 

pathogens 

[50] 

Spore-

Forming 

Bacteria 

Bacillus B. subtilis, 

B. coagulans, 

B. clausii 

Heat-stable, supports gut flora, and is used in 

food and animal probiotics 

[51] 

Yeast 

Probiotics 

Saccharomyces 

(Yeast) 

S. boulardii Prevents antibiotic-associated and traveler’s 

diarrhea, and restores microbiota 

[52] 

Next-

Generation 

Probiotics 

Akkermansia A. muciniphila Supports metabolic health and may reduce 

obesity and insulin resistance 

[53] 

Faecalibacterium F. prausnitzii Anti-inflammatory, associated with a 

healthy gut in IBD (Inflammatory Bowel 

Disease) patients 

[54] 

Clostridium C. butyricum Produces butyrate and supports mucosal 

barrier integrity 

[55] 

Synbiotics 

(Probiotics 

+ 

Prebiotics) 

Various L. rhamnosus + inulin, 

B. longum + FOS 

Enhances probiotic survival and 

colonization and provides synergistic gut 

health benefits 

[56] 

Probiotics stimulate host pattern recognition receptors (e.g., TLRs), modulating NF-κB and 

MAPK signaling to suppress proinflammatory cytokines (e.g., TNF-α, IL-6) and induce anti-

inflammatory mediators like IL-10 and TGF-β. Probiotics stimulate Tregs and modulate the 

Th1/Th2/Th17 axis, promoting immune tolerance and mucosal immunity (e.g., increased sIgA, NK 

cell activation). Probiotics in allergy prevention restore microbial stimuli critical for immune 

maturation, suppress IgE responses, and promote Treg differentiation, improving eczema and allergic 

rhinitis [57]. 
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Probiotics at the gut barrier increase tight junction proteins (e.g., occludin, claudins) and      

mucins (e.g., MUC2), reducing intestinal permeability. Competitive exclusion also prevents 

colonization by pathogens by occupying the binding sites and limiting the accessibility of nutrients. 

Molecularly, they modulate gene expression, downregulate inflammatory genes, and enhance 

epithelial survival through probiotic-derived proteins (e.g., p40, p75) and surface layer proteins. Some 

strains like Lactobacillus and Bifidobacterium inhibit pathogen invasion and toxin action, maintain gut 

homeostasis, and reduce antibiotic-associated effects. Growing evidence is connecting probiotics with 

systemic actions via microbiota–gut–organ axes, impacting respiratory and neurological well-being, 

with possible therapeutic applications in treating infections such as COVID-19 [58] (Table 2 and 

Figure 1). 

Figure 1. Probiotics application in the prevention and control of diseases. 
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Table 2. Applications of probiotics. 

Probiotic strain Dose and administration Study type/model Response Application  References 

Bifidobacterium 

lactis Bb-12 and 

Lactobacillus 

rhamnosus GG 

(LGG) 

Oral administration of 3 × 

108 CFU of LGG and 109 

CFU of B. lactis for 4 weeks 

RDBS with 27 

infants with 

atopic disease 

After 2 months, a major improvement in the skin condition occurred in 

the probiotic group. (SCORAD) and the attentiveness of soluble CD4+ 

decreased in the probiotic groups 

Atopic eczema [59]  

Lactobacillus 

fermentum VRI-

033 PCC 

1× 109 CFU twice daily for 8 

weeks 

RDBPS with 56 

children 

A decrease in the SCORAD indicator was seen in the probiotic-treated 

group. After the study, more children treated with this probiotic had 

milder atopic dermatitis 

Atopic dermatitis [60]  

Lactobacillus F19 1 ×108 CFU/day for 4–6 

months 

RDBPS with 179 

infants 

The increasing occurrence of eczema at 13 months was lower in the 

probiotic group. At 13 months, the INF-y/IL-4 percentage was higher 

in the probiotic group. No differences in serum concentrations of IgE 

Eczema [61] 

B. infantis BB-02, 

Streptococcus 

thermophilus TH-

4, and B. lactis BB-

12 

A mixture of B. infantis BB-

02 (300 ×106 CFU), S. 

thermophilus TH-4 (350 

×106 CFU), and B. lactis 

BB-12 (350 × 106 CFU). 

Total: 1 × 109 CFU per 1.5 g 

in a powder once daily, until 

discharged from the hospital 

or term-corrected age 

MDPR with 1099 

very preterm 

infants 

There were no differences in the occurrence of eczema between the two 

groups. Similarly, the incidences of atopic eczema, food allergy, 

wheezing, and atopic sensitization were comparable in both groups. 

Eczema, atopic 

sensitization, food 

allergy, and 

wheezing 

[62] 

Mixture of L. 

casei, L. 

rhamnosus, L. 

plantarum, and B. 

lactis 

Oral administration at 2 × 

109 CFU in each strain, 

twice daily for 6 weeks 

DBPS with 100 

children 

 The combination of probiotics did not inhibit the growth of other 

strains, but no changes in clinical development were seen between the 

treated and placebo groups 

Atopic dermatitis [63] 

Continued on next page 
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Probiotic strain Dose and administration Study type/model Response Application  References 

Lactobacillus 

pentosus B281 

Lactobacillus 

plantarum B282 

NM NM Cell proliferation and 

Cell cycle arrest (G1) 

Caco-2 and HT-29 [64] 

Bacillus 

polyfermenticus 

KU3 

NM NM >90% ↓ Cell proliferation LoVo, HT-29, 

AGS 

[65] 

Lactobacillus 

plantarum A7 

Lactobacillus 

rhamnosus GG 

NM NM ↓ Cell proliferation Caco-2, HT-29 [66] 

Lactobacillus 

paracasei 

IMPC2.1 

Lactobacillus 

rhamnosus GG 

NM NM ↓Cell proliferation and Induction of apoptosis DLD-1, HGC-27 [67] 

Bacillus 

polyfermenticus 

NM NM ↓Cell colony formation in cancer cells (N/E on normal colonocytes) NMC460 [68] 

Lactobacillus 

plantarum 

species 299 

Colitis was induced by 30 

mg (0.6 mL of 5% aqueous 

solution) of TNBS. 7 days 

supplementation of 109 

colony forming units (CFU) 

of Lactobacillus plantarum 

(in oat fiber) following 

colitis initiation. 

Rat model 

(TBSN) 

No positive effects on the rat’s gut permeability, weight changes, colon 

microscopic scores, and the level of blood albumins; 

CD-like [69] 

Continued on next page 
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Probiotic strain Dose and administration Study type/model Response Application  References 

Bifidobacterium 

bifidum 

PRL2010 

daily oral supplementation 

of 109 of B. bifidum PRL 

2010. Colitis (TNBS 2.5 

mg/mice) was induced in the 

5th day of probiotic strain 

feeding. 

Murine model 

(TNBS) 

Reduction in the edema, decrease in the macroscopic damage and 

histological scores, decrease in weight loss, and anti-inflammatory 

effects 

CD-like [70] 

Bifidobacterium 

animalis subsp. 

lactis BB12 

7 days supplementation 

(twice a day) with 1.2 × 1010 

CFU Bifidobacterium 

animalis subsp. lactis BB12 

by oral gavage before 

colitis. Colitis was induced 

by 3% DSS added to 

drinking water for 6 days.  

Murine model 

(DSS) 

Defense against a reduction in colon length, better picture of the colon 

histology, decrease in apoptosis in the epithelial layer, reduction in the 

level of TNF-ά; 

UC-like [71] 

Lactobacillus 

delbrueckii 

Colitis was induced by 

administering 3% (w/v) 

dextran sulfate sodium 

(DSS) in the drinking water 

for 7 days. 

Probiotic treatment (5x109 ) 

CFU in mice began one day 

before colitis induction and 

continued until sacrifice. 

Murine model 

(DSS) 

Regulation of the NF-kB pathway and a decrease in the inflammatory 

state 

UC-like [72] 

Continued on next page 
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Probiotic strain Dose and administration Study type/model Response Application  References 

Saccharomyces 

boulardii 

Patients with CD in 

remission (based on Crohn’s 

disease activity index) were 

supplemented with S. 

boulardii about 4 ×108 cells 

every 8 h as an oral capsule 

formulation during 

3months. 

Human model Useful to regulate remission and bowel sealing CD [73] 

L. rhamnosus GG, 

B. lactis 

(1010CFU) 1 capsule per day RDPBS 

 

↓WC (p < 0.001) obesity and 

overweight 

[74] 

L. salivarius 

UCC118 

(109 CFU) 1 capsule per day RDPBS 

 

No effect obesity and 

overweight 

[75] 

L. rhamnosus GG (1010 CFU) 1 capsule per 

day 

RDPBS 

 

Probiotic administration may decrease weight gain, particularly up to 4 

years of age (p = 0.08) 

obesity and 

overweight 

[76] 

L. acidophilus, L. 

rhamnosus, B. 

bifidum, B. longum 

and  E. faecium 

(each 4.3 ×108 CFU) and 

(8.2 × 108 CFU) 

Open-label, 

randomized, 

controlled trial 

↓BMI (p < 0.05), ↓ HC, and WC (p < 0.05) obesity and 

overweight 

[77] 

L. casei, L. 

rhamnosus, S. 

thermophilus, B. 

breve,L. 

acidophilus, B. 

longum and 

L. bulgaricus 

(Each 2 ×108 CFU), vit. E, 

A, C per day 

RTBS ↓BMI, ↓ WC 

 

obesity and 

overweight 

[78] 

Continued on next page 
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Probiotic strain Dose and administration Study type/model Response Application  References 

Lactobacillus 

acidophilus 

NCFM 

NM NM Reduces the risk associated with type 2 diabetes mellitus and increases 

host's metabolic system, ensuring weight administration 

Diabetes and 

obesity 

[79,80] 

Lactobacillus 

gasseri SBT2055 

NM NM Majorly reduces in body mass index (BMI), waist, abdominal Visceral 

Fat Area (VFA), and hip circumference. 

Diabetes and 

obesity 

[81] 

Enterococcus 

faecium, 

Streptococcus 

thermophilus 

NM NM Reduces body weight, systolic Blood Pressure LDL-C (Low-Density 

Lipoprotein Cholesterol), and increases fibrinogen levels. 

Diabetes and 

obesity 

[82] 

Bifidobacterium 

animalis DSMZ 

23733, 

Bifidobacterium 

breve DSMZ 

23732 

NM NM Decreases total cholesterol level Diabetes and 

obesity 

[83] 

Lactobacillus 

species 

NM NM Noticeably increases inhibitory antagonistic effect, and a main target 

for pathogens (Gram-positives and Gram-negatives) and food spoilage 

microorganisms 

Antagonistic 

activity 

[84,85] 

 

 

Lactococcus lactis 

subsp Cremoris 

and Lb. brevis 

NM NM Two dissimilar, primarily linear peptides, with or without post-

translational modifications at the C-terminus, were attached as required. 

Antagonistic 

activity that is  

 

[86,87] 

Lactobacillus 

kefir, 

Lactobacillus 

kefiranofaciens, 

and Lactobacillus 

kefirgranum 

NM NM The production of bacteriocin increases the antibacterial activity of 

intestinal epithelial cells. They also reduce inflammation and serum 

cholesterol levels and produce an EPS known as kefiran. 

Antibacterial,anti-

cholesterol, and 

anti-inflammation 

[88-90] 

 

 

 

Continued on next page 
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Probiotic strain Dose and administration Study type/model Response Application  References 

Lactobacillus plantaFrum NM NM Antioxidant activity Antioxidant 

activity 

[91-93] 

Lactobacillus plantarum, 

Lactobacillus 

fermentum, and 

Saccharomyces cerevisiae 

NM NM Antibacterial activity against pathogens Antimicrobial 

activity 

 

 

L. fermentum CECT5716 NM NM Increases antibody production against the Influenza virus Antiviral activity [94] 

L. plantarum YML009 NM NM triggering of Th1 immune response against H1N1 Influenza 

virus 

Antiviral activity [95] 

L. rhamnosus GG NM NM Production of IFN- and Ils against Respiratory syncytial virus 

(RSV) 

Antiviral activity [96] 

E. faecium NCIMB 10415 NM NM Promotion of nitric oxide (NO) production and secretion of 

Interleukins (IL-6 and IL-8) against Transmissible 

gastroenteritis virus) TGEV 

Antiviral activity [97] 

Lactobacillus sp. NM NM Rule of blood pressure  Immune system [98] 

Bacillus licheniformis NM NM Decrease the effect of antibiotics use in the treatment of 

diarrhea and can detoxify aflatoxin B1 up to 94.7% in food 

matrices. 

Antibiotic [99] 

Bifidobacterium longum 

CMCC P0001 

NM NM Action of gastrointestinal disorders Antibiotic [100] 

Lactobacillus, 

Bifidobacterium 

NM NM positive effects on mental health and mood. Depression, 

Anxiety, and 

Mental Disorders 

[101] 

Lactobacillus acidophilus 

ATCC4495, Lactobacillus 

plantarum NRRL B-4496 

NM NM Important antifungal activity Antifungal activity [102] 

Continued on next page 
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Probiotic strain Dose and administration Study type/model Response Application  References 

Lactobacillus buchneri NM NM Antagonistic activity against Candida albicans Antifungal activity [103] 

Weissella cibaria and Weissella 

koreensis 

NM NM Antimicrobial activity against L. monocytogenes, E. coli, 

and Salmonella spp 

Anti-microbial 

activity 

[104] 

Lactobacillus acidophilus, 

Lactobacillus delberukii 

NM Gnotobiotic mice Digest lactose and sugar in milk and other dairy products Lactose 

intolerance 

[105] 

Lactobacillus reutri, 

Lactobacillus acidophilus, 

Lactobacillus rhamnosus 

GR-1 

NM Murine Stop the colonization of pathogenic bacteria Urinary tract 

infection 

 

[99,106,107] 

 

L. casei DN 114001 NM Human Cost-efficient  way to treat antibiotic-associated diarrhea 

during antibiotic treatment 

Antibiotic 

treatment 

[108] 

L. acidophilus 

B. animalis subsp. lactis 

L. delbrueckii subsp. bulgaricus 

S. thermophilus 

NM Clinical trials Clinical trials on adults (avg. age, 39) who were tested for 

12 days in three dissimilar groups: bio yogurt (n = 131), 

commercial yogurt (N = 118), and no yogurt (N = 120). The 

percentages of participants suffering AAD during this study 

are 6.9% (bio yogurt), 11.0% (commercial yogurt), and 

14.2% (no yogurt), respectively. 

Antibiotic 

associated 

diarrhea 

(AAD) 

[109] 

L. casei ATCC 393 NM Murine (CT26) 

and human 

(HT29) colon 

carcinoma cell 

lines 

Positive effect: Tumor inhibitory, anti-proliferative, and 

pro-apoptotic response 

Anti-cancer  [110] 

L. gasseri SBT2055 NM Human Boost of fat emulsion droplet size and the repression of 

lipase-mediated fat hydrolysis 

 Anti-cholesterol [111] 

L. helveticus NS8 NM Caco-2 Cells and 

BALB/c mice 

Probiotics have immunomodulatory properties Immune system [112] 

Continued on next page 
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Probiotic strain Dose and administration Study type/model Response Application  References 

L. rhamnosus HN001 and 

L. acidophilus GLA-14 

NM Human Antimicrobial performance against pathogens responsible 

for both bacterial vaginosis and aerobic vaginitis 

Antimicrobial 

activities 

[113] 

L. plantarum CRL 725 NM NM Riboflavin production in foods  Food [114] 

L. plantarum S48 and P1201 NM NM Conjugated linoleic acid production in foods  Food [115] 

B. animalis IM386 + L. 

plantarum MP2026 

NM NM Lactose intolerance Food [116] 

Saccharomyces boulardii NM Human Avoidance of antibiotic-associated diarrhea; β-lactamins or 

tetracyclins and Miscellaneous, Gastroenteritis 

Antibiotic [117] 

Akkermansia muciniphila NM NM Anticipation of obesity and metabolic disorders  

 

Obesity and 

weight loss 

[118,119] 

 

Abbreviation: Decrease; human colonic cancer cells: Caco-2, HT-29, SW1116, HCT116, SW480, DLD-1, LoVo; human gastric adenocarcinoma cells: AGS; Mus musculus colon 

carcinoma cells: CT26; HGC-27, HGT-1; human colonic epithelial cells: NMC460; UC- ulcerative colitis; CD-Crohns disease; WC—waist circumference; HC—hip circumferences; 

RDBS-Randomized, double-blind study; RDBPS-Randomized, double-blind, placebo-controlled study; Scoring Atopic Dermatitis(SCORAD);  MDPR-multi-center, double-

blind,placebo-controlled, RTBS randomized trial; Randomized triple-blinded controlled trial L–Lactobacillus; B–Bifidobacterium and Bacillus; E–Enterococcus and Escherichia; W–

Weissella; S–Saccharomyces, Streptococcus, and Salmonella; C–Candida; NM–Not mentioned 
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4. Probiotics action in antimicrobial activity 

Numerous studies have indicated that the use of probiotics effectively curtails the growth of 

pathogenic microorganisms and enhances the immune function of the host [120-124]. As research 

evolves, innovative probiotic strains with specific antimicrobial properties are being recognized, 

providing promising applications in both clinical and functional food domains. Probiotics exhibit 

antimicrobial properties through various mechanisms, functioning at several biological levels. These 

mechanisms include competitive exclusion, where probiotics compete with pathogens for limited 

receptors on the epithelial surface, as well as for nutrients [125,126]. Probiotics show broad-spectrum 

antimicrobial activity through a variety of synergistic mechanisms that operate at molecular, cellular, 

and ecological levels [127]. A primary mode of action involves the production of antimicrobial 

substances such as organic acids (e.g., lactic and acetic acids), which decrease the local pH and create 

an inhospitable environment for pathogenic microbes. Probiotics exert antimicrobial effects through a 

multifaceted array of mechanisms that function across molecular, cellular, and ecological levels. These 

beneficial microbes, mostly strains of Lactobacillus and Bifidobacterium, produce a range of 

antimicrobial compounds such as bacteriocins, organic acids (like lactic and acetic acid), and hydrogen 

peroxide, which directly inhibit pathogenic bacteria by disrupting their membranes or metabolic 

functions [128]. Probiotics also engage in competitive exclusion by occupying epithelial binding sites 

and outcompeting pathogens for essential nutrients, thereby preventing their colonization. They 

enhance host immunity by modulating cytokine profiles, promoting anti-inflammatory responses, and 

strengthening epithelial barrier integrity through the upregulation of tight junction proteins [129]. 

Furthermore, some probiotics interfere with quorum-sensing pathways of pathogens, disrupting 

microbial communication and suppressing virulence gene expression. They also contribute to restoring 

and maintaining a balanced microbiota composition, which indirectly limits the proliferation of 

opportunistic pathogens. Emerging evidence suggests that certain probiotics possess antiviral and 

antifungal capabilities, mediated by the secretion of bioactive molecules such as exopolysaccharides. 

Collectively, these multifactorial mechanisms underscore the potential of probiotics as effective agents 

for antimicrobial defense and microbiome regulation. They also compete with pathogens for adhesion 

sites and nutrients in the gut epithelium, a process known as competitive exclusion. Additionally, 

probiotics enhance the host’s mucosal barrier integrity and modulate immune responses, promoting 

the production of anti-inflammatory cytokines and immunoglobulins that further suppress pathogen 

colonization. Studies emphasize the importance of strain-specific effects and the need for robust in 

vitro and in vivo models to evaluate probiotic efficacy under physiologically relevant conditions. They 

also produce antimicrobial metabolites such as organic acids, bacteriocins, reuterin, and secondary bile 

acids that can directly suppress pathogen growth [130,131]. Probiotics can interfere with pathogen 

virulence mechanisms by preventing biofilm formation and inhibiting the production of toxins and 

enzymes [132]. Some probiotics, like Propioniferax innocua, can break down mature biofilms [130]. 

Additionally, probiotics enhance the host's innate immunity by stimulating the production of 

antimicrobial peptides by Paneth cells (They are known for their role in innate immunity and intestinal 

homeostasis) in the intestine, providing another layer of defense against pathogens [133]. In a nutshell, 

probiotics employ a multi-faceted approach to antimicrobial activity, encompassing direct antagonism, 

competitive exclusion, and host-mediated effects. These mechanisms contribute to maintaining 

microbial balance in the gut and strengthening the intestinal barrier against pathogens. However, it's 

important to note that not all probiotic strains have similar therapeutic effects, highlighting the need 

for rigorous clinical trials to elucidate strain-specific benefits. Probiotics have been proven to 

effectively inhibit pathogenic microorganisms and improve the immune responses of the host [120–124]. 
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They synthesize bioactive compounds, including bacteriocins, lactic acid, pyroglutamate, and 

hydrogen peroxide, which specifically target pathogens and stimulate immune pathways [134–140].  

These compounds are known to inhibit microbes such as E. coli, Salmonella typhimurium, Yersinia 

enterocolitica, and Clostridium difficile [141]. Specific strains like Lactobacillus fermentum 

TcUESC01 and L. plantarum ATCC 8014 show strong antimicrobial properties and survival 

capabilities in intestinal conditions [142,143]. Lactobacillus paracasei, L. rhamnosus GG, and L. 

acidophilus KS400 also demonstrate inhibitory effects against various pathogens, including 

Salmonella enterica and vaginal pathogens [144–146]. Bifidobacterium and Lactobacillus species 

exhibit antimicrobial and antifungal activities, particularly B. bifidum PTCC 1644, which inhibits 

Aspergillus parasiticus and reduces aflatoxin levels [147,148]. Bacteriocins from Bifidobacterium 

further suppress a wide range of pathogens [149]. Probiotics are effective against Helicobacter pylori, 

enhancing immune response, reducing inflammation, and alleviating symptoms, especially through 

Lactobacillus species like L. reuteri [150,151]. 

5. Probiotics action in the immune system  

Probiotics significantly influence the host immune system by modulating innate and adaptive 

immune responses through diverse mechanisms. They regulate the production of cytokines and 

immunoglobulins, maintaining a critical balance between pro-inflammatory and anti-inflammatory 

pathways [152,153]. Probiotics play a crucial role in modulating both innate and adaptive immunity in 

humans through various mechanisms. These beneficial microorganisms inhabit the intestines and 

change the composition of the gut microbiota, which subsequently impacts host immunity [154]. 

Influencing the gut microbiome, probiotics can improve overall immunity and enhance the quality of 

life for individuals. Probiotics affect innate immunity by stimulating epithelial innate immune 

responses, such as increasing the production of epithelial-derived TNF-alpha and restoring the function 

of the epithelial barrier [155]. They also activate NF-kB, which is vital for innate immune responses. 

Interestingly, this stimulation of innate immunity by probiotics promotes gut health, contrary to the 

conventional belief that probiotics primarily have an anti-inflammatory effect [155]. In terms of 

adaptive immunity, probiotics impact T cell and B cell-mediated responses, which can be either 

beneficial or harmful to the host depending on the context and site of infection [156]. Furthermore, 

probiotics help regulate intestinal adaptive immunity by maintaining immune tolerance towards 

symbionts and preserving the integrity of the intestinal barrier [157]. They also modulate DC/NK 

interactions, balance T-helper cell responses, and promote the secretion of polymeric IgA [158]. 

Recent research has uncovered that innate immunity has a memory capacity referred to as "trained 

immunity" [159]. For instance, Lactobacillus plantarum O6CC2 enhances Th1 cytokine responses, 

including interleukin-12 (IL-12) and interferon-gamma (IFN-γ), during influenza infections by 

activating natural killer (NK) cells, which are essential for early-stage defense [160]. Similarly, 

Lactobacillus paracasei CNCM-I-1518 modifies pro-inflammatory and anti-inflammatory cytokine 

profiles in the lungs and alters immune cell counts, thereby reducing viral loads and improving 

outcomes following influenza infection [160]. In enteric infections caused by Escherichia coli and 

Salmonella, probiotics such as Lactobacillus rhamnosus enhance the expression of toll-like      

receptors (TLR2 and TLR9) and NOD-like receptors (NLRs), while modulating cytokine expression, 

including IL-4, IL-6, IL-12, and IL-10, which play pivotal roles in mucosal immunity [161,162]. 

Probiotics also regulate cell signaling pathways, such as NF-κB and MAPK, which are vital in 

controlling immune responses during clostridial infections [163,164]. Moreover, certain probiotics, 

such as Bifidobacterium breve MCC1274, stimulate IL-8 and IFN production while activating 
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interferon regulatory factor-3 (IRF3), providing protection against viral pathogens [165]. Probiotics 

are considered potential candidates for stimulating trained immunity, although the exact mechanisms 

are not fully understood. This concept opens new therapeutic avenues for enhancing innate immune 

responses through probiotic administration. Probiotics exhibit diverse effects on both innate and 

adaptive immunity. They stimulate innate immune responses, regulate adaptive immunity, and 

potentially enhance trained immunity  

6. Probiotics action in diabetes 

Diabetes mellitus (DM), a genetic and environmental metabolic disorder of long duration, is a 

serious global health concern [166]. It causes cardiovascular system, kidney, eye, and nerve 

impairment, with an increased risk of heart disease and stroke [167]. Probiotics have been shown to 

manage type 2 diabetes mellitus (T2DM). Probiotic yogurts containing Lactobacillus acidophilus La5 

and Bifidobacterium lactis Bb12 increase fasting glucose and antioxidant activity [168]. Clinical trials 

have reported reductions in fasting plasma glucose (by 15.92 mg/dL) and HbA1c (by 0.53%) following 

probiotic use [169]. A six-week study using a probiotic capsule with L. acidophilus, L. casei, B. bifidum, 

and L. fermentum showed improved insulin sensitivity, gene expression, and lipid profiles [170]. 

Probiotic use also enhances fasting glucose levels, reduces inflammation, and increases antioxidant 

capacity. Animal studies further support probiotics in lowering glucose levels, improving insulin 

resistance, and modulating gut microbiota [171,172]. In pediatric cases, probiotics help manage obesity 

and diabetes by regulating gut flora [173]. They also suppress inflammatory cytokines such as TNF-α, 

IL-1β, and IL-6. In mouse models, probiotic cocktails reduced blood glucose, pancreatic inflammation, 

and TLR4 expression while modulating cytokines and improving the Bcl-2/Bax ratio [167]. Probiotics 

have indicated reassuring effects in diabetes management through various mechanisms: they can 

improve insulin sensitivity and diminish autoimmune responses by modifying the intestinal microbiota, 

reducing inflammatory reactions, and alleviating oxidative stress. They affect the host by regulating 

intestinal permeability, the mucosal immune response, and the gut endocannabinoid system related to 

inflammation and diabetes [174]. Furthermore, probiotics impact energy extraction from food and 

biochemically alter molecules derived from the host or gut microbes [174]. The anti-diabetic effects 

of probiotics include the reduction of pro-inflammatory cytokines via the NF-κB pathway, decreased 

intestinal permeability, and reduced oxidative stress [175]. Short-chain fatty acids (SCFAs) produced 

by probiotics are crucial for glucose homeostasis by activating G-protein-coupled receptors on L-cells, 

which encourages the release of glucagon-like peptide-1 and peptide YY, leading to increased insulin 

secretion and appetite suppression [176].  

Some research has shown inconsistent results regarding the effectiveness of probiotics in diabetes 

management. While many studies suggest improvements in fasting blood glucose, insulin sensitivity, 

and systemic inflammatory and antioxidant status in type 2 diabetic patients [177], others have pointed 

out limitations in clinical trials [178]. This emphasizes the need for further research to develop solid 

probiotic-based adjuvant treatment protocols for diabetes. Probiotics hold promise in diabetes 

management by modulating gut microbiota, reducing inflammation and oxidative stress, enhancing 

insulin sensitivity, and regulating glucose metabolism. However, more well-structured human clinical 

studies are necessary to establish optimal dosages, treatment duration, and the long-term impacts of 

probiotic interventions in diabetes management [179].  

Investigations into the effects of probiotics on diabetes have produced promising findings; 

however, there are notable gaps in our knowledge of this field. Probiotic supplementation has been 

correlated with improvements in glycemic control, lipid profiles, and inflammatory markers in 
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individuals with type 2 diabetes [180,181]. However, inconsistencies in results arise due to differences 

in probiotic formulations, dosages, and treatment durations [182]. This variability highlights the need 

for standardized protocols and more comprehensive clinical trials to establish evidence-based 

treatment guidelines [10]. While many researchers have focused on the influence of probiotics on 

metabolic parameters, there is a lack of research into the specific mechanisms of action. More 

investigation is needed to clarify how probiotics impact the gut-skin and gut-skin-brain axes, as well 

as their effects on intestinal microbiota and host metabolism. Safety evaluations and long-term studies 

are crucial to identify potential adverse effects and to determine the best dosages for probiotic 

supplementation [183]. Additionally, the lack of regulatory oversight raises concerns about the quality 

and labeling accuracy of commercial probiotic products, particularly for at-risk populations [184].  

7. Probiotics action in obesity and cholesterol  

Probiotics have shown promising actions in obesity and cholesterol management, but several gaps 

in the research have to be addressed. The mechanisms through which probiotics work on obesity are 

yet to be determined [185]. Even though studies have shown their capacity to modulate gut microbiota, 

affect lipid metabolism, and affect inflammatory processes, larger trials are warranted to describe the 

pathways precisely [186,187]. Large-scale, methodologically sound clinical trials are needed to 

establish the safety and efficacy of probiotic interventions for the treatment of obesity and lipid    

control [188]. Longitudinal studies must also be performed to determine the long-term consequences 

of probiotic supplementation. A severe deficiency in the standardization of study design and 

methodology is to blame for much of the heterogeneity of results and potential biases [189]. Such 

limitations must be addressed in future research using stricter and more consistent methods. The 

interaction between probiotics, gut microbiota, and the gut-brain axis about obesity and cognitive 

processes must be examined further as well [189]. Obesity, driven by modern lifestyles, is a major 

global health issue, with projections indicating that by 2030, 38% of adults will gain weight and 20% 

will be obese [190]. Contributing factors include energy imbalance, sedentary behavior, and gut 

microbiota composition. The intestinal microbiota influences obesity directly through organ 

interactions and indirectly via metabolites like short-chain fatty acids (SCFAs) [191]. A higher 

Firmicutes/Bacteroidetes (F/B) ratio is associated with increased body weight [192]. Probiotics help 

regulate body weight and adipose tissue by modulating physiological functions and hormone secretion, 

including leptin and adiponectin. Strains such as Lactobacillus acidophilus, L. casei, and 

Bifidobacterium longum show hypocholesterolemia and anti-obesity effects through thermogenic and 

lipolytic activity. Lactobacillus gasseri BNR17 reduces adipose tissue and regulates leptin, while L. 

acidophilus and B. longum demonstrate similar benefits. Lactobacillus curvatus HY7601 and L. 

plantarum KY1032 (5 × 10⁹ CFU/day for over two months) reduced fat accumulation, BMI, and 

inflammatory markers (IL-1β, TNF-α, IL-6, MCP-1) and enhanced fatty acid oxidation in the liver [193]. 

L. rhamnosus GG and L. sakei NR28 also decreased the F/B ratio and reduced obesity-related markers 

in mice [194]. Probiotics from the Lactobacillus and Bacillus genera lowered body weight, F/B ratio, 

and hepatic steatosis in high-fat-diet models [195]. Additionally, Lactobacillus species in foods like 

yogurt improve cholesterol profiles [196]. Probiotics reduce cholesterol by deconjugating bile salts, 

which hinders lipid absorption [197]. Lactobacillus reuteri CRL1098 significantly lowers cholesterol, 

triglycerides, and the HDL-to-LDL ratio without affecting microbial composition [198]. While 

probiotics exhibit potential in tackling obesity and cholesterol-related challenges, considerable 

research gaps remain. Future investigations should concentrate on identifying specific strains and 

mechanisms of action, conducting extensive clinical trials, and standardizing research methodologies 
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to yield more definitive evidence regarding the effectiveness of probiotics in managing obesity and 

cholesterol levels. 

8. Probiotics action in allergic infections and antioxidant response 

Probiotics have revealed promising effects across a range of health conditions, including allergic 

infections and antioxidant responses. However, there are notable research gaps in understanding their 

mechanisms of action and effectiveness. In terms of allergic infections, while probiotics have indicated 

potential benefits, the outcomes of clinical studies are in the preliminary stages and need further 

validation [199]. The specific mechanism by which probiotics prevent pathogen-induced membrane 

damage and modulate the immune system remains largely unknown [200]. Additionally, 

inconsistencies in study designs, outcome measures, probiotic strains, dosages, and matrices used in 

clinical trials make it difficult to reach definitive conclusions [201]. Concerning antioxidant responses, 

there is a significant gap in research regarding the precise role of probiotics in modulating oxidative 

stress and antioxidant defense systems across fish species [202]. The variations in experimental design 

and species-specific responses add to the complexity of this field. Interestingly, while probiotics 

demonstrate therapeutic potential for immune response-related conditions such as allergies and eczema, 

their effectiveness in treating bronchial asthma has not been established [203]. Furthermore, the 

influence of probiotics on specific viruses in respiratory tract infections has not been sufficiently 

studied [201]. Future research should aim to standardize methodologies, explore species-specific 

responses, and clarify the mechanisms of probiotic action in allergic infections and antioxidant 

responses. Long-term studies with larger sample sizes, comparing different probiotic strains and 

dosages, are necessary to establish strong correlations between dietary interventions and the observed 

effects [201,202]. Additionally, further research is needed to understand the interactions between 

probiotics and other factors. Allergic diseases pose a major global health and economic burden [204]. 

They result from hypersensitivity reactions of the immune system to allergens, activating mast cells 

and basophils and releasing allergic mediators. Symptoms range from mild (sneezing, rashes) to   

severe (anaphylaxis) [205,206]. WHO identifies several allergic conditions, such as asthma, 

anaphylaxis, rhinitis, eczema, and hives, as well as triggers like food, drugs, and insect stings. 

Probiotics are being explored for their anti-inflammatory potential in allergy prevention, though the 

topic remains debated [207]. Lactobacillus plantarum L67, for instance, promotes IL-12 and IFN-γ 

production [208], while probiotics in general restore gut homeostasis and interact with immune cells 

to reduce allergy symptoms [209]. They also boost mucosal IgA and activate T and B cells [210]. 

Bifidobacterium species have been shown to lower early eczema and atopic dermatitis risks in infants [211], 

and Lactobacillus strains help prevent respiratory allergies by reducing MMP9 expression and 

inflammation in lung tissue [212]. Meta-analyses support the role of probiotics in preventing allergic 

conditions in children [213,214]. Oxidation is essential for energy production but generates reactive 

oxygen species (ROS), such as O₂⁻, H₂O₂, and ·OH, which may cause cellular damage if uncontrolled [215]. 

Probiotics exhibit antioxidant properties through enhancing antioxidase activity, producing antioxidant 

metabolites, and modulating signaling pathways and gut microbiota. Lacticaseibacillus rhamnosus has 

shown strong antioxidant activity in physically stressed individuals [216], and Lactobacillus paracasei 

spp. paracasei YBJ01 improved serum SOD and GSH‐Px activity in a dose-dependent manner, with 

increased hepatic and splenic protein expression in mice [217]. Various probiotics also enhance 

enzymes like glutathione S-transferase, glutathione reductase, GSH peroxidase, SOD, and catalase, 

offering protection against oxidative and carcinogenic damage [218]. 
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9. Probiotics action in inflammatory bowel disease 

Probiotic therapy holds great potential as an alternative management option for inflammatory 

bowel disease (IBD), but the current evidence remains weak [219]. Meta-analyses of randomized 

clinical trials indicate that probiotics have a significant impact on reducing symptoms like bloating and 

flatulence in patients with IBD and improve the quality of life in comparison to control groups [220]. 

IBD is a collection of chronic inflammatory disorders of the gastrointestinal tract (GIT) with features 

of diarrhea, fever, abdominal pain, ulcerative colitis, chronic disease progression, weight loss, and 

nutritional deficiencies, including iron deficiency anemia [221,222]. Probiotic therapy has the potential 

to be beneficial in the management of ulcerative colitis, but evidence of its efficacy in Crohn's disease 

is conflicting [223]. Probiotics have been shown to induce intestinal angiogenesis by vascular 

endothelial growth factor receptor (VEGFR) signaling, which is of importance in modulating acute 

and chronic inflammation in intestinal mucosal tissue involved in IBD [224,225]. Probiotics are 

important in immune system modulation by lowering inflammation through multiple pathways. They 

control Toll-like receptor (TLR) and G-protein coupled receptor (GPR) pathways and stimulate anti-

inflammatory regulatory agents like A20, Bcl-3, and MKP-1, inhibiting lipopolysaccharide (LPS)-

stimulated TLR4 activation [226]. Certain pathways targeted by probiotics include the NF-κB, 

mitogen-activated protein kinase (MAPK), and pattern recognition receptor (PRR) pathways. 

Probiotics also block LPS binding to the CD14 receptor, inhibiting NF-κB activation and pro-

inflammatory cytokine induction [227]. Lactobacillus delbrueckii derived from dairy controls the NF-

κB pathway, dramatically attenuating inflammation in a DSS-colitis mouse model [228]. Treatment 

with Bifidobacterium bifidum increases anti-inflammatory cytokines such as IL-10 but decreases pro-

inflammatory cytokines such as IL-1 in the colon [229]. Likewise, Bifidobacterium strains inhibit pro-

inflammatory cytokines such as IL-8 but induce IL-10 production in peripheral blood mononuclear 

cells from ulcerative colitis patients [230]. Probiotics have been observed to elevate anti-inflammatory 

cytokines like IL-10 and IL-12 and lower pro-inflammatory cytokines like IL-1β and IL-6 in different 

infections [231,232]. This modulation is attributed to NF-κB and interferon-gamma (IFN-γ) 

suppression, alteration of cyclooxygenase-2 (COX-2), and elevated secretory IgA [233,234]. The 

Lactobacillus casei strain greatly decreases IL-6 and IFN-γ production in lipopolysaccharide (LPS)-

evoked murine chronic IBD models, improving anti-inflammatory responses [235]. Lactobacillus 

gasseri also has shown greater anti-inflammatory effects against breast cancer by lowering TNF-α and 

promoting IL-10 production [236]. Administration of live and heat-killed Lactobacillus plantarum 

AN1 has been reported to modulate the composition of gut microbiota and induce anti-inflammatory 

action in murine models of IBD. The mechanisms involved were found to occur through the generation 

of nitrogen oxide and exclusion of RAW264.7 cells from the toxic action of hydrogen peroxide, as 

revealed by in vitro experiments [237]. Probiotics also inhibit LPS binding to CD14 receptors, 

inhibiting total NF-κB activation and pro-inflammatory signaling [238]. 

10. Probiotics action in cancer disease 

Probiotics have shown potential in cancer prevention and therapy by improving gut health and 

enhancing immune function [239], with colorectal cancer (CRC) being a primary focus [240]. In 

gastrointestinal cancers, they strengthen the intestinal barrier, lower oxidative stress, and inhibit tumor 

growth [241]. Some studies also suggest a reduced risk of breast cancer with regular probiotic intake [242], 

and emerging evidence indicates benefits in oral cancer through immune modulation [243]. In CRC 

patients, probiotics help regulate gut microbiota by increasing beneficial bacteria and reducing harmful 
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species like Fusobacterium [244]. Postoperative gastric cancer patients benefit from reduced 

inflammation and improved immunity through probiotic use [245]. During chemotherapy, probiotics 

help restore gut flora, increasing beneficial microbes and reducing harmful ones, thereby improving 

outcomes [246–248]. Further research is needed to evaluate the long-term effects of probiotics and to 

optimize their use in cancer therapy. Proposed mechanisms include carcinogen degradation, short-

chain fatty acid (SCFA) production, regulation of cell proliferation and apoptosis, and enhancement 

of immune signaling. Additionally, heat-killed probiotics, when combined with radiation therapy, have 

been shown to suppress cancer cell growth [249]. Lactobacillus fermentum strains promote colon 

epithelial health and inhibit cancer cell growth via SCFAs, while L. acidophilus and L. rhamnosus also 

show anti-tumor activity [240]. Probiotic lactic acid bacteria modulate fecal enzymes linked to colon 

cancer [250], and strains like Bifidobacterium adolescentis SPM0212 suppress cancer cell lines [251]. 

Lactobacillus strains produce peptidoglycans that inhibit cancer cells [252] and enhance chemotherapy 

effects [253]. E. coli Nissle 1917 boosts anti-tumor immunity in liver cancer [254], and L. casei-

derived ferrichrome induces apoptosis via the JNK pathway [255]. Lactococcus lactis KC24 exhibits 

anticancer effects on various cell lines [256]. Clinical and preclinical studies confirm probiotic roles 

in carcinogen degradation, gut microbiota modulation, and enzyme reduction [257]. Probiotics also 

combat breast cancer by modulating cytokines [258] and enhancing immune responses [259]. Strains 

such as L. rhamnosus, L. casei, L. paracasei, and L. plantarum suppress cancer cell growth by 

downregulating ErbB-2 and ErbB-3 [260], with clinical trials supporting improved anticancer 

outcomes [261]. 

11. Encapsulation of probiotics 

Biopolymers are essential in the microencapsulation process of probiotics for promoting their 

storage and viability while being transported through the upper gastrointestinal tract [262]. Micro- and 

nanoencapsulation methods have been efficient in enhancing the viability, stability, and long-term 

storage of probiotics in food and pharmaceutical production [263]. Several encapsulation techniques, 

including lyophilization, spray drying, extrusion, coacervation, and emulsion, have been used to attain 

such results [264]. Probiotic encapsulation, normally conducted using biopolymer beads through 

extrusion in water-in-oil emulsions, is a strong weapon to preserve probiotic cells under adverse 

conditions. Methods such as spray drying, spray chilling, spray-freeze drying, freeze drying, extrusion, 

coacervation, electro-spraying, and fluidized bed encapsulation have found extensive applications to 

enhance probiotic viability and storage stability [265]. Pectin, for example, is commonly employed to 

encapsulate probiotics through extrusion and emulsion methods since it promotes gastric and intestinal 

resistant encapsulation [266]. Novel processes, such as electrospinning and electrospray processes, 

have been promising to encapsulate probiotics effectively [267–269]. The encapsulation processes also 

prevent degradation of probiotics and their bioactive compounds during food processing and digestion. 

Encapsulation in bulk solid matrices such as milk protein, lactose, or polysaccharides through 

techniques, including spray drying, freeze drying, and extrusion, is a standard procedure [270]. 

Encapsulation is a strong system for encapsulating whole cells or bioactive compounds, such as 

enzymes, polyphenols, antioxidants, and micronutrients, in capsules for precise delivery. 

Encapsulation techniques are divided by material size: microencapsulation (3–800 μm) or 

nanoencapsulation (10–1000 nm). These systems boost bioavailability and safeguard bioactive 

compounds under suboptimal conditions. For example, xanthan-based encapsulation enhances the 

viability of probiotics by a significant margin and regulates the targeted release of encapsulated              

agents [271]. Chitosan-based encapsulation has also been proven to enhance the viability and survival 
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of Bifidobacterium longum DD98 in intestinal conditions [271]. Conversely, xanthan–chitosan (XC) 

blends improve Bifidobacterium bifidum survival at temperature conditions of 4 and 25 °C, in contrast 

to nonencapsulated cells [272]. Alginate-chitosan blends effectively enhance probiotic viability during 

colon delivery while minimizing porosity [273,274]. Additionally, new materials like κ-carrageenan 

have exhibited important advancements in probiotic viability and survival in the gut versus 

unencapsulated cells [275]. Microencapsulation using κ-carrageenan potentially inhibits Helicobacter 

pylori infection in the stomach [276]. Polysaccharides and protein wall materials are generally utilized 

for encapsulating probiotics [277]. These substances shield probiotics from poor conditions and boost 

their resilience, hence minimizing cell loss in hydrocolloid matrices [278,279]. Various encapsulation 

materials, such as xanthan, chitosan, and carrageenan, have proved useful in preserving the viability 

of probiotics [280]. Microencapsulation is an important tool in creating nutraceutical products and new 

food carriers for probiotics [281,282]. It is especially vital for increasing probiotic viability in acidic 

environments in the stomach [283]. Moreover, multilayer encapsulation techniques provide better 

survivability of probiotic cells [284,285] (Figure 2). 

Figure 2. Probiotics are encapsulated in different techniques. 

12. Probiotics action in food supplements 

Functional foods were initially released by the Japanese government back in 1991, covering a 

broad spectrum of ingredients like proteins, vitamins, fibers, probiotic bacteria, and other additives to 

improve human health [286]. Out of these, probiotic food formulations have become a major focus 

area of study, greatly influencing the future food industry. The market value of probiotic supplements 

escalated exponentially, from $3.3 billion in 2015 to an estimated $7 billion in 2025. The food and 

agriculture sectors are changing at a tremendous pace, requiring continuous innovation and 

technological advancements to enhance the quality of food products [287]. Probiotic functional foods 

were found to have a beneficial effect on human health [42]. Probiotic bacteria that are ingested in the 

range of 10⁸ to 10⁹ CFU per gram per day are specifically known to promote physiological         
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functions [288,289]. Several food ingredients impact the viability and growth of these probiotic 

bacteria. NaCl and KCl salts, sucrose and lactose sugars, sweeteners acesulfame and aspartame, and 

artificial coloring and flavoring additives are some of the compounds that can impact probiotic stability. 

Other factors such as aroma compounds (e.g., diacetyl, acetaldehyde, acetoin), nisin (a polypeptide 

antibiotic), lysozyme, nitrites, and natamycin also play a significant role in supporting cell viability 

and growth [290,291]. Probiotics bring many advantages, such as increased nutritional value, 

preservation of gut flora, better immune system function, synthesis of antimicrobial substances, and 

suppression of gut pathogens. Fermented foods with probiotics play a role in these effects by 

generating peptides, enzymes, antimicrobial compounds, and antioxidants [292]. Meta-analyses and 

randomized trials show that probiotic supplements are very effective in enhancing human health [293]. 

Some of the factors that affect the viability of probiotics in food items include conditions of storage, 

humidity, and temperature. Moreover, probiotics are added to different food items, including yogurt, 

cheese, milk, cereals, chocolate, sausages, dried products, meat, vegetables, and drinks [294]. Research 

on probiotics delivered via gastrointestinal-targeted products like drug and food-based formulations is 

progressing fast. Drug formulations have been more promising than food-based products in some 

applications [295]. Probiotics improve the shelf life and safety of foodstuffs and are extensively 

utilized in medical and veterinary applications owing to their safety profile. Fermented foods such as 

fermented milk products, cheese, and yogurt are popular sources of probiotics [296]. Probiotic strains 

like Bifidobacteria, Lactobacillus, and Streptococcus are found in fermented food products naturally [297]. 

Lactic acid bacteria help in food preservation by generating organic acids that prevent the action of 

spoilage microorganisms. These bacteria are used in several fermented foods, such as yogurt, butter, 

cheese, kefir, sourdough, brined vegetables, sauerkraut, soy curd, idli batter, uttapam, fermented meat, 

and drinks [298–303]. Maintenance of the growth, viability, and survival of probiotic microorganisms 

is essential for product formulation, and milk products are the most appropriate carriers in most cases. 

In recent times, non-dairy products have also become popular for probiotic delivery. For instance, 

pomegranate juice sustains the growth of L. acidophilus and L. paracasei [304]. Other non-dairy 

substrates like fruits, vegetables, cereals, soy, and meat contain necessary nutrients such as proteins, 

vitamins, dietary fibers, and antioxidants, which qualify them for the development of probiotics [305]. 

Foods such as milk, buttermilk, flavored liquid milk, milk powder, fermented milk, yogurt drinks, and 

ice cream continue to be the favored carriers of probiotics. Nevertheless, cereals also demonstrate 

potential as nutrient substrates, which augment the availability of vitamin B, lysine quality, and 

diminish non-digestible carbohydrates upon fermentation [306]. Fruit products supplemented with 

probiotics provide health benefits, a pleasant taste, and added market value [307,308]. For example, 

probiotic drinks produced from peach juice fermented using L. delbrueckii are ideal for lactose-

intolerant consumers [309]. Moreover, olive-derived probiotic beverages are rich in nutrients because 

they contain organic acids, phenols, antioxidants, and lactic acid bacteria like L. pentosus, L. plantarum, 

L. mesenteroides, L. brevis, and Pediococcus cerevisiae [310] (Table 3 and Figure 3). 
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Table 3. Encapsulation of probiotics. 

Probiotic strain  Materials Encapsulation Technology References 

Saccharomyces boulardii Whey Agglomeration/Spray-drying [311] 

Lactobacillus delbrueckii Soy protein isolate (SPI) and 

high methoxy pectin (HMP) 

Complexation [312] 

Lactobacillus rhamnosus GG Cellulose and chitosan Crosslinking [313] 

Lactobacillus plantarum Aguamiel, Ag, or sweet whey, 

SW, as inner aqueous phase 

Double emulsion [314] 

Bifidobacterium animalis subsp. 

lactis Bb12 

Whey protein concentrate and 

Pullulan 

Electrospinning [315] 

Bifidobacterium longum 

BIOMA 5920 

Alginate–human-like collagen Electrostatic droplet generation [316] 

Lactobacillus rhamnosus 

ATCC 7469 

Whey protein isolate/whey 

protein isolate and inulin/whey 

protein isolate and inulin and 

persian gum 

Electrospraying/freeze 

drying/spray drying 

[317] 

Lactobacillus plantarum DKL 109 Na- alginate (Al), alginate/1% 

gellan gum, Alginate/gum 

Arabic 

External ionic gelation [318] 

Lactobacillus paracasei LAFTI® 

L26, Lactobacillus acidophilus Ki, 

Bifidobacterium animalis BB-12, 

Lactobacillus casei -01 

Na-alginate Extrusion [319] 

Lactobacillus reuteri Sweet whey and shellac Fluidized bed 

microencapsulation 

[320,321] 

Lactobacillus acidophilus Chitosan and carboxymethyl 

cellulose 

Layer by layer [321] 

Lactobacillus casei Sodium caseinate and gellan 

gum 

Ph-induced gelation [322] 

Bifidobacterium lactis, 

Lactobacillus acidophilus 

Vegetable fat with lecithin Spray chilling [323] 

Lactobacillus reuteri DSM 17938 Alginates-chitosan Vibrating technology/extrusion [324] 

Lactobacillus plantarum Whey protein isolate with 

sodium alginate and denatured 

whey protein isolate with sodium 

alginate 

Spray drying and freeze drying [325] 

Lactobacillus plantarum ᴋ-carrageenan Emulsification, freeze-drying, or 

extrusion. 

[326] 

Lactobacillus plantarum Sodium alginate (SA) PVA Electrospinning [327] 
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Figure 3. Probiotics supplement in different food products. 

13. Future perspectives  

While traditional probiotic uses in foods and supplements remain relevant, new perspectives are 

turning probiotics into precision-targeted biotherapeutics. Second-generation probiotics (e.g., 

Akkermansia muciniphila, Faecalibacterium prausnitzii) deliver targeted advantage in metabolic, 

inflammatory, and/or neurodegenerative disease by defined molecular mechanisms. New technologies 

in personalized nutrition and AI-driven microbiome analysis now enable the tailoring of probiotic 

regimens to genetic and microbial profiles, and as a result, clinical outcomes are enhanced. Synthetic 

biology has enabled engineered probiotics to detect disease biomarkers and deliver therapeutic 

molecules like IL-10 in situ to offer intelligent, targeted treatment. Psychobiotics like Lactobacillus 

rhamnosus act on the gut-brain axis and have the potential to treat mental disease. New delivery 

technologies like smart encapsulation and stimulus-sensitive systems are improving viability, site-

specific action, and neuroprotection. 

Aside from the gut, topical probiotics and postbiotics are transforming dermatology by 

modulating the skin microbiome, but in agriculture and veterinary medicine, they reduce the use of 

antibiotics and enhance animal and plant resilience. In space medicine, they sustain astronaut 

microbiota in extreme environments, with engineered strains in progress for long-duration spaceflight. 

Finally, probiotics are rapidly evolving from general health supplements to complex, microbiome-

directed treatments with applications in precision medicine, neurobiology, dermatology, sustainable 
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agriculture, and space health. This is built on mechanistic insight, clinical proof, and new delivery 

systems that place probiotics at the forefront of next-generation biotherapies. 

14. Conclusion  

Probiotics have become a cornerstone of health promotion, with enormous potential in a wide 

range of applications in medicine, food, agriculture, aquaculture, and environmental management. This 

review underscores their roles in disease prevention, immune system modulation, regulation of gut 

microbiota, and functional food development. The novel encapsulation methods presented here have 

great potential in promoting the stability and targeted delivery of probiotics and guaranteeing their 

effectiveness across applications. To tap the full potential of probiotics, researchers should emphasize 

optimizing encapsulation materials and methods for better viability in production, storage, and delivery. 

Individualized probiotics customized to unique gut microbiomes are a promising area, with possible 

applications in treating metabolic disorders, neurodegenerative disorders, and autoimmune diseases. 

The application of probiotics in sustainable agriculture and aquaculture can also help meet global 

health and environmental objectives. Probiotic incorporation into daily products and interdisciplinary 

interactions between microbiology, food science, and biotechnology will be instrumental in further 

developing their applications. Taking these paths enables probiotics to further develop as indispensable 

resources for enhancing the health and well-being of human beings, animals, and environments. 

Probiotic science is a dynamic and fast-evolving field with enormous potential to modulate 

gastrointestinal, metabolic, allergic, and infectious diseases. While promising preclinical and early 

clinical data are being reported, results are largely strain-dependent, context-specific, and derived from 

small sample sizes and short-duration studies. This again highlights the essential need for high-quality, 

large-scale clinical trials and standardized protocols to determine efficacy and safety. Mechanistically, 

probiotics function by competitive exclusion, antimicrobial metabolite secretion, immune modulation, 

enhancement of the epithelial barrier, and gut-organ axis communication. Next-generation and 

designed probiotics with precision-targeted action are being developed based on advances in multi-

omics and synthetic biology. Postbiotics and paraprobiotics are safer, stable, and immunomodulatory 

substitutes. However, heterogeneous global regulatory frameworks limit their use in clinical practice. 

Future cross-disciplinary approaches with clinical research, molecular understanding, personalized 

microbiome analysis, and regulatory harmonization are needed to reposition probiotics as general 

supplements to precision biotherapeutics for human health, functional foods, and public health. 
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