

AIMS Microbiology, 11(3): 602–648. DOI: 10.3934/microbiol.2025026

Received: 13 December 2024

Revised: 28 June 2025 Accepted: 18 July 2025 Published: 22 July 2025

http://www.aimspress.com/journal/microbiology

Review

Probiotics: A multifaceted approach to health promotion-from disease prevention to food enrichment and delivery systems

Srirengaraj Vijayaram^{1,2,*}, Vivekanandan K.E³, Sabariswaran Kandasamy⁴, Hary Razafindralambo^{5,6}, Einar Ring Ø, Yun-Zhang Sun^{1,*} and Gayathri Kaliyannan⁸

- ¹ Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
- ² Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai- 602 105, Tamil Nadu, India
- ³ Department of Microbiology, PSG College of Arts and Science, Coimbatore- 641014, Tamil Nadu, India
- Department of Biotechnology, PSGR Krishnammal College for women, Avinashi road, Peelamedu, Coimbatore-641004, Tamilnadu, India
- ⁵ ProBioLab, Campus Universitaire de la Facult éde Gembloux Agro-Bio Tech/Universit éde Li ège, B-5030 Gembloux, Belgium
- ⁶ BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre Microbial Processes and Interactions, Gembloux Agro-Bio Tech/Universitéde Liège, B-5030 Gembloux, Belgium
- ⁷ Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries, and Economics, UiT the Arctic University of Norway, Troms ø, 9037, Norway
- ⁸ Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, India
- * Correspondence: Email: vijayarambiotech@gmail.com; jmusunyunzhang@163.com.

Abstract: Probiotics are living microbes that impart overall health benefits when introduced appropriately. They play important roles in activating the immune system, inhibiting pathogens, balancing gut microbiota, providing relief from inflammatory diseases, and helping prevent chronic conditions such as cancer. In this manuscript, we address the multifaceted uses of probiotics in medicinal, food, and cosmetic industries, emphasizing new encapsulation techniques that improve their stability and effectiveness. Demonstrating their uses in food enrichment, disease prevention, and delivery systems, the manuscript offers valuable recommendations for the use of probiotics in different

fields. It also anticipates future directions, such as the invention of new encapsulation techniques, the use of probiotics as personalized nutrition, and the application of their therapeutic benefits to new areas such as metabolic and neurodegenerative diseases. The paper demonstrates the potential of probiotics as promising candidates for the promotion of animal and human health in the modern era.

Keywords: Clinical applications; encapsulation; food supplements; immune system; gut microbiota; probiotics

1. Introduction

Probiotics have become a crucial component in the development of functional foods and are wellknown for their beneficial health effects. [1,2]. Lilly and Stillwell [3] were the pioneers in defining probiotics as living microbes that provide health advantages to the host. The Food and Agriculture Organization (FAO) and the World Health Organization (WHO) subsequently defined probiotics as "living microorganisms that, when administered in adequate amounts, offer health benefits to the host" [4]. The word "probiotic," coming from the Latin pro and the Greek βιο (meaning "for life"), was first used by Werner Kollath in 1953. He described probiotics as biologically active substances that play a crucial role in promoting health [5]. Various bacterial genera have been recognized as possible probiotics, including Pediococcus, Lactococcus, Enterococcus, Streptococcus, Propionibacterium, and Bacillus [6]. Nonetheless, the predominantly utilized strains are from Lactobacillus and Bifidobacterium [7], which are involved in the biotransformation of mycotoxins present in food [2], the production of essential vitamins such as vitamin K, riboflavin, and folate [2,7], and the fermentation of non-digested dietary fibers in the colon [8]. Probiotics additionally promote host health by preventing the establishment of harmful microorganisms. This is achieved via competitive inhibition at mucosal binding sites and the adjustment of host immune responses, thereby enhancing intestinal barrier function [9]. Probiotics are especially beneficial in managing clinical issues like irritable bowel syndrome, inflammatory bowel disease, obesity, Parkinson's disease, diabetes, Alzheimer's, colic in infants, and rheumatoid arthritis [10–17]. Probiotics offer health benefits such as the regulation of gut microbiota, reduction of lactose intolerance symptoms, improved absorption of macro and micronutrients, and a lower incidence of allergic reactions in sensitive individuals [18]. Probiotics are usually obtained from fermented foods or dietary supplements, including dairy and non-dairy options [19]. They likewise aid in preserving a healthy gut microbiome and have clinical uses, such as treating or preventing issues like Helicobacter pylori infection, diarrhea, hypertension, ventilator-associated pneumonia, acute pancreatitis, diabetes, migraines, autism, and colon cancer [20]. Probiotics can greatly affect the makeup of specific gut microbes, although they may not change the whole microbial community. They have antimicrobial characteristics associated with their generation of hydrogen peroxide, organic acids, ethanol, or protein mechanisms (bacteriocins) [21,22]. Consequently, probiotics are being incorporated more frequently into various food products, including drinks, yogurt, ice cream, and baked goods. Despite their various advantages, a key difficulty in utilizing probiotics is their sensitivity to food processing conditions and gastrointestinal (GI) stresses. Recent advancements in technology, such as nanoencapsulation and genetic engineering, have greatly enhanced the resilience of probiotic strains in adverse environmental and physiological conditions [23]. They have antimicrobial characteristics associated with their generation of hydrogen peroxide, organic acids, ethanol, or protein-based mechanisms (bacteriocins) [24]. The advancement of microencapsulation methods is essential for safeguarding probiotics against environmental stressors [22–26]. Probiotic therapy is essential for promoting healthy growth in both humans and animals. In recent decades, probiotics and other beneficial microorganisms have significantly enhanced human health and the quality of food and nutrition. Although the health benefits of probiotics vary depending on the strain, food products should contain approximately 10⁶ live bacteria per gram or milliliter [27]. Probiotics have demonstrated promising effects in the prevention and management of various clinical disorders, including rheumatoid arthritis, obesity, Parkinson's disease, diabetes, Alzheimer's disease, infantile colic, and irritable bowel syndrome [11–17,28]. The applications of probiotics extend beyond human health, playing a key role in livestock, aquaculture, and poultry management, as well as in the prevention and treatment of both communicable and noncommunicable diseases, such as bacterial, viral, parasitic, or fungal infections, nervous system disorders, obesity, cancer, and allergic conditions. They also show promise in pre-operative and post-operative processes. Recently, probiotic-rich diets have become vital, with elevated levels of probiotic consumption through animal products, fermented fruits, juices, and other food items [29]. Numerous studies have highlighted the role of probiotics in preventing and managing inflammatory diseases and allergic disorders such as atopic dermatitis and rhinitis, as well as in the prevention of diarrheal diseases, infection control, and as natural antibiotics. Probiotics have also been shown to aid in the treatment or prevention of colon and bladder cancers [30,31]. In this review, we emphasize the gaps, such as the multifaceted role of probiotics in health promotion, focusing on their mechanisms in disease prevention, potential to enhance food products, and the emergence of innovative delivery systems. We mostly contribute comprehensive insights into probiotics, including their types, methods of administration, encapsulation in functional foods, and their clinical applications for the treatment or prevention of various diseases, and provide a comprehensive analysis of the mechanisms involved and the current perspectives on the therapeutic applications of probiotics. We also delve into their safe integration into major food matrices and assess their role in preventing diseases and promoting health.

2. Characteristic features of probiotic bacteria

The identification and functional attributes of probiotics are important criteria for the identification of beneficial microorganisms that enhance human health. Probiotics are consumable, non-toxic, and non-pathogenic. Significant features are their acid and bile salt resistance, which enables them to survive the harsh environment of the digestive tract [32]. In addition, probiotics must have the ability to survive and live on both the gastrointestinal and urinary tracts and find niches in them to exert favorable health benefits. Probiotics must be stable and remain alive for long storage, particularly in fermentation and food manufacturing. Another important feature of these microbes is their ability to synthesize antimicrobial compounds that help to repress pathogenic microorganisms [33]. They regulate the host immune system, promoting a balanced immune reaction and enhanced health [34]. In addition, probiotics play a role in repairing or replacing gut microflora, assisting in the maintenance of a healthy intestinal environment. Coupled with their microbial benefits, probiotics have been found to reduce cholesterol, providing cardiovascular protection [35]. They exhibit anti-carcinogenic and anti-mutagenic activities, which help in inhibiting cancer [36]. Probiotics are also known to reduce symptoms of irritable bowel syndrome (IBS) and yield therapeutic relief to individuals with gastrointestinal discomfort. Probiotics play a critical role in inhibiting the development of pathogenic organisms and hence promoting a healthy microbial balance and protecting the host from infections.

3. Probiotics: Possible mode of action

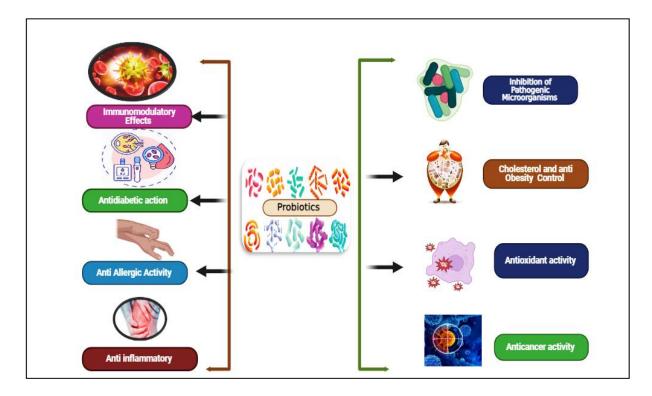

The mechanisms through which probiotics operate involve several important processes that benefit the host. These include the release of antimicrobial substances, regulation of the immune system, reduction of allergic infection risks, enhancement of intestinal barrier functions, modulation of gene expression, suppression of harmful organisms, and the production of functional proteins like lactase and natural enzymes [31]. Probiotic microorganisms are decisive for improving the microbial stability within the host and protecting the intestinal epithelial membranes from detrimental pathogens. They produce short-chain fatty acids (SCFAs) such as lactic acid, propionic acid, butyric acid, and acetic acid, which help them thrive in low pH environments, regulate the host's immune response, and inhibit pathogen growth, highlighting the essential qualities of probiotics. These microorganisms generate antimicrobial substances that combat infections, prevent pathogen adhesion, address nutrient deficiencies, eliminate toxin receptors, and modulate the host's immune system. The action mechanisms of probiotics can be summarized as follows: Preventing pathogenic microorganisms from adhering to the intestinal epithelium, regulating SCFA production, enhancing immune responses, modulating lipid metabolism, and suppressing intestinal pro-inflammatory cytokine activity [37–39]. The effects of probiotics are closely linked to the species of organisms present in the gut. They promote host health by managing gut mucosal immunity, inhibiting pathogenic microorganisms, improving the gut microenvironment, strengthening the intestinal barrier, reducing inflammation, and enhancing antigen-specific immune responses [40,41]. Maintaining the intestinal barrier is crucial for ensuring intestinal integrity and function. GIT microbiota composition varies between individuals, with beneficial or pathogenic microbes engaging in symbiotic relationships. Probiotics can promote an increase in beneficial gut microbiota and inhibit pathogenic or opportunistic microbes. Moreover, probiotic therapy is an effective modern approach to treating intestinal infections, exerting its action through various mechanisms, including the production of antimicrobial substances, competition for nutrient substrates, competitive exclusion, enhancement of intestinal barrier function, and modulation of the immune system [42]. Probiotics bring about host health through several mechanisms, including intestinal microbiota modulation, immune homeostasis, enhancement of epithelial barrier function, and gene expression. The release of antimicrobial compounds (e.g., bacteriocins, organic acids, reuterin) that suppress pathogens like Staphylococcus aureus, E. coli, Salmonella, and Clostridioides difficile by disrupting membranes and inhibiting adhesion is one of the major mechanisms. They also bring innate immunity by stimulating Paneth cells to release antimicrobial peptides like defensins and lysozyme [43] (Table 1).

Table 1. Probiotics and their influence on plants and animals, and their key benefits.

Type	Microorganisms	Examples	Key Benefits	References
Lactic	Lactobacillus	L. acidophilus, L. casei,	Improves digestion, enhances immunity, and	[44-46]
Acid		L. rhamnosus, L.	produces lactic acid	
Bacteria		plantarum		
(LAB)	Bifidobacterium	B. bifidum,	Colon health modulates the immune system	[47,48]
		B. longum,	and battles gastrointestinal infections	
		B. breve		
	Streptococcus	S.thermophilus	Supports lactose digestion and is used in	[49]
			dairy fermentation	
	Enterococcus	E. faecium,	Gut health (especially in animals) inhibits	[50]
		E. durans	pathogens	
Spore-	Bacillus	B. subtilis,	Heat-stable, supports gut flora, and is used in	[51]
Forming		B. coagulans,	food and animal probiotics	
Bacteria		B. clausii		
Yeast	Saccharomyces	S. boulardii	Prevents antibiotic-associated and traveler's	[52]
Probiotics	(Yeast)		diarrhea, and restores microbiota	
Next-	Akkermansia	A. muciniphila	Supports metabolic health and may reduce	[53]
Generation			obesity and insulin resistance	
Probiotics	Faecalibacterium	F. prausnitzii	Anti-inflammatory, associated with a	[54]
			healthy gut in IBD (Inflammatory Bowel	
			Disease) patients	
	Clostridium	C. butyricum	Produces butyrate and supports mucosal	[55]
			barrier integrity	
Synbiotics	Various	L. rhamnosus + inulin,	Enhances probiotic survival and	[56]
(Probiotics		$B.\ longum + FOS$	colonization and provides synergistic gut	
+			health benefits	
Prebiotics)				

Probiotics stimulate host pattern recognition receptors (e.g., TLRs), modulating NF-κB and MAPK signaling to suppress proinflammatory cytokines (e.g., TNF-α, IL-6) and induce anti-inflammatory mediators like IL-10 and TGF-β. Probiotics stimulate Tregs and modulate the Th1/Th2/Th17 axis, promoting immune tolerance and mucosal immunity (e.g., increased sIgA, NK cell activation). Probiotics in allergy prevention restore microbial stimuli critical for immune maturation, suppress IgE responses, and promote Treg differentiation, improving eczema and allergic rhinitis [57].

Probiotics at the gut barrier increase tight junction proteins (e.g., occludin, claudins) and mucins (e.g., MUC₂), reducing intestinal permeability. Competitive exclusion also prevents colonization by pathogens by occupying the binding sites and limiting the accessibility of nutrients. Molecularly, they modulate gene expression, downregulate inflammatory genes, and enhance epithelial survival through probiotic-derived proteins (e.g., p40, p75) and surface layer proteins. Some strains like *Lactobacillus* and *Bifidobacterium* inhibit pathogen invasion and toxin action, maintain gut homeostasis, and reduce antibiotic-associated effects. Growing evidence is connecting probiotics with systemic actions via microbiota—gut—organ axes, impacting respiratory and neurological well-being, with possible therapeutic applications in treating infections such as COVID-19 [58] (Table 2 and Figure 1).

Figure 1. Probiotics application in the prevention and control of diseases.

 Table 2. Applications of probiotics.

Probiotic strain	Dose and administration	Study type/model	Response	Application	References
Bifidobacterium	Oral administration of 3 \times	RDBS with 27	After 2 months, a major improvement in the skin condition occurred in	Atopic eczema	[59]
lactis Bb-12 and	108 CFU of LGG and 109	infants with	the probiotic group. (SCORAD) and the attentiveness of soluble CD4+		
Lactobacillus	CFU of <i>B. lactis</i> for 4 weeks	atopic disease	decreased in the probiotic groups		
rhamnosus GG					
(LGG)					
Lactobacillus	1×10^9 CFU twice daily for 8	RDBPS with 56	A decrease in the SCORAD indicator was seen in the probiotic-treated	Atopic dermatitis	[60]
fermentum VRI-	weeks	children	group. After the study, more children treated with this probiotic had		
033 PCC			milder atopic dermatitis		
Lactobacillus F19	1×10^8 CFU/day for 4–6	RDBPS with 179	The increasing occurrence of eczema at 13 months was lower in the	Eczema	[61]
	months	infants	probiotic group. At 13 months, the INF-y/IL-4 percentage was higher		
			in the probiotic group. No differences in serum concentrations of IgE		
B. infantis BB-02,	A mixture of B. infantis BB-	MDPR with 1099	There were no differences in the occurrence of eczema between the two	Eczema, atopic	[62]
Streptococcus	02 (300 $\times 10^6$ CFU), S.	very preterm	groups. Similarly, the incidences of atopic eczema, food allergy,	sensitization, food	
thermophilus TH-	thermophilus TH-4 (350	infants	wheezing, and atopic sensitization were comparable in both groups.	allergy, and	
4, and B. lactis BB-	$\times 10^6$ CFU), and <i>B. lactis</i>			wheezing	
12	BB-12 (350 \times 10 ⁶ CFU).				
	Total: 1×10^9 CFU per 1.5 g				
	in a powder once daily, until				
	discharged from the hospital				
	or term-corrected age				
Mixture of L.	Oral administration at 2 \times	DBPS with 100	The combination of probiotics did not inhibit the growth of other	Atopic dermatitis	[63]
casei, L.	109 CFU in each strain,	children	strains, but no changes in clinical development were seen between the	•	
rhamnosus, L.	twice daily for 6 weeks		treated and placebo groups		
plantarum, and B.	•				
lactis					

Probiotic strain	Dose and administration	Study type/model	Response	Application	References
Lactobacillus	NM	NM	Cell proliferation and	Caco-2 and HT-29	[64]
pentosus B281			Cell cycle arrest (G1)		
Lactobacillus					
plantarum B282					
Bacillus	NM	NM	>90% ↓ Cell proliferation	LoVo, HT-29,	[65]
polyfermenticus				AGS	
KU3					
Lactobacillus	NM	NM	↓ Cell proliferation	Caco-2, HT-29	[66]
plantarum A7					
Lactobacillus					
rhamnosus GG					
Lactobacillus	NM	NM	↓Cell proliferation and Induction of apoptosis	DLD-1, HGC-27	[67]
paracasei					
IMPC2.1					
Lactobacillus					
rhamnosus GG					
Bacillus	NM	NM	↓Cell colony formation in cancer cells (N/E on normal colonocytes)	NMC460	[68]
polyfermenticus				~~	5.403
Lactobacillus	Colitis was induced by 30		No positive effects on the rat's gut permeability, weight changes, colon	CD-like	[69]
plantarum	mg (0.6 mL of 5% aqueous	(TBSN)	microscopic scores, and the level of blood albumins;		
species 299	solution) of TNBS. 7 days				
	supplementation of 10 ⁹				
	colony forming units (CFU)				
	of Lactobacillus plantarum				
	(in oat fiber) following				
	colitis initiation.				

Probiotic strain	Dose and administration	Study type/model	Response	Application	References
Bifidobacterium bifidum PRL2010	daily oral supplementation of 10 ⁹ of <i>B. bifidum</i> PRL 2010. Colitis (TNBS 2.5 mg/mice) was induced in the 5th day of probiotic strain feeding.	Murine model (TNBS)	Reduction in the edema, decrease in the macroscopic damage and histological scores, decrease in weight loss, and anti-inflammatory effects	CD-like	[70]
Bifidobacterium animalis subsp. lactis BB12	7 days supplementation (twice a day) with 1.2×10^{10} CFU Bifidobacterium animalis subsp. lactis BB12 by oral gavage before colitis. Colitis was induced by 3% DSS added to drinking water for 6 days.	Murine model (DSS)	Defense against a reduction in colon length, better picture of the colon histology, decrease in apoptosis in the epithelial layer, reduction in the level of TNF- $\acute{\alpha}$;	UC-like	[71]
Lactobacillus delbrueckii	Colitis was induced by administering 3% (w/v) dextran sulfate sodium (DSS) in the drinking water for 7 days. Probiotic treatment (5x10 ⁹) CFU in mice began one day before colitis induction and continued until sacrifice.	Murine model (DSS)	Regulation of the NF-kB pathway and a decrease in the inflammatory state	UC-like	[72]

Probiotic strain	Dose and administration	Study type/model	Response	Application		References
Saccharomyces	Patients with CD in	Human model	Useful to regulate remission and bowel sealing	CD		[73]
boulardii	remission (based on Crohn's	Tuman moder	Oserui to regulate remission and bower scannig	CD		[73]
bomaran	disease activity index) were					
	supplemented with S.					
	boulardii about 4×10^8 cells					
	every 8 h as an oral capsule					
	formulation during					
	3months.					
L. rhamnosus GG,	(10 ¹⁰ CFU) 1 capsule per day	RUDES	↓WC (p < 0.001)	obesity	and	[74]
B. lactis	(10 Ci C) i capsule pel day	KDI DS	τ (μ (0.001)	overweight	and	[/-]
L. salivarius	(10 ⁹ CFU) 1 capsule per day	RDPBS	No effect	obesity	and	[75]
UCC118	(10 CPO) I capsule per day	KDI D3	No chect	overweight	anu	[13]
L. rhamnosus GG	(10 ¹⁰ CFU) 1 capsule per	RDPBS	Probiotic administration may decrease weight gain, particularly up to 4	obesity	and	[76]
L. mamnosus GG	day	KDI DS	years of age (p = 0.08)	overweight	anu	[/0]
L. acidophilus, L.	(each 4.3×10^8 CFU) and	Open-label,	\downarrow BMI (p < 0.05), \downarrow HC, and WC (p < 0.05)	obesity	and	[77]
rhamnosus, B.	$(8.2 \times 10^8 \text{ CFU})$	randomized,	\downarrow D MI (p < 0.03), \downarrow HC, and WC (p < 0.03)	•	anu	[//]
ŕ	(8.2 × 10° CFU)	controlled trial		overweight		
bifidum, B. longum		controlled trial				
and E. faecium	(Each 2 v108 CELL) with E	RTBS	IDMI I WC	a basitu	and	[70]
L. casei, L.	(Each 2 $\times 10^8$ CFU), vit. E,	KIDS	↓BMI, ↓ WC	obesity	and	[78]
rhamnosus, S.	A, C per day			overweight		
thermophilus, B.						
breve,L.						
acidophilus, B.						
longum and						
L. bulgaricus						

Probiotic strain	Dose and administration	Study type/model	Response	Application	Reference
Lactobacillus	NM	NM	Reduces the risk associated with type 2 diabetes mellitus and increases	Diabetes an	d [79,80]
acidophilus			host's metabolic system, ensuring weight administration	obesity	
NCFM					
Lactobacillus	NM	NM	Majorly reduces in body mass index (BMI), waist, abdominal Visceral	Diabetes an	d [81]
gasseri SBT2055			Fat Area (VFA), and hip circumference.	obesity	
Enterococcus	NM	NM	Reduces body weight, systolic Blood Pressure LDL-C (Low-Density	Diabetes an	d [82]
faecium,			Lipoprotein Cholesterol), and increases fibrinogen levels.	obesity	
Streptococcus					
thermophilus					
Bifidobacterium	NM	NM	Decreases total cholesterol level	Diabetes an	d [83]
animalis DSMZ				obesity	
23733,					
Bifidobacterium					
breve DSMZ					
23732					
Lactobacillus	NM	NM	Noticeably increases inhibitory antagonistic effect, and a main target	Antagonistic	[84,85]
species			for pathogens (Gram-positives and Gram-negatives) and food spoilage microorganisms	activity	
Lactococcus lactis	NM	NM	Two dissimilar, primarily linear peptides, with or without post-	Antagonistic	
subsp Cremoris			translational modifications at the C-terminus, were attached as required.	activity that is	[86,87]
and Lb. brevis					
Lactobacillus	NM	NM	The production of bacteriocin increases the antibacterial activity of	Antibacterial, anti	- [88-90]
kefir,			intestinal epithelial cells. They also reduce inflammation and serum	cholesterol, an	d
Lactobacillus			cholesterol levels and produce an EPS known as kefiran.	anti-inflammation	l
kefiranofaciens,					
and Lactobacillus					
kefirgranum					

Probiotic strain	Dose and administration	Study type/model	Response	Application	References
Lactobacillus plantaFrum	NM	NM	Antioxidant activity	Antioxidant activity	[91-93]
Lactobacillus plantarum, Lactobacillus	NM	NM	Antibacterial activity against pathogens	Antimicrobial activity	
fermentum, and Saccharomyces cerevisiae					
L. fermentum CECT5716	NM	NM	Increases antibody production against the Influenza virus	Antiviral activity	[94]
L. plantarum YML009	NM	NM	triggering of Th1 immune response against H1N1 Influenza virus	Antiviral activity	[95]
L. rhamnosus GG	NM	NM	Production of IFN- and IIs against Respiratory syncytial virus (RSV)	Antiviral activity	[96]
E. faecium NCIMB 10415	NM	NM	Promotion of nitric oxide (NO) production and secretion of Interleukins (IL-6 and IL-8) against Transmissible gastroenteritis virus) TGEV	Antiviral activity	[97]
Lactobacillus sp.	NM	NM	Rule of blood pressure	Immune system	[98]
Bacillus licheniformis	NM	NM	Decrease the effect of antibiotics use in the treatment of diarrhea and can detoxify aflatoxin B1 up to 94.7% in food matrices.	Antibiotic	[99]
Bifidobacterium longum CMCC P0001	NM	NM	Action of gastrointestinal disorders	Antibiotic	[100]
Lactobacillus, Bifidobacterium	NM	NM	positive effects on mental health and mood.	Depression, Anxiety, and Mental Disorders	[101]
Lactobacillus acidophilus ATCC4495, Lactobacillus plantarum NRRL B-4496	NM	NM	Important antifungal activity	Antifungal activity	[102]

Probiotic strain	Dose and administration	Study type/model	Response	Application	References
Lactobacillus buchneri	NM	NM	Antagonistic activity against Candida albicans	Antifungal activity	[103]
Weissella cibaria and Weissella	NM	NM	Antimicrobial activity against L. monocytogenes, E. coli,	Anti-microbial	[104]
koreensis			and Salmonella spp	activity	
Lactobacillus acidophilus,	NM	Gnotobiotic mice	Digest lactose and sugar in milk and other dairy products	Lactose	[105]
Lactobacillus delberukii				intolerance	
Lactobacillus reutri,	NM	Murine	Stop the colonization of pathogenic bacteria	Urinary tract	[99,106,107]
Lactobacillus acidophilus,				infection	
Lactobacillus rhamnosus					
GR-1					
L. casei DN 114001	NM	Human	Cost-efficient way to treat antibiotic-associated diarrhea	Antibiotic	[108]
			during antibiotic treatment	treatment	
L. acidophilus	NM	Clinical trials	Clinical trials on adults (avg. age, 39) who were tested for	Antibiotic	[109]
B. animalis subsp. lactis			12 days in three dissimilar groups: bio yogurt ($n = 131$),	associated	
L. delbrueckii subsp. bulgaricus			commercial yogurt ($N = 118$), and no yogurt ($N = 120$). The	diarrhea	
S. thermophilus			percentages of participants suffering AAD during this study	(AAD)	
			are 6.9% (bio yogurt), 11.0% (commercial yogurt), and		
			14.2% (no yogurt), respectively.		
L. casei ATCC 393	NM	Murine (CT26)	Positive effect: Tumor inhibitory, anti-proliferative, and	Anti-cancer	[110]
		and human	pro-apoptotic response		
		(HT29) colon			
		carcinoma cell			
		lines			
L. gasseri SBT2055	NM	Human	Boost of fat emulsion droplet size and the repression of	Anti-cholesterol	[111]
			lipase-mediated fat hydrolysis		
L. helveticus NS8	NM	Caco-2 Cells and	Probiotics have immunomodulatory properties	Immune system	[112]
		BALB/c mice			

Probiotic strain	Dose and administration	Study type/model	Response	Application		References
L. rhamnosus HN001 and	NM	Human	Antimicrobial performance against pathogens responsible	Antimicrobial		[113]
L. acidophilus GLA-14			for both bacterial vaginosis and aerobic vaginitis	activities		
L. plantarum CRL 725	NM	NM	Riboflavin production in foods	Food		[114]
L. plantarum S48 and P1201	NM	NM	Conjugated linoleic acid production in foods	Food		[115]
B. animalis IM386 + L.	NM	NM	Lactose intolerance	Food		[116]
plantarum MP2026						
Saccharomyces boulardii	NM	Human	Avoidance of antibiotic-associated diarrhea; β -lactamins or	Antibiotic		[117]
			tetracyclins and Miscellaneous, Gastroenteritis			
Akkermansia muciniphila	NM	NM	Anticipation of obesity and metabolic disorders	Obesity	and	[118,119]
				weight loss		

Abbreviation: Decrease; human colonic cancer cells: Caco-2, HT-29, SW1116, HCT116, SW480, DLD-1, LoVo; human gastric adenocarcinoma cells: AGS; *Mus musculus* colon carcinoma cells: CT26; HGC-27, HGT-1; human colonic epithelial cells: NMC460; UC- ulcerative colitis; CD-Crohns disease; WC—waist circumference; HC—hip circumferences; RDBS-Randomized, double-blind study; RDBPS-Randomized, double-blind, placebo-controlled study; Scoring Atopic Dermatitis(SCORAD); MDPR-multi-center, double-blind, placebo-controlled, RTBS randomized trial; Randomized triple-blinded controlled trial L-*Lactobacillus*; B-*Bifidobacterium* and *Bacillus*; E-*Enterococcus* and *Escherichia*; W-*Weissella*; S-*Saccharomyces*, *Streptococcus*, and *Salmonella*; C-*Candida*; NM-Not mentioned

4. Probiotics action in antimicrobial activity

Numerous studies have indicated that the use of probiotics effectively curtails the growth of pathogenic microorganisms and enhances the immune function of the host [120-124]. As research evolves, innovative probiotic strains with specific antimicrobial properties are being recognized, providing promising applications in both clinical and functional food domains. Probiotics exhibit antimicrobial properties through various mechanisms, functioning at several biological levels. These mechanisms include competitive exclusion, where probiotics compete with pathogens for limited receptors on the epithelial surface, as well as for nutrients [125,126]. Probiotics show broad-spectrum antimicrobial activity through a variety of synergistic mechanisms that operate at molecular, cellular, and ecological levels [127]. A primary mode of action involves the production of antimicrobial substances such as organic acids (e.g., lactic and acetic acids), which decrease the local pH and create an inhospitable environment for pathogenic microbes. Probiotics exert antimicrobial effects through a multifaceted array of mechanisms that function across molecular, cellular, and ecological levels. These beneficial microbes, mostly strains of Lactobacillus and Bifidobacterium, produce a range of antimicrobial compounds such as bacteriocins, organic acids (like lactic and acetic acid), and hydrogen peroxide, which directly inhibit pathogenic bacteria by disrupting their membranes or metabolic functions [128]. Probiotics also engage in competitive exclusion by occupying epithelial binding sites and outcompeting pathogens for essential nutrients, thereby preventing their colonization. They enhance host immunity by modulating cytokine profiles, promoting anti-inflammatory responses, and strengthening epithelial barrier integrity through the upregulation of tight junction proteins [129]. Furthermore, some probiotics interfere with quorum-sensing pathways of pathogens, disrupting microbial communication and suppressing virulence gene expression. They also contribute to restoring and maintaining a balanced microbiota composition, which indirectly limits the proliferation of opportunistic pathogens. Emerging evidence suggests that certain probiotics possess antiviral and antifungal capabilities, mediated by the secretion of bioactive molecules such as exopolysaccharides. Collectively, these multifactorial mechanisms underscore the potential of probiotics as effective agents for antimicrobial defense and microbiome regulation. They also compete with pathogens for adhesion sites and nutrients in the gut epithelium, a process known as competitive exclusion. Additionally, probiotics enhance the host's mucosal barrier integrity and modulate immune responses, promoting the production of anti-inflammatory cytokines and immunoglobulins that further suppress pathogen colonization. Studies emphasize the importance of strain-specific effects and the need for robust in vitro and in vivo models to evaluate probiotic efficacy under physiologically relevant conditions. They also produce antimicrobial metabolites such as organic acids, bacteriocins, reuterin, and secondary bile acids that can directly suppress pathogen growth [130,131]. Probiotics can interfere with pathogen virulence mechanisms by preventing biofilm formation and inhibiting the production of toxins and enzymes [132]. Some probiotics, like *Propioniferax innocua*, can break down mature biofilms [130]. Additionally, probiotics enhance the host's innate immunity by stimulating the production of antimicrobial peptides by Paneth cells (They are known for their role in innate immunity and intestinal homeostasis) in the intestine, providing another layer of defense against pathogens [133]. In a nutshell, probiotics employ a multi-faceted approach to antimicrobial activity, encompassing direct antagonism, competitive exclusion, and host-mediated effects. These mechanisms contribute to maintaining microbial balance in the gut and strengthening the intestinal barrier against pathogens. However, it's important to note that not all probiotic strains have similar therapeutic effects, highlighting the need for rigorous clinical trials to elucidate strain-specific benefits. Probiotics have been proven to effectively inhibit pathogenic microorganisms and improve the immune responses of the host [120–124].

They synthesize bioactive compounds, including bacteriocins, lactic acid, pyroglutamate, and hydrogen peroxide, which specifically target pathogens and stimulate immune pathways [134–140]. These compounds are known to inhibit microbes such as *E. coli, Salmonella typhimurium, Yersinia enterocolitica*, and *Clostridium difficile* [141]. Specific strains like *Lactobacillus fermentum* TcUESC01 and *L. plantarum* ATCC 8014 show strong antimicrobial properties and survival capabilities in intestinal conditions [142,143]. *Lactobacillus paracasei, L. rhamnosus* GG, and *L. acidophilus* KS400 also demonstrate inhibitory effects against various pathogens, including *Salmonella enterica* and vaginal pathogens [144–146]. *Bifidobacterium* and *Lactobacillus* species exhibit antimicrobial and antifungal activities, particularly *B. bifidum* PTCC 1644, which inhibits *Aspergillus parasiticus* and reduces aflatoxin levels [147,148]. Bacteriocins from *Bifidobacterium* further suppress a wide range of pathogens [149]. Probiotics are effective against *Helicobacter pylori*, enhancing immune response, reducing inflammation, and alleviating symptoms, especially through *Lactobacillus* species like *L. reuteri* [150,151].

5. Probiotics action in the immune system

Probiotics significantly influence the host immune system by modulating innate and adaptive immune responses through diverse mechanisms. They regulate the production of cytokines and immunoglobulins, maintaining a critical balance between pro-inflammatory and anti-inflammatory pathways [152,153]. Probiotics play a crucial role in modulating both innate and adaptive immunity in humans through various mechanisms. These beneficial microorganisms inhabit the intestines and change the composition of the gut microbiota, which subsequently impacts host immunity [154]. Influencing the gut microbiome, probiotics can improve overall immunity and enhance the quality of life for individuals. Probiotics affect innate immunity by stimulating epithelial innate immune responses, such as increasing the production of epithelial-derived TNF-alpha and restoring the function of the epithelial barrier [155]. They also activate NF-kB, which is vital for innate immune responses. Interestingly, this stimulation of innate immunity by probiotics promotes gut health, contrary to the conventional belief that probiotics primarily have an anti-inflammatory effect [155]. In terms of adaptive immunity, probiotics impact T cell and B cell-mediated responses, which can be either beneficial or harmful to the host depending on the context and site of infection [156]. Furthermore, probiotics help regulate intestinal adaptive immunity by maintaining immune tolerance towards symbionts and preserving the integrity of the intestinal barrier [157]. They also modulate DC/NK interactions, balance T-helper cell responses, and promote the secretion of polymeric IgA [158]. Recent research has uncovered that innate immunity has a memory capacity referred to as "trained immunity" [159]. For instance, Lactobacillus plantarum O6CC2 enhances Th1 cytokine responses, including interleukin-12 (IL-12) and interferon-gamma (IFN-γ), during influenza infections by activating natural killer (NK) cells, which are essential for early-stage defense [160]. Similarly, Lactobacillus paracasei CNCM-I-1518 modifies pro-inflammatory and anti-inflammatory cytokine profiles in the lungs and alters immune cell counts, thereby reducing viral loads and improving outcomes following influenza infection [160]. In enteric infections caused by Escherichia coli and Salmonella, probiotics such as Lactobacillus rhamnosus enhance the expression of toll-like receptors (TLR2 and TLR9) and NOD-like receptors (NLRs), while modulating cytokine expression, including IL-4, IL-6, IL-12, and IL-10, which play pivotal roles in mucosal immunity [161,162]. Probiotics also regulate cell signaling pathways, such as NF-kB and MAPK, which are vital in controlling immune responses during clostridial infections [163,164]. Moreover, certain probiotics, such as Bifidobacterium breve MCC1274, stimulate IL-8 and IFN production while activating interferon regulatory factor-3 (IRF3), providing protection against viral pathogens [165]. Probiotics are considered potential candidates for stimulating trained immunity, although the exact mechanisms are not fully understood. This concept opens new therapeutic avenues for enhancing innate immune responses through probiotic administration. Probiotics exhibit diverse effects on both innate and adaptive immunity. They stimulate innate immune responses, regulate adaptive immunity, and potentially enhance trained immunity

6. Probiotics action in diabetes

Diabetes mellitus (DM), a genetic and environmental metabolic disorder of long duration, is a serious global health concern [166]. It causes cardiovascular system, kidney, eye, and nerve impairment, with an increased risk of heart disease and stroke [167]. Probiotics have been shown to manage type 2 diabetes mellitus (T2DM). Probiotic yogurts containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 increase fasting glucose and antioxidant activity [168]. Clinical trials have reported reductions in fasting plasma glucose (by 15.92 mg/dL) and HbA1c (by 0.53%) following probiotic use [169]. A six-week study using a probiotic capsule with L. acidophilus, L. casei, B. bifidum, and L. fermentum showed improved insulin sensitivity, gene expression, and lipid profiles [170]. Probiotic use also enhances fasting glucose levels, reduces inflammation, and increases antioxidant capacity. Animal studies further support probiotics in lowering glucose levels, improving insulin resistance, and modulating gut microbiota [171,172]. In pediatric cases, probiotics help manage obesity and diabetes by regulating gut flora [173]. They also suppress inflammatory cytokines such as TNF- α , IL-1β, and IL-6. In mouse models, probiotic cocktails reduced blood glucose, pancreatic inflammation, and TLR4 expression while modulating cytokines and improving the Bcl-2/Bax ratio [167]. Probiotics have indicated reassuring effects in diabetes management through various mechanisms: they can improve insulin sensitivity and diminish autoimmune responses by modifying the intestinal microbiota, reducing inflammatory reactions, and alleviating oxidative stress. They affect the host by regulating intestinal permeability, the mucosal immune response, and the gut endocannabinoid system related to inflammation and diabetes [174]. Furthermore, probiotics impact energy extraction from food and biochemically alter molecules derived from the host or gut microbes [174]. The anti-diabetic effects of probiotics include the reduction of pro-inflammatory cytokines via the NF-κB pathway, decreased intestinal permeability, and reduced oxidative stress [175]. Short-chain fatty acids (SCFAs) produced by probiotics are crucial for glucose homeostasis by activating G-protein-coupled receptors on L-cells, which encourages the release of glucagon-like peptide-1 and peptide YY, leading to increased insulin secretion and appetite suppression [176].

Some research has shown inconsistent results regarding the effectiveness of probiotics in diabetes management. While many studies suggest improvements in fasting blood glucose, insulin sensitivity, and systemic inflammatory and antioxidant status in type 2 diabetic patients [177], others have pointed out limitations in clinical trials [178]. This emphasizes the need for further research to develop solid probiotic-based adjuvant treatment protocols for diabetes. Probiotics hold promise in diabetes management by modulating gut microbiota, reducing inflammation and oxidative stress, enhancing insulin sensitivity, and regulating glucose metabolism. However, more well-structured human clinical studies are necessary to establish optimal dosages, treatment duration, and the long-term impacts of probiotic interventions in diabetes management [179].

Investigations into the effects of probiotics on diabetes have produced promising findings; however, there are notable gaps in our knowledge of this field. Probiotic supplementation has been correlated with improvements in glycemic control, lipid profiles, and inflammatory markers in

individuals with type 2 diabetes [180,181]. However, inconsistencies in results arise due to differences in probiotic formulations, dosages, and treatment durations [182]. This variability highlights the need for standardized protocols and more comprehensive clinical trials to establish evidence-based treatment guidelines [10]. While many researchers have focused on the influence of probiotics on metabolic parameters, there is a lack of research into the specific mechanisms of action. More investigation is needed to clarify how probiotics impact the gut-skin and gut-skin-brain axes, as well as their effects on intestinal microbiota and host metabolism. Safety evaluations and long-term studies are crucial to identify potential adverse effects and to determine the best dosages for probiotic supplementation [183]. Additionally, the lack of regulatory oversight raises concerns about the quality and labeling accuracy of commercial probiotic products, particularly for at-risk populations [184].

7. Probiotics action in obesity and cholesterol

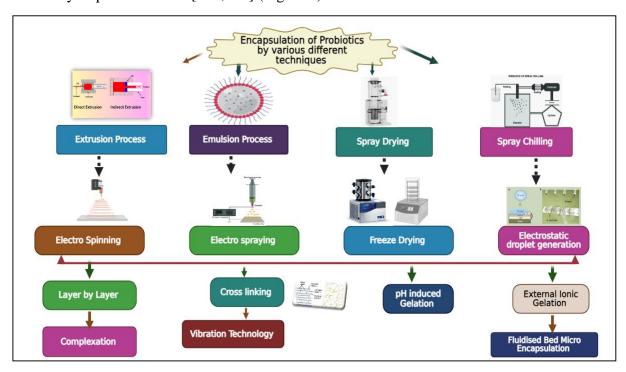
Probiotics have shown promising actions in obesity and cholesterol management, but several gaps in the research have to be addressed. The mechanisms through which probiotics work on obesity are yet to be determined [185]. Even though studies have shown their capacity to modulate gut microbiota, affect lipid metabolism, and affect inflammatory processes, larger trials are warranted to describe the pathways precisely [186,187]. Large-scale, methodologically sound clinical trials are needed to establish the safety and efficacy of probiotic interventions for the treatment of obesity and lipid control [188]. Longitudinal studies must also be performed to determine the long-term consequences of probiotic supplementation. A severe deficiency in the standardization of study design and methodology is to blame for much of the heterogeneity of results and potential biases [189]. Such limitations must be addressed in future research using stricter and more consistent methods. The interaction between probiotics, gut microbiota, and the gut-brain axis about obesity and cognitive processes must be examined further as well [189]. Obesity, driven by modern lifestyles, is a major global health issue, with projections indicating that by 2030, 38% of adults will gain weight and 20% will be obese [190]. Contributing factors include energy imbalance, sedentary behavior, and gut microbiota composition. The intestinal microbiota influences obesity directly through organ interactions and indirectly via metabolites like short-chain fatty acids (SCFAs) [191]. A higher Firmicutes/Bacteroidetes (F/B) ratio is associated with increased body weight [192]. Probiotics help regulate body weight and adipose tissue by modulating physiological functions and hormone secretion, including leptin and adiponectin. Strains such as Lactobacillus acidophilus, L. casei, and Bifidobacterium longum show hypocholesterolemia and anti-obesity effects through thermogenic and lipolytic activity. Lactobacillus gasseri BNR17 reduces adipose tissue and regulates leptin, while L. acidophilus and B. longum demonstrate similar benefits. Lactobacillus curvatus HY7601 and L. plantarum KY1032 (5 × 109 CFU/day for over two months) reduced fat accumulation, BMI, and inflammatory markers (IL-1β, TNF-α, IL-6, MCP-1) and enhanced fatty acid oxidation in the liver [193]. L. rhamnosus GG and L. sakei NR28 also decreased the F/B ratio and reduced obesity-related markers in mice [194]. Probiotics from the *Lactobacillus* and *Bacillus* genera lowered body weight, F/B ratio, and hepatic steatosis in high-fat-diet models [195]. Additionally, Lactobacillus species in foods like yogurt improve cholesterol profiles [196]. Probiotics reduce cholesterol by deconjugating bile salts, which hinders lipid absorption [197]. Lactobacillus reuteri CRL1098 significantly lowers cholesterol, triglycerides, and the HDL-to-LDL ratio without affecting microbial composition [198]. While probiotics exhibit potential in tackling obesity and cholesterol-related challenges, considerable research gaps remain. Future investigations should concentrate on identifying specific strains and mechanisms of action, conducting extensive clinical trials, and standardizing research methodologies to yield more definitive evidence regarding the effectiveness of probiotics in managing obesity and cholesterol levels.

8. Probiotics action in allergic infections and antioxidant response

Probiotics have revealed promising effects across a range of health conditions, including allergic infections and antioxidant responses. However, there are notable research gaps in understanding their mechanisms of action and effectiveness. In terms of allergic infections, while probiotics have indicated potential benefits, the outcomes of clinical studies are in the preliminary stages and need further validation [199]. The specific mechanism by which probiotics prevent pathogen-induced membrane damage and modulate the immune system remains largely unknown [200]. Additionally, inconsistencies in study designs, outcome measures, probiotic strains, dosages, and matrices used in clinical trials make it difficult to reach definitive conclusions [201]. Concerning antioxidant responses, there is a significant gap in research regarding the precise role of probiotics in modulating oxidative stress and antioxidant defense systems across fish species [202]. The variations in experimental design and species-specific responses add to the complexity of this field. Interestingly, while probiotics demonstrate therapeutic potential for immune response-related conditions such as allergies and eczema, their effectiveness in treating bronchial asthma has not been established [203]. Furthermore, the influence of probiotics on specific viruses in respiratory tract infections has not been sufficiently studied [201]. Future research should aim to standardize methodologies, explore species-specific responses, and clarify the mechanisms of probiotic action in allergic infections and antioxidant responses. Long-term studies with larger sample sizes, comparing different probiotic strains and dosages, are necessary to establish strong correlations between dietary interventions and the observed effects [201,202]. Additionally, further research is needed to understand the interactions between probiotics and other factors. Allergic diseases pose a major global health and economic burden [204]. They result from hypersensitivity reactions of the immune system to allergens, activating mast cells and basophils and releasing allergic mediators. Symptoms range from mild (sneezing, rashes) to severe (anaphylaxis) [205,206]. WHO identifies several allergic conditions, such as asthma, anaphylaxis, rhinitis, eczema, and hives, as well as triggers like food, drugs, and insect stings. Probiotics are being explored for their anti-inflammatory potential in allergy prevention, though the topic remains debated [207]. Lactobacillus plantarum L67, for instance, promotes IL-12 and IFN-γ production [208], while probiotics in general restore gut homeostasis and interact with immune cells to reduce allergy symptoms [209]. They also boost mucosal IgA and activate T and B cells [210]. Bifidobacterium species have been shown to lower early eczema and atopic dermatitis risks in infants [211], and Lactobacillus strains help prevent respiratory allergies by reducing MMP9 expression and inflammation in lung tissue [212]. Meta-analyses support the role of probiotics in preventing allergic conditions in children [213,214]. Oxidation is essential for energy production but generates reactive oxygen species (ROS), such as O₂⁻, H₂O₂, and ·OH, which may cause cellular damage if uncontrolled [215]. Probiotics exhibit antioxidant properties through enhancing antioxidase activity, producing antioxidant metabolites, and modulating signaling pathways and gut microbiota. Lacticaseibacillus rhamnosus has shown strong antioxidant activity in physically stressed individuals [216], and Lactobacillus paracasei spp. paracasei YBJ01 improved serum SOD and GSH-Px activity in a dose-dependent manner, with increased hepatic and splenic protein expression in mice [217]. Various probiotics also enhance enzymes like glutathione S-transferase, glutathione reductase, GSH peroxidase, SOD, and catalase, offering protection against oxidative and carcinogenic damage [218].

9. Probiotics action in inflammatory bowel disease

Probiotic therapy holds great potential as an alternative management option for inflammatory bowel disease (IBD), but the current evidence remains weak [219]. Meta-analyses of randomized clinical trials indicate that probiotics have a significant impact on reducing symptoms like bloating and flatulence in patients with IBD and improve the quality of life in comparison to control groups [220]. IBD is a collection of chronic inflammatory disorders of the gastrointestinal tract (GIT) with features of diarrhea, fever, abdominal pain, ulcerative colitis, chronic disease progression, weight loss, and nutritional deficiencies, including iron deficiency anemia [221,222]. Probiotic therapy has the potential to be beneficial in the management of ulcerative colitis, but evidence of its efficacy in Crohn's disease is conflicting [223]. Probiotics have been shown to induce intestinal angiogenesis by vascular endothelial growth factor receptor (VEGFR) signaling, which is of importance in modulating acute and chronic inflammation in intestinal mucosal tissue involved in IBD [224,225]. Probiotics are important in immune system modulation by lowering inflammation through multiple pathways. They control Toll-like receptor (TLR) and G-protein coupled receptor (GPR) pathways and stimulate antiinflammatory regulatory agents like A20, Bcl-3, and MKP-1, inhibiting lipopolysaccharide (LPS)stimulated TLR4 activation [226]. Certain pathways targeted by probiotics include the NF-κB, mitogen-activated protein kinase (MAPK), and pattern recognition receptor (PRR) pathways. Probiotics also block LPS binding to the CD14 receptor, inhibiting NF-κB activation and proinflammatory cytokine induction [227]. Lactobacillus delbrueckii derived from dairy controls the NFκΒ pathway, dramatically attenuating inflammation in a DSS-colitis mouse model [228]. Treatment with Bifidobacterium bifidum increases anti-inflammatory cytokines such as IL-10 but decreases proinflammatory cytokines such as IL-1 in the colon [229]. Likewise, Bifidobacterium strains inhibit proinflammatory cytokines such as IL-8 but induce IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients [230]. Probiotics have been observed to elevate anti-inflammatory cytokines like IL-10 and IL-12 and lower pro-inflammatory cytokines like IL-1β and IL-6 in different infections [231,232]. This modulation is attributed to NF-κB and interferon-gamma (IFN-γ) suppression, alteration of cyclooxygenase-2 (COX-2), and elevated secretory IgA [233,234]. The Lactobacillus casei strain greatly decreases IL-6 and IFN-γ production in lipopolysaccharide (LPS)evoked murine chronic IBD models, improving anti-inflammatory responses [235]. Lactobacillus gasseri also has shown greater anti-inflammatory effects against breast cancer by lowering TNF- α and promoting IL-10 production [236]. Administration of live and heat-killed *Lactobacillus plantarum* AN1 has been reported to modulate the composition of gut microbiota and induce anti-inflammatory action in murine models of IBD. The mechanisms involved were found to occur through the generation of nitrogen oxide and exclusion of RAW264.7 cells from the toxic action of hydrogen peroxide, as revealed by in vitro experiments [237]. Probiotics also inhibit LPS binding to CD14 receptors, inhibiting total NF-κB activation and pro-inflammatory signaling [238].


10. Probiotics action in cancer disease

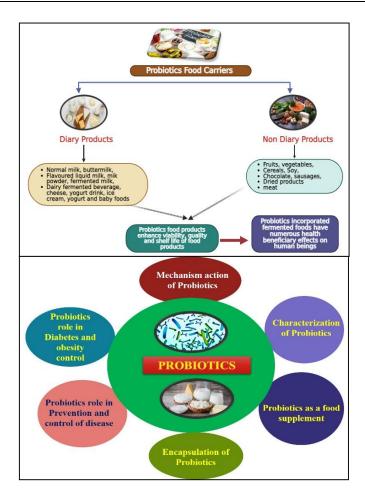
Probiotics have shown potential in cancer prevention and therapy by improving gut health and enhancing immune function [239], with colorectal cancer (CRC) being a primary focus [240]. In gastrointestinal cancers, they strengthen the intestinal barrier, lower oxidative stress, and inhibit tumor growth [241]. Some studies also suggest a reduced risk of breast cancer with regular probiotic intake [242], and emerging evidence indicates benefits in oral cancer through immune modulation [243]. In CRC patients, probiotics help regulate gut microbiota by increasing beneficial bacteria and reducing harmful

species like Fusobacterium [244]. Postoperative gastric cancer patients benefit from reduced inflammation and improved immunity through probiotic use [245]. During chemotherapy, probiotics help restore gut flora, increasing beneficial microbes and reducing harmful ones, thereby improving outcomes [246–248]. Further research is needed to evaluate the long-term effects of probiotics and to optimize their use in cancer therapy. Proposed mechanisms include carcinogen degradation, shortchain fatty acid (SCFA) production, regulation of cell proliferation and apoptosis, and enhancement of immune signaling. Additionally, heat-killed probiotics, when combined with radiation therapy, have been shown to suppress cancer cell growth [249]. Lactobacillus fermentum strains promote colon epithelial health and inhibit cancer cell growth via SCFAs, while L. acidophilus and L. rhamnosus also show anti-tumor activity [240]. Probiotic lactic acid bacteria modulate fecal enzymes linked to colon cancer [250], and strains like Bifidobacterium adolescentis SPM0212 suppress cancer cell lines [251]. Lactobacillus strains produce peptidoglycans that inhibit cancer cells [252] and enhance chemotherapy effects [253]. E. coli Nissle 1917 boosts anti-tumor immunity in liver cancer [254], and L. caseiderived ferrichrome induces apoptosis via the JNK pathway [255]. Lactococcus lactis KC24 exhibits anticancer effects on various cell lines [256]. Clinical and preclinical studies confirm probiotic roles in carcinogen degradation, gut microbiota modulation, and enzyme reduction [257]. Probiotics also combat breast cancer by modulating cytokines [258] and enhancing immune responses [259]. Strains such as L. rhamnosus, L. casei, L. paracasei, and L. plantarum suppress cancer cell growth by downregulating ErbB-2 and ErbB-3 [260], with clinical trials supporting improved anticancer outcomes [261].

11. Encapsulation of probiotics

Biopolymers are essential in the microencapsulation process of probiotics for promoting their storage and viability while being transported through the upper gastrointestinal tract [262]. Micro- and nanoencapsulation methods have been efficient in enhancing the viability, stability, and long-term storage of probiotics in food and pharmaceutical production [263]. Several encapsulation techniques, including lyophilization, spray drying, extrusion, coacervation, and emulsion, have been used to attain such results [264]. Probiotic encapsulation, normally conducted using biopolymer beads through extrusion in water-in-oil emulsions, is a strong weapon to preserve probiotic cells under adverse conditions. Methods such as spray drying, spray chilling, spray-freeze drying, freeze drying, extrusion, coacervation, electro-spraying, and fluidized bed encapsulation have found extensive applications to enhance probiotic viability and storage stability [265]. Pectin, for example, is commonly employed to encapsulate probiotics through extrusion and emulsion methods since it promotes gastric and intestinal resistant encapsulation [266]. Novel processes, such as electrospinning and electrospray processes, have been promising to encapsulate probiotics effectively [267–269]. The encapsulation processes also prevent degradation of probiotics and their bioactive compounds during food processing and digestion. Encapsulation in bulk solid matrices such as milk protein, lactose, or polysaccharides through techniques, including spray drying, freeze drying, and extrusion, is a standard procedure [270]. Encapsulation is a strong system for encapsulating whole cells or bioactive compounds, such as enzymes, polyphenols, antioxidants, and micronutrients, in capsules for precise delivery. Encapsulation techniques are divided by material size: microencapsulation (3-800 µm) or nanoencapsulation (10-1000 nm). These systems boost bioavailability and safeguard bioactive compounds under suboptimal conditions. For example, xanthan-based encapsulation enhances the viability of probiotics by a significant margin and regulates the targeted release of encapsulated agents [271]. Chitosan-based encapsulation has also been proven to enhance the viability and survival of *Bifidobacterium longum* DD98 in intestinal conditions [271]. Conversely, xanthan–chitosan (XC) blends improve *Bifidobacterium bifidum* survival at temperature conditions of 4 and 25 °C, in contrast to nonencapsulated cells [272]. Alginate-chitosan blends effectively enhance probiotic viability during colon delivery while minimizing porosity [273,274]. Additionally, new materials like κ-carrageenan have exhibited important advancements in probiotic viability and survival in the gut versus unencapsulated cells [275]. Microencapsulation using κ-carrageenan potentially inhibits *Helicobacter pylori* infection in the stomach [276]. Polysaccharides and protein wall materials are generally utilized for encapsulating probiotics [277]. These substances shield probiotics from poor conditions and boost their resilience, hence minimizing cell loss in hydrocolloid matrices [278,279]. Various encapsulation materials, such as xanthan, chitosan, and carrageenan, have proved useful in preserving the viability of probiotics [280]. Microencapsulation is an important tool in creating nutraceutical products and new food carriers for probiotics [281,282]. It is especially vital for increasing probiotic viability in acidic environments in the stomach [283]. Moreover, multilayer encapsulation techniques provide better survivability of probiotic cells [284,285] (Figure 2).

Figure 2. Probiotics are encapsulated in different techniques.


12. Probiotics action in food supplements

Functional foods were initially released by the Japanese government back in 1991, covering a broad spectrum of ingredients like proteins, vitamins, fibers, probiotic bacteria, and other additives to improve human health [286]. Out of these, probiotic food formulations have become a major focus area of study, greatly influencing the future food industry. The market value of probiotic supplements escalated exponentially, from \$3.3 billion in 2015 to an estimated \$7 billion in 2025. The food and agriculture sectors are changing at a tremendous pace, requiring continuous innovation and technological advancements to enhance the quality of food products [287]. Probiotic functional foods were found to have a beneficial effect on human health [42]. Probiotic bacteria that are ingested in the range of 108 to 109 CFU per gram per day are specifically known to promote physiological

functions [288,289]. Several food ingredients impact the viability and growth of these probiotic bacteria. NaCl and KCl salts, sucrose and lactose sugars, sweeteners account and aspartame, and artificial coloring and flavoring additives are some of the compounds that can impact probiotic stability. Other factors such as aroma compounds (e.g., diacetyl, acetaldehyde, acetoin), nisin (a polypeptide antibiotic), lysozyme, nitrites, and natamycin also play a significant role in supporting cell viability and growth [290,291]. Probiotics bring many advantages, such as increased nutritional value, preservation of gut flora, better immune system function, synthesis of antimicrobial substances, and suppression of gut pathogens. Fermented foods with probiotics play a role in these effects by generating peptides, enzymes, antimicrobial compounds, and antioxidants [292]. Meta-analyses and randomized trials show that probiotic supplements are very effective in enhancing human health [293]. Some of the factors that affect the viability of probiotics in food items include conditions of storage, humidity, and temperature. Moreover, probiotics are added to different food items, including yogurt, cheese, milk, cereals, chocolate, sausages, dried products, meat, vegetables, and drinks [294]. Research on probiotics delivered via gastrointestinal-targeted products like drug and food-based formulations is progressing fast. Drug formulations have been more promising than food-based products in some applications [295]. Probiotics improve the shelf life and safety of foodstuffs and are extensively utilized in medical and veterinary applications owing to their safety profile. Fermented foods such as fermented milk products, cheese, and yogurt are popular sources of probiotics [296]. Probiotic strains like Bifidobacteria, Lactobacillus, and Streptococcus are found in fermented food products naturally [297]. Lactic acid bacteria help in food preservation by generating organic acids that prevent the action of spoilage microorganisms. These bacteria are used in several fermented foods, such as yogurt, butter, cheese, kefir, sourdough, brined vegetables, sauerkraut, soy curd, idli batter, uttapam, fermented meat, and drinks [298–303]. Maintenance of the growth, viability, and survival of probiotic microorganisms is essential for product formulation, and milk products are the most appropriate carriers in most cases. In recent times, non-dairy products have also become popular for probiotic delivery. For instance, pomegranate juice sustains the growth of L. acidophilus and L. paracasei [304]. Other non-dairy substrates like fruits, vegetables, cereals, soy, and meat contain necessary nutrients such as proteins, vitamins, dietary fibers, and antioxidants, which qualify them for the development of probiotics [305]. Foods such as milk, buttermilk, flavored liquid milk, milk powder, fermented milk, yogurt drinks, and ice cream continue to be the favored carriers of probiotics. Nevertheless, cereals also demonstrate potential as nutrient substrates, which augment the availability of vitamin B, lysine quality, and diminish non-digestible carbohydrates upon fermentation [306]. Fruit products supplemented with probiotics provide health benefits, a pleasant taste, and added market value [307,308]. For example, probiotic drinks produced from peach juice fermented using L. delbrueckii are ideal for lactoseintolerant consumers [309]. Moreover, olive-derived probiotic beverages are rich in nutrients because they contain organic acids, phenols, antioxidants, and lactic acid bacteria like L. pentosus, L. plantarum, L. mesenteroides, L. brevis, and Pediococcus cerevisiae [310] (Table 3 and Figure 3).

Table 3. Encapsulation of probiotics.

Probiotic strain	Materials	Encapsulation Technology	References
Saccharomyces boulardii	Whey	Agglomeration/Spray-drying	[311]
Lactobacillus delbrueckii	Soy protein isolate (SPI) and high methoxy pectin (HMP)	Complexation	[312]
Lactobacillus rhamnosus GG	Cellulose and chitosan	Crosslinking	[313]
Lactobacillus plantarum	Aguamiel, Ag, or sweet whey, SW, as inner aqueous phase	Double emulsion	[314]
Bifidobacterium animalis subsp. lactis Bb12	Whey protein concentrate and Pullulan	Electrospinning	[315]
Bifidobacterium longum BIOMA 5920	Alginate-human-like collagen	Electrostatic droplet generation	[316]
Lactobacillus rhamnosus	Whey protein isolate/whey	Electrospraying/freeze	[317]
ATCC 7469	protein isolate and inulin/whey protein isolate and inulin and persian gum	drying/spray drying	
Lactobacillus plantarum DKL 109	Na- alginate (Al), alginate/1% gellan gum, Alginate/gum Arabic	External ionic gelation	[318]
Lactobacillus paracasei LAFTI®	Na-alginate	Extrusion	[319]
L26, Lactobacillus acidophilus Ki,			
Bifidobacterium animalis BB-12,			
Lactobacillus casei -01			
Lactobacillus reuteri	Sweet whey and shellac	Fluidized bed microencapsulation	[320,321]
Lactobacillus acidophilus	Chitosan and carboxymethyl cellulose	Layer by layer	[321]
Lactobacillus casei	Sodium caseinate and gellan gum	Ph-induced gelation	[322]
Bifidobacterium lactis, Lactobacillus acidophilus	Vegetable fat with lecithin	Spray chilling	[323]
Lactobacillus reuteri DSM 17938	Alginates-chitosan	Vibrating technology/extrusion	[324]
Lactobacillus plantarum	Whey protein isolate with sodium alginate and denatured whey protein isolate with sodium alginate	Spray drying and freeze drying	[325]
Lactobacillus plantarum	k-carrageenan	Emulsification, freeze-drying, or extrusion.	[326]
Lactobacillus plantarum	Sodium alginate (SA) PVA	Electrospinning	[327]

Figure 3. Probiotics supplement in different food products.

13. Future perspectives

While traditional probiotic uses in foods and supplements remain relevant, new perspectives are turning probiotics into precision-targeted biotherapeutics. Second-generation probiotics (e.g., Akkermansia muciniphila, Faecalibacterium prausnitzii) deliver targeted advantage in metabolic, inflammatory, and/or neurodegenerative disease by defined molecular mechanisms. New technologies in personalized nutrition and AI-driven microbiome analysis now enable the tailoring of probiotic regimens to genetic and microbial profiles, and as a result, clinical outcomes are enhanced. Synthetic biology has enabled engineered probiotics to detect disease biomarkers and deliver therapeutic molecules like IL-10 in situ to offer intelligent, targeted treatment. Psychobiotics like Lactobacillus rhamnosus act on the gut-brain axis and have the potential to treat mental disease. New delivery technologies like smart encapsulation and stimulus-sensitive systems are improving viability, site-specific action, and neuroprotection.

Aside from the gut, topical probiotics and postbiotics are transforming dermatology by modulating the skin microbiome, but in agriculture and veterinary medicine, they reduce the use of antibiotics and enhance animal and plant resilience. In space medicine, they sustain astronaut microbiota in extreme environments, with engineered strains in progress for long-duration spaceflight. Finally, probiotics are rapidly evolving from general health supplements to complex, microbiomedirected treatments with applications in precision medicine, neurobiology, dermatology, sustainable

agriculture, and space health. This is built on mechanistic insight, clinical proof, and new delivery systems that place probiotics at the forefront of next-generation biotherapies.

14. Conclusion

Probiotics have become a cornerstone of health promotion, with enormous potential in a wide range of applications in medicine, food, agriculture, aquaculture, and environmental management. This review underscores their roles in disease prevention, immune system modulation, regulation of gut microbiota, and functional food development. The novel encapsulation methods presented here have great potential in promoting the stability and targeted delivery of probiotics and guaranteeing their effectiveness across applications. To tap the full potential of probiotics, researchers should emphasize optimizing encapsulation materials and methods for better viability in production, storage, and delivery. Individualized probiotics customized to unique gut microbiomes are a promising area, with possible applications in treating metabolic disorders, neurodegenerative disorders, and autoimmune diseases. The application of probiotics in sustainable agriculture and aquaculture can also help meet global health and environmental objectives. Probiotic incorporation into daily products and interdisciplinary interactions between microbiology, food science, and biotechnology will be instrumental in further developing their applications. Taking these paths enables probiotics to further develop as indispensable resources for enhancing the health and well-being of human beings, animals, and environments.

Probiotic science is a dynamic and fast-evolving field with enormous potential to modulate gastrointestinal, metabolic, allergic, and infectious diseases. While promising preclinical and early clinical data are being reported, results are largely strain-dependent, context-specific, and derived from small sample sizes and short-duration studies. This again highlights the essential need for high-quality, large-scale clinical trials and standardized protocols to determine efficacy and safety. Mechanistically, probiotics function by competitive exclusion, antimicrobial metabolite secretion, immune modulation, enhancement of the epithelial barrier, and gut-organ axis communication. Next-generation and designed probiotics with precision-targeted action are being developed based on advances in multiomics and synthetic biology. Postbiotics and paraprobiotics are safer, stable, and immunomodulatory substitutes. However, heterogeneous global regulatory frameworks limit their use in clinical practice. Future cross-disciplinary approaches with clinical research, molecular understanding, personalized microbiome analysis, and regulatory harmonization are needed to reposition probiotics as general supplements to precision biotherapeutics for human health, functional foods, and public health.

Author contributions

Srirengaraj Vijayaram and Einar Ring & Conceptualization; writing—original draft; Writing—review and editing, literature search; table preparation. Vivekanandan, Sabariswaran Kandasamy, Gayathri Kaliyannan: Writing, review, and editing. Hary Razafindralambo and Yun-Zhang Sun: Writing, review, and editing; supervision.

Acknowledgments

We would like to sincerely thank the Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, of Thandalam, Chennai, Tamil Nadu, India, for their generous support of this research. The author, Sabariswaran Kandasamy, would like to thank the DST-FIST, New Delhi, India.

Data availability statement

The findings supporting this research are expected to be made available upon the author's inquiry

Conflicts of interest

The authors declare no conflicts of interest.

References

- 1. Sanz Y, Nadal I, Sánchez E (2016) Probiotics as drugs against human gastrointestinal infections. Recent Pat Antiinfect Drug Discov 12: 123–132. https://doi.org/10.2174/1574891X12666160614120914
- 2. Hamad GM, Taha TH, Abou El-Ghar RA, et al. (2022) Probiotic characteristics and antimicrobial potential of *Lactobacillus* species isolated from fermented dairy products. *Microb Pathog* 163: 105370. https://doi.org/10.1016/j.micpath.2021.105370
- 3. Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. *Science* 147: 747–748. https://doi.org/10.1126/science.147.3659.747
- 4. Munir A, Javed GA, Javed S, et al. (2022) *Levilactobacillus brevis* from carnivores can ameliorate hypercholesterolemia: *In vitro* and *in vivo* mechanistic evidence. *J Appl Microbiol* 133: 1725–1742. https://doi.org/10.1111/jam.15678
- 6. de Brito Alves JL, de Sousa VP, Cavalcanti Neto MP, et al. (2016) New insights on the use of dietary polyphenols or probiotics for the management of arterial hypertension. *Front Physiol* 7: 448. https://doi.org/10.3389/fphys.2016.00448
- 7. Reid G (2015) Probiotics: definition, scope and mechanisms of action. *Best Pract Res Clin Gastroenterol* 30: 17–25. https://doi.org/10.1016/j.bpg.2015.12.00
- 8. Dockman RL, Ottesen EA (2024) Purified fibers in chemically defined synthetic diets destabilize the gut microbiome of an omnivorous insect model. *Front Microbiomes* 3: 1477521. https://doi.org/10.3389/frmbi.2024.1477521
- 9. Sun X, Pei Z, Wang H, et al. (2025) Bridging dietary polysaccharides and gut microbiome: how to achieve precision modulation for gut health promotion. *Microbiol Res* 128046. https://doi.org/10.1016/j.micres.2025.128046
- 10. Akbari V, Hendijani F (2016) Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. *Nutr Rev* 74: 774–784. https://doi.org/10.1093/nutrit/nuw039
- 11. Barichella M, Pacchetti C, Bolliri C, et al. (2016) Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. *Neurology* 87: 1274–1280. https://doi.org/10.1212/WNL.0000000000003127
- 12. Chau K, Lau E, Greenberg S, et al. (2015) Probiotics for infantile colic: A randomized, double-blind, placebo-controlled trial investigating *Lactobacillus reuteri* DSM 17938. *J Pediatr* 166: 74–78. https://doi.org/10.1016/j.jpeds.2014.09.020
- 13. Shadnoush M, Hosseini RS, Khalilnezhad A, et al. (2015) Effects of probiotics on gut microbiota in patients with inflammatory bowel disease: A double-blind, placebo-controlled clinical trial. *Korean J Gastroenterol* 65: 215–221. https://doi.org/10.4166/kjg.2015.65.4.215

- 14. Soleimani A, Mojarrad MZ, Bahmani F, et al. (2017) Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. *Kidney Int* 91: 435–442. https://doi.org/10.1016/j.kint.2016.09.040
- 15. Song EJ, Han K, Lim TJ, et al. (2020) Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial. *EPMA J* 11: 31–51. https://doi.org/10.1007/s13167-020-00198-y
- 16. Yoon H, Park YS, Lee DH, et al. (2015) Effect of administering a multi-species probiotic mixture on the changes in fecal microbiota and symptoms of irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. *J Clin Biochem Nutr* 57: 129–134. https://doi.org/10.3164/jcbn.15-14
- 17. Zamani B, Golkar HR, Farshbaf S (2016) Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: A randomized, double-blind, placebocontrolled trial. *Int J Rheum Dis* 19: 869–879. https://doi.org/10.1111/1756-185X.12888
- 18. Roobab U, Batool Z, Manzoor MF, et al. (2020) Sources, formulations, advanced delivery and health benefits of probiotics. *Curr Opin Food Sci* 32: 17–28. https://doi.org/10.1016/j.cofs.2020.01.003
- Mazzantini D, Calvigioni M, Celandroni F, et al. (2021) Spotlight on the compositional quality of probiotic formulations marketed worldwide. *Front Microbiol* 12: 693973. https://doi.org/10.3389/fmicb.2021.693973
- 20. Tegegne BA, Kebede B (2022) Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. *Heliyon* 8: e09725. https://doi.org/10.1016/j.heliyon.2022.e09725
- 21. Yousefi B, Eslami M, Ghasemian A, et al. (2019) Probiotics importance and their immunomodulatory properties. *J Cell Physiol* 234: 8008–8018. https://doi.org/10.1002/jcp.27559
- 22. Zubillaga M, Weill R, Postaire E, et al. (2001) Effect of probiotics and functional foods and their use in different diseases. *Nutr Res* 21: 569–579. https://doi.org/10.1016/S0271-5317(01)00281-0
- 23. Putta S, Yarla NS, Lakkappa DB, et al. (2018) Probiotics: supplements, food, pharmaceutical industry. In: Grumezescu AM, Holban AM, *Therapeutic, Probiotic, and Unconventional Foods*. Academic Press, 15–25. https://doi.org/10.1016/B978-0-12-814625-5.00002-9
- 24. Bosnea LA, Moschakis T, Biliaderis CG (2014) Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses. *Food Bioprocess Technol* 7: 2767–2781. https://doi.org/10.1007/s11947-014-1317-7
- 25. Kent RM, Doherty SB (2014) Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality. *Food Res Int* 64: 567–576. https://doi.org/10.1016/j.foodres.2014.07.029
- 26. Yao M, Wu J, Li B, et al. (2017) Microencapsulation of *Lactobacillus salivarius* Li01 for enhanced storage viability and targeted delivery to gut microbiota. *Food Hydrocoll* 72: 228–236. https://doi.org/10.1016/j.foodhyd.2017.05.033
- 27. Lacroix C, Yildirim S (2007) Fermentation technologies for the production of probiotics with high viability and functionality. *Curr Opin Biotechnol* 18: 176–183. https://doi.org/10.1016/j.copbio.2007.02.002
- 28. Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: A randomized, double-blind and controlled trial. *Front Aging Neurosci* 8: 256. https://doi.org/10.3389/fnagi.2016.00256

- 29. Zommiti M, Feuilloley MG, Connil N (2020) Update of probiotics in human world: a nonstop source of benefactions till the end of time. *Microorganisms* 8: 1907. https://doi.org/10.3390/microorganisms8121907
- 30. De Prisco A, Mauriello G (2016) Probiotication of foods: A focus on microencapsulation tool. *Trends Food Sci Technol* 48: 27–39. https://doi.org/10.1016/j.tifs.2015.11.009
- 31. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, et al. (2019) Mechanisms of action of probiotics. *Adv Nutr* 10: S49–S66. https://doi.org/10.1093/advances/nmy063
- 32. Mahasneh SA, Mahasneh AM (2017) Probiotics: A promising role in dental health. *Dent J* 5: 26. https://doi.org/10.3390/dj5040026
- 33. Anandharaj M, Sivasankari B (2014) Isolation of potential probiotic *Lactobacillus oris* HMI68 from mother's milk with cholesterol-reducing property. *J Biosci Bioeng* 118: 153–159. https://doi.org/10.1016/j.jbiosc.2014.01.015
- 34. Puniya M, Kumar MR, Panwar H, et al. (2016) Screening of lactic acid bacteria of different origin for their probiotic potential. *J Food Process Technol* 7: 545.
- 35. Gupta R, Jeevaratnam K, Fatima A (2018) Lactic acid bacteria: probiotic characteristic, selection criteria, and its role in human health (a review). *Int J Emerg Technol Innov Res* 5: Article 3462244.
- 36. Pandya D (2016) Benefits of probiotics in oral cavity—A detailed review. *Int J Adv Life Sci Res* 1–11. https://doi.org/10.21276/aimdr.2016.2.5.DE3
- 37. Chibbar R, Dieleman LA (2019) The gut microbiota in celiac disease and probiotics. *Nutrients* 11: 2375. https://doi.org/10.3390/nu11102375
- 38. Khan AA, Khurshid M, Khan S, et al. (2013) Gut microbiota and probiotics: current status and their role in cancer therapeutics. *Drug Dev Res* 74: 365–375. https://doi.org/10.1002/ddr.21087
- 39. Sen M (2019) Role of probiotics in health and disease—A review. *Int J Adv Life Sci Res* 1–11. https://doi.org/10.31632/ijalsr.2019v02i02.001
- 40. Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. *BMC Immunol* 18: 45. https://doi.org/10.1186/s12865-016-0187-3
- 41. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. *Nutrients* 9: 1021. https://doi.org/10.3390/nu9091021
- 42. Syngai GG, Gopi R, Bharali R, et al. (2016) Probiotics—the versatile functional food ingredients. *J Food Sci Technol* 53: 921–933. https://doi.org/10.1007/s13197-015-2011-0
- 43. Raheem A, Liang L, Zhang G, et al. (2021) Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. *Front Immunol* 12: 616713. https://doi.org/10.3389/fimmu.2021.616713
- 44. Sanders ME, Guarner F, Guerrant R, et al. (2013) An update on the use and investigation of probiotics in health and disease. *Gut* 62: 787–796. https://doi.org/10.1136/gutjnl-2012-302504
- 45. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: An overview of beneficial effects. *Antonie Van Leeuwenhoek* 82: 279–289. https://doi.org/10.1023/A:1020620607611
- 46. Ritchie ML, Romanuk TN (2012) A meta-analysis of probiotic efficacy for gastrointestinal diseases. *PLoS One* 7: e34938. https://doi.org/10.1371/journal.pone.0034938
- 47. Hill C, Guarner F, Reid G, et al. (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat Rev Gastroenterol Hepatol* 11: 506–514. https://doi.org/10.1038/nrgastro.2014.66
- 48. Gueimonde M, Frias R, Salminen S (2006) Assuring the continued safety of lactic acid bacteria used as probiotics. *Biologia* 61: 749–753. https://doi.org/10.2478/s11756-006-0153-2

- 49. Homayouni A, Alizadeh M, Alikhah H, et al. (2012) Functional dairy probiotic food development: Trends, concepts, and products. In: Rigobelo AC, *Probiotics*. InTech. https://doi.org/10.5772/48797
- 50. Franz CMAP, Huch M, Abriouel H, et al. (2011) *Enterococci* as probiotics and their implications in food safety. *Int J Food Microbiol* 151: 125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
- 51. Elshaghabee FMF, Rokana N, Gulhane RD, et al. (2017) Bacillus as potential probiotics: Status, concerns, and future perspectives. *Front Microbiol* 8: 1490. https://doi.org/10.3389/fmicb.2017.01490
- 52. McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. *World J Gastroenterol* 16: 2202–2222. https://doi.org/10.3748/wjg.v16.i18.2202
- 53. Derrien M, Belzer C, de Vos WM (2017) Akkermansia muciniphila and its role in regulating host functions. *Microb Pathog* 106: 171–181. https://doi.org/10.1016/j.micpath.2016.02.005
- 54. Mart ń R, Miquel S, Benevides L, et al. (2017) Functional characterization of novel *Faecalibacterium prausnitzii* strains isolated from healthy volunteers. *Front Microbiol* 8: 1226. https://doi.org/10.3389/fmicb.2017.01226
- 55. Ollech JE, Shen NT, Crawford CV, et al. (2016) Use of probiotics in prevention and treatment of patients with *Clostridium difficile* infection. *Best Pract Res Clin Gastroenterol* 30: 111–118. https://doi.org/10.1016/j.bpg.2016.01.002
- 56. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. *Nutrients* 9: 1021. https://doi.org/10.3390/nu9091021
- 57. Yang J, Kuang H, Li N, et al. (2023) The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases. *Crit Rev Food Sci Nutr* 63: 8768–8780. https://doi.org/10.1080/10408398.2022.2062294
- 58. Tomkinson S, Triscott C, Schenk E, et al. (2023) The potential of probiotics as ingestible adjuvants and immune modulators for antiviral immunity and management of SARS-CoV-2 infection and COVID-19. *Pathogens* 12: 928. https://doi.org/10.3390/pathogens12070928
- 59. Isolauri E, Arvola T, S ütas Y, et al. (2000) Probiotics in the management of atopic eczema. *Clin Exp Allergy* 30: 1604–1610. https://doi.org/10.1046/j.1365-2222.2000.00943.x
- 60. Weston S, Halbert A, Richmond P, et al. (2005) Effects of probiotics on atopic dermatitis: a randomised controlled trial. *Arch Dis Child* 90: 892. https://doi.org/10.1136/adc.2004.060673
- 61. Plummer EL, Chebar Lozinsky A, Tobin JM, et al. (2020) Postnatal probiotics and allergic disease in very preterm infants: Sub-study to the ProPrems randomized trial. *Allergy* 75: 127–136. https://doi.org/10.1111/all.14088
- 62. Yang HJ, Min TK, Lee HW, et al. (2014) Efficacy of probiotic therapy on atopic dermatitis in children: A randomized, double-blind, placebo-controlled trial. *Allergy Asthma Immunol Res* 6: 208–215. https://doi.org/10.4168/aair.2014.6.3.208
- 63. Saxami G, Karapetsas A, Lamprianidou E, et al. (2016) Two potential probiotic *lactobacillus* strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines. *J Funct Foods* 24: 461–471. https://doi.org/10.1016/j.jff.2016.04.036
- 64. Lee NK, Han KJ, Son SH, et al. (2015) Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. *LWT-Food Sci Technol* 64: 1036–1041. https://doi.org/10.1016/j.lwt.2015.07.019
- 65. Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, et al. (2014) Effects of *Lactobacillus plantarum* A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. *Iran J Basic Med Sci* 17: 815–819

- 66. Orlando A, Refolo MG, Messa C, et al. (2012) Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and *Lactobacillus rhamnosus* GG in HGC-27 gastric and DLD-1 colon cell lines. *Nutr Cancer* 64: 1103–1111. https://doi.org/10.1080/01635581.2012.717676
- 67. Ma EL, Choi YJ, Choi J, et al. (2010) The anticancer effect of probiotic *Bacillus polyfermenticus* on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. *Int J Cancer* 127: 780–790. https://doi.org/10.1002/ijc.25011
- 68. Kennedy RJ, Hoper M, Deodhar K, et al. (2000) Probiotic therapy fails to improve gut permeability in a hapten model of colitis. *Scand J Gastroenterol* 35: 1266–1271. https://doi.org/10.1080/003655200453601
- 69. Duranti S, Gaiani F, Mancabelli L, et al. (2016) Elucidating the gut microbiome of ulcerative colitis: *bifidobacteria* as novel microbial biomarkers. *FEMS Microbiol Ecol* 92: fiw191. https://doi.org/10.1093/femsec/fiw191
- 70. Jung MC, Wan H, Hyung Taek C, et al. (2018) Effects of orally-administered *Bifidobacterium animalis* subsp. lactis strain BB12 on dextran sodium sulfate-induced colitis in mice. *J Microbiol Biotechnol* 28: 1800–1805. https://doi.org/10.4014/jmb.1805.05072
- 71. Santos Rocha C, Lakhdari O, Blotti ère HM, et al. (2012) Anti-inflammatory properties of dairy *lactobacilli*. *Inflamm Bowel Dis* 18: 657–666. https://doi.org/10.1002/ibd.21834
- 72. Cuello-Garcia CA, Brożek JL, Fiocchi A, et al. (2015) Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. *J Allergy Clin Immunol* 136: 952–961. https://doi.org/10.1016/j.jaci.2015.04.031
- 73. Ilmonen J, Isolauri E, Poussa T, et al. (2011) Impact of dietary counselling and probiotic intervention on maternal anthropometric measurements during and after pregnancy: A randomized placebo-controlled trial. *Clin Nutr* 30: 156–164. https://doi.org/10.1016/j.clnu.2010.09.009
- 74. Lindsay KL, Kennelly M, Culliton M, et al. (2014) Probiotics in obese pregnancy do not reduce maternal fasting glucose: a double-blind, placebo-controlled, randomized trial. *Am J Clin Nutr* 99: 1432–1439. https://doi.org/10.3945/ajcn.113.079723
- 75. Luoto R, Kalliom äki M, Laitinen K, et al. (2010) The impact of perinatal probiotic intervention on the development of overweight and obesity: Follow-up study from birth to 10 years. *Int J Obes* 34: 1531–1537. https://doi.org/10.1038/ijo.2010.50
- 76. Ipar N, Aydogdu SD, Yildirim GK, et al. (2015) Effects of synbiotic on anthropometry, lipid profile and oxidative stress in obese children. *Benef Microbes* 6: 775–782. https://doi.org/10.3920/BM2015.0011
- 77. Safavi M, Farajian S, Kelishadi R, et al. (2013) The effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial. *Int J Food Sci Nutr* 64: 687–693. https://doi.org/10.3109/09637486.2013.775224
- 78. Andreasen AS, Larsen N, Pedersen-Skovsgaard T, et al. (2010) Effects of *Lactobacillus acidophilus* NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. *Br J Nutr* 104: 1831–1838. https://doi.org/10.1017/S0007114510002874
- 79. Sanchez M, Darimont C, Drapeau V, et al. (2014) Effect of *Lactobacillus rhamnosus* CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. *Br J Nutr* 111: 1507–1519. https://doi.org/10.1017/S0007114513003875
- 80. Kadooka Y, Sato M, Imaizumi K, et al. (2010) Regulation of abdominal adiposity by probiotics (*Lactobacillus gasseri* SBT2055) in adults with obese tendencies in a randomized controlled trial. *Eur J Clin Nutr* 64: 636–643. https://doi.org/10.1038/ejcn.2010.19

- 81. Agerholm-Larsen L, Raben A, Haulrik N, et al. (2000) Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. *Eur J Clin Nutr* 54: 288–297. https://doi.org/10.1038/sj.ejcn.1600937
- 82. Bordoni A, Amaretti A, Leonardi A, et al. (2013) Cholesterol-lowering probiotics: in vitro selection and in vivo testing of bifidobacteria. *Appl Microbiol Biotechnol* 97: 8273–8281. https://doi.org/10.1007/s00253-013-5088-2
- 83. Nagpal R, Kumar A, Kumar M, et al. (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. *FEMS Microbiol Lett* 334: 1–15. https://doi.org/10.1111/j.1574-6968.2012.02593.x
- 84. Papadimitriou K, Zoumpopoulou G, Foligné B, et al. (2015) Discovering probiotic microorganisms: *in vitro*, *in vivo*, genetic and omics approaches. *Front Microbiol* 6: 58. https://doi.org/10.3389/fmicb.2015.00058
- 85. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: A mini-review. *Molecules* 22: 1255. https://doi.org/10.3390/molecules22081255
- 86. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. *Microb Cell Fact* 13: S3. https://doi.org/10.1186/1475-2859-13-S1-S3
- 87. Luo F, Feng S, Sun Q, et al. (2011) Screening for bacteriocin-producing lactic acid bacteria from kurut, a traditional naturally-fermented yak milk from Qinghai–Tibet plateau. *Food Control* 22: 50–53. https://doi.org/10.1016/j.foodcont.2010.05.006
- 88. Seo MK, Park EJ, Ko SY, et al. (2018) Therapeutic effects of kefir grain Lactobacillus-derived extracellular vesicles in mice with 2,4,6-trinitrobenzene sulfonic acid-induced inflammatory bowel disease. *J Dairy Sci* 101: 8662–8671. https://doi.org/10.3168/jds.2018-15014
- 89. Bonczar G, Walczycka M, Domagała J, et al. (2015) Effect of dairy animal species and of the type of starter cultures on the cholesterol content of manufactured fermented milks. *Small Rumin Res* 136: 23–30. https://doi.org/10.1016/j.smallrumres.2015.12.033
- 90. Akabanda F, Owusu-Kwarteng J, Tano-Debrah K, et al. (2013) Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. *Food Microbiol* 34: 277–283. https://doi.org/10.1016/j.fm.2012.09.025
- 91. Behera SS, Ray RC, Zdolec N (2018) Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. *Biomed Res Int* 2018: 9361614. https://doi.org/10.1155/2018/9361614
- 92. Boge T, Rémigy M, Vaudaine S, et al. (2009) A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. *Vaccine* 27: 5677–5684. https://doi.org/10.1016/j.vaccine.2009.06.094
- 93. Olivares M, D áz-Ropero MP, Sierra S, et al. (2007) Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. *Nutrition* 23: 254–260. https://doi.org/10.1016/j.nut.2007.01.004
- 94. Rather IA, Choi K-H, Bajpai VK, et al. (2015) Antiviral mode of action of Lactobacillus plantarum YML009 on Influenza virus H1N1. *Bangladesh J Pharmacol* 10: 475–482. https://doi.org/10.3329/bjp.v10i2.23068
- 95. Shi HY, Zhu X, Li WL, et al. (2021) Modulation of gut microbiota protects against viral respiratory tract infections: a systematic review of animal and clinical studies. *Eur J Nutr* 60: 4151–4174. https://doi.org/10.1007/s00394-021-02519-x

- 96. Chai W, Burwinkel M, Wang Z, et al. (2013) Antiviral effects of a probiotic *Enterococcus faecium* strain against transmissible gastroenteritis coronavirus. *Arch Virol* 158: 799–807. https://doi.org/10.1007/s00705-012-1543-0
- 97. Khalesi S, Sun J, Buys N, et al. (2014) Effect of probiotics on blood pressure. *Hypertension* 64: 897–903. https://doi.org/10.1161/HYPERTENSIONAHA.114.03469
- 98. Raksha Rao K, Vipin AV, Hariprasad P, et al. (2017) Biological detoxification of aflatoxin B1 by Bacillus licheniformis CFR1. *Food Control* 71: 234–241. https://doi.org/10.1016/j.foodcont.2016.06.040
- 99. Yu H, Liu L, Chang Z, et al. (2013) Genome sequence of the bacterium Bifidobacterium longum strain CMCC P0001, a probiotic strain used for treating gastrointestinal disease. *Genome Announc* 1: e00716–13. https://doi.org/10.1128/genomeA.00716-13
- 100. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. *J Clin Invest* 125: 926–938. https://doi.org/10.1172/JCI76304
- 101. Cort és-Zavaleta O, López-Malo A, Hern ández-Mendoza A, et al. (2014) Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. *Int J Food Microbiol* 173: 30–35. https://doi.org/10.1016/j.ijfoodmicro.2013.12.016
- 102. Shokryazdan P, Faseleh Jahromi M, Liang JB, et al. (2017) Probiotics: From isolation to application. *J Am Coll Nutr* 36: 666–676. https://doi.org/10.1080/07315724.2017.1337529
- 103. Le B, Yang SH (2018) Isolation of *Weissella* strains as potent probiotics to improve antioxidant activity of salted squid by fermentation. *J Appl Biol Chem* 61: 93–100. https://doi.org/10.3839/jabc.2018.014
- 104. Pasinetti GM, Singh R, Westfall S, et al. (2018) The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. *J Alzheimers Dis* 63: 409–421. https://doi.org/10.3233/JAD-171151
- 105. Van VTH, Liu ZS, Hsieh YJ, et al. (2023) Therapeutic effects of orally administration of viable and inactivated probiotic strains against murine urinary tract infection. *J Food Drug Anal* 31: 583–598. https://doi.org/10.38212/2224-6614.3474
- 106. Yang S, Reid G, Challis JRG, et al. (2020) Effect of oral probiotic *Lactobacillus rhamnosus* GR-1 and *Lactobacillus reuteri* RC-14 on the vaginal microbiota, cytokines and chemokines in pregnant women. *Nutrients* 12: 2068. https://doi.org/10.3390/nu12020368
- 107. Dietrich CG, Kottmann T, Alavi M (2014) Commercially available probiotic drinks containing *Lactobacillus casei* DN-114001 reduce antibiotic-associated diarrhea. *World J Gastroenterol* 20: 15837–15844. https://doi.org/10.3748/wjg.v20.i42.15837
- 108. Hilty M, Burke C, Pedro H, et al. (2010) Disordered microbial communities in asthmatic airways. *PLoS One* 5: e8578. https://doi.org/10.1371/journal.pone.0008578
- 109. Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, et al. (2016) *Lactobacillus casei* exerts antiproliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. *PLoS One* 11: e0147960. https://doi.org/10.1371/journal.pone.0147960
- 110. Ogawa A, Kobayashi T, Sakai F, et al. (2015) *Lactobacillus gasseri* SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects. *Lipids Health Dis* 14: 20. https://doi.org/10.1186/s12944-015-0019-0
- 111. Rong J, Zheng H, Liu M, et al. (2015) Probiotic and anti-inflammatory attributes of an isolate *Lactobacillus helveticus* NS8 from Mongolian fermented koumiss. *BMC Microbiol* 15: 196. https://doi.org/10.1186/s12866-015-0525-2

- 112. Bertuccini L, Russo R, Iosi F, et al. (2017) Effects of *Lactobacillus rhamnosus* and *Lactobacillus acidophilus* on bacterial vaginal pathogens. *Int J Immunopathol Pharmacol* 30: 163–167. https://doi.org/10.1177/0394632017697987
- 113. Thakur K, Tomar S (2015) Exploring indigenous *Lactobacillus* species from diverse niches for riboflavin production. *J Young Pharm* 7: 122–127. https://doi.org/10.5530/jyp.2015.2.11
- 114. Kim B, Lee B, Hwang C, et al. (2015) Screening of conjugated linoleic acid (CLA) producing *Lactobacillus plantarum* and production of CLA on soy-powder milk by these strains. *Korean J Microbiol* 51: 231–240. https://doi.org/10.7845/kjm.2015.5045
- 115. Roškar I, Švigelj K, Štempelj M, et al. (2017) Effects of a probiotic product containing *Bifidobacterium animalis* subsp. *animalis* IM386 and *Lactobacillus plantarum* MP2026 in lactose intolerant individuals: randomized, placebo-controlled clinical trial. *J Funct Foods* 35: 1–8. https://doi.org/10.1016/j.jff.2017.05.020
- 116. Dash DK, Dash M, Mohanty MD, et al. (2017) Efficacy of probiotic *Saccharomyces boulardii* as an adjuvant therapy in acute childhood diarrhoea. *J Nepal Paediatr Soc* 36: 250–255. https://doi.org/10.3126/jnps.v36i3.15539
- 117. Everard A, Belzer C, Geurts L, et al. (2013) Cross-talk between *Akkermansia muciniphila* and intestinal epithelium controls diet-induced obesity. *Proc Natl Acad Sci USA* 110: 9066–9071. https://doi.org/10.1073/pnas.1219451110
- 118. Plovier H, Everard A, Druart C, et al. (2017) A purified membrane protein from *Akkermansia muciniphila* or the pasteurized bacterium improves metabolism in obese and diabetic mice. *Nat Med* 23: 107–113. https://doi.org/10.1038/nm.4236
- 119. Sajedinejad N, Nazemi Salman B, Darvish S (2018) Comparison of the antibacterial effects of Nanosil, chlorhexidine and probiotic mouthwashes on periodontal pathogens. *J Dent Sch* 36: 99–103. https://doi.org/10.22037/jds.v36i3.24542
- 120. Lopes EG, Moreira DA, Gullon P, et al. (2017) Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays. *J Appl Microbiol* 122: 450–461. https://doi.org/10.1111/jam.13349
- 121. Rossoni RD, Fuchs BB, de Barros PP, et al. (2017) *Lactobacillus paracasei* modulates the immune system of *Galleria mellonella* and protects against *Candida albicans* infection. *PLoS One* 12: e0173332. https://doi.org/10.1371/journal.pone.0173332
- 122. Goderska K, Agudo Pena S, Alarcon T (2018) *Helicobacter pylori* treatment: antibiotics or probiotics. *Appl Microbiol Biotechnol* 102: 1–7. https://doi.org/10.1007/s00253-017-8535-7
- 123. Moraes MCC, Costa PJC, Segundo ASG, et al. (2019) Assessment of probiotic bacterial strains effect on *S. aureus* biofilm on titanium discs with treated surfaces. *Rev Odontol UNESP* 48: e20190096. https://doi.org/10.1590/1807-2577.09619
- 124. Fedorak RN, Madsen KL (2004) Probiotics and prebiotics in gastrointestinal disorders. *Curr Opin Gastroenterol* 20: 146–155. https://doi.org/10.1097/00001574-200403000-00017
- 125. Rioux KP, Fedorak RN (2006) Probiotics in the treatment of inflammatory bowel disease. *J Clin Gastroenterol* 40: 260–263
- 126. Mazziotta C, Tognon M, Martini F, et al. (2023) Probiotics mechanism of action on immune cells and beneficial effects on human health. *Cells* 12: 184. https://doi.org/10.3390/cells12010184
- 127. Latif A, Shehzad A, Niazi S, et al. (2023) Probiotics: mechanism of action, health benefits and their application in food industries. *Front Microbiol* 14: 1216674. https://doi.org/10.3389/fmicb.2023.1216674
- 128. Chandrasekaran P, Weiskirchen S, Weiskirchen R (2024) Effects of probiotics on gut microbiota: an overview. *Int J Mol Sci* 25: 6022. https://doi.org/10.3390/ijms25116022

- 129. Lopes EG, Gull on P, Cardelle-Cobas A, et al. (2016) Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays. *J Appl Microbiol* 122: 450–461. https://doi.org/10.1111/jam.13349
- 130. Tang C, Lu Z (2019) Health promoting activities of probiotics. *J Food Biochem* 43: e12944. https://doi.org/10.1111/jfbc.12944
- 131. Desbois AP (2012) Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. *Recent Pat Antiinfect Drug Discov* 7: 111–122. https://doi.org/10.2174/157489112801619728
- 132. Cazorla SI, Perdig ón GDV, Weill R, et al. (2018) Oral administration of probiotics increases Paneth cells and intestinal antimicrobial activity. *Front Microbiol* 9: 145784. https://doi.org/10.3389/fmicb.2018.00736
- 133. Figueroa-Gonz alez I, Cruz-Guerrero A, Quijano G (2011) The benefits of probiotics on human health. *J Microbial Biochem Technol* S1: 003. https://doi.org/10.4172/1948-5948.S1-003
- 134. Bright Singh IS, Ajitha S, Sridhar N, et al. (2004) Probiotic effects of lactic acid bacteria against *Vibrio alginolyticus* in *Penaeus (Fenneropenaeus) indicus*. http://eprints.cmfri.org.in/5745/
- 135. Sherman PM, Johnson-Henry KC, Yeung HP, et al. (2005) Probiotics reduce enterohemorrhagic *Escherichia coli* O157:H7- and enteropathogenic *E. coli* O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. *Infect Immun* 73: 5183–5188. https://doi.org/10.1128/IAI.73.8.5183-5188.2005
- 136. Frick JS, Fink K, Kahl F, et al. (2007) Identification of commensal bacterial strains that modulate *Yersinia enterocolitica* and dextran sodium sulfate-induced inflammatory responses: implications for the development of probiotics. *Infect Immun* 75: 3490–3497. https://doi.org/10.1128/IAI.00119-07
- 137. Jain S, Yadav H, Sinha PR (2009) Probiotic dahi containing *Lactobacillus casei* protects against *Salmonella enteritidis* infection and modulates immune response in mice. *J Med Food* 12: 576–583. https://doi.org/10.1089/jmf.2008.0246
- 138. Singh V, Singh K, Amdekar S, et al. (2009) Innate and specific gut-associated immunity and microbial interference. *FEMS Immunol Med Microbiol* 55: 6–12. https://doi.org/10.1111/j.1574-695X.2008.00497.x
- 139. Tejero-Sari ñena S, Barlow J, Costabile A, et al. (2013) Antipathogenic activity of probiotics against *Salmonella Typhimurium* and *Clostridium difficile* in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains?. *Anaerobe* 24: 60–65. https://doi.org/10.1016/j.anaerobe.2013.09.011
- 140. Islam SU (2016) Clinical uses of probiotics. *Medicine* 95: e2658. https://doi.org/10.1097/MD.0000000000002658
- 141. de Souza Rodrigues JZ, Passos MR, de Mac êdo Neres NS, et al. (2020) Antimicrobial activity of *Lactobacillus fermentum* TcUESC01 against *Streptococcus mutans* UA159. *Microb Pathog* 142: 104063. https://doi.org/10.1016/j.micpath.2020.104063
- 142. Monteiro CR, do Carmo MS, Melo BO, et al. (2019) In vitro antimicrobial activity and probiotic potential of *Bifidobacterium* and *Lactobacillus* against species of *Clostridium*. *Nutrients* 11: 448. https://doi.org/10.3390/nu11020448
- 143. Gudina EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by *Lactobacillus paracasei*. *Colloids Surf B Biointerfaces* 76: 298–304. https://doi.org/10.1016/j.colsurfb.2009.11.008

- 144. Marianelli C, Cifani N, Pasquali P (2010) Evaluation of antimicrobial activity of probiotic bacteria against *Salmonella enterica* subsp. *enterica* serovar Typhimurium 1344 under different environmental conditions. *Res Microbiol* 161: 673–680. https://doi.org/10.1016/j.resmic.2010.06.007
- 145. Gaspar C, Donders GG, Palmeira-de-Oliveira R, et al. (2018) Bacteriocin production of the probiotic *Lactobacillus acidophilus* KS400. *AMB Express* 8: 67. https://doi.org/10.1186/s13568-018-0679-z
- 146. Coman MM, Verdenelli MC, Cecchini C, et al. (2014) In vitro evaluation of antimicrobial activity of *Lactobacillus rhamnosus* IMC 501®, *Lactobacillus paracasei* IMC 502® and SYNBIO® against pathogens. *J Appl Microbiol* 117: 518–527. https://doi.org/10.1111/jam.12544
- 147. Ghazvini RD, Kouhsari E, Zibafar E, et al. (2016) Antifungal activity and aflatoxin degradation of *Bifidobacterium bifidum* and *Lactobacillus fermentum* against toxigenic *Aspergillus parasiticus*. *Open Microbiol J* 10: 197–203. https://doi.org/10.2174/1874285801610010197
- 148. Voidarou C, Alexopoulos A, Tsinas A, et al. (2020) Effectiveness of bacteriocin-producing lactic acid bacteria and *Bifidobacterium* isolated from honeycombs against spoilage microorganisms and pathogens from fruits and vegetables. *Appl Sci* 10: 7309. https://doi.org/10.3390/app10207309
- 149. Song HY, Zhou L, Liu DY, et al. (2018) What roles do probiotics play in the eradication of *Helicobacter pylori*? Current knowledge and ongoing research. *Gastroenterol Res Pract* 2018: 9379480. https://doi.org/10.1155/2018/9379480
- 150. Francavilla R, Lionetti E, Castellaneta SP, et al. (2008) Inhibition of *Helicobacter pylori* infection in humans by *Lactobacillus reuteri* ATCC 55730 and effect on eradication therapy: a pilot study. *Helicobacter* 13: 127–134. https://doi.org/10.1111/j.1523-5378.2008.00593.x
- 151. Anatriello E, Cunha M, Nogueira J, et al. (2019) Oral feeding of *Lactobacillus bulgaricus* N45.10 inhibits lung inflammation and airway remodeling in murine allergic asthma. *Cell Immunol* 341: 103928. https://doi.org/10.1016/j.cellimm.2019.103928
- 152. Rodrigues CF, Rodrigues ME, Henriques MC (2019) Promising alternative therapeutics for oral candidiasis. *Curr Med Chem* 26: 2515–2528. https://doi.org/10.2174/0929867325666180601102333
- 153. Wang X, Zhang P, Zhang X (2021) Probiotics regulate gut microbiota: an effective method to improve immunity. *Molecules* 26: 6076. https://doi.org/10.3390/molecules26196076
- 154. Pagnini C, Saeed R, Bamias G, et al. (2009) Probiotics promote gut health through stimulation of epithelial innate immunity. *Proc Natl Acad Sci USA* 107: 454–459. https://doi.org/10.1073/pnas.0910307107
- 155. Karauzum H, Datta SK (2016) Adaptive immunity against *Staphylococcus aureus*. In: *Staphylococcus aureus*: *Microbiology*, *Pathology*, *Immunology*, *Therapy and Prophylaxis*. Springer: Cham, 419–439. https://doi.org/10.1007/82_2016_1
- 156. Wang Y, Wu Y, Wang B, et al. (2019) *Bacillus amyloliquefaciens* SC06 protects mice against high-fat diet-induced obesity and liver injury via regulating host metabolism and gut microbiota. *Front Microbiol* 10: 1161. https://doi.org/10.3389/fmicb.2019.01161
- 157. Tsai YT, Cheng PC, Pan TM (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. *Appl Microbiol Biotechnol* 96: 853–862. https://doi.org/10.1007/s00253-012-4407-3
- 158. Cortes-Perez NG, de Moreno de LeBlanc A, Gomez-Gutierrez JG, et al. (2021) Probiotics and trained immunity. *Biomolecules* 11: 1402. https://doi.org/10.3390/biom11101402

- 159. Belkacem N, Serafini N, Wheeler R, et al. (2017) *Lactobacillus paracasei* feeding improves immune control of influenza infection in mice. *PLoS One* 12: e0184976. https://doi.org/10.1371/journal.pone.0184976
- 160. Li S, Zhao Y, Zhang L, et al. (2012) Antioxidant activity of *Lactobacillus plantarum* strains isolated from traditional Chinese fermented foods. *Food Chem* 135: 1914–1919. https://doi.org/10.1016/j.foodchem.2012.06.048
- 161. Chen Q, Tong C, Ma S, et al. (2017) Involvement of microRNAs in probiotics-induced reduction of the cecal inflammation by *Salmonella typhimurium*. *Front Immunol* 8: 704. https://doi.org/10.3389/fimmu.2017.00704
- 162. Hell M, Bernhofer C, Stalzer P, et al. (2013) Probiotics in *Clostridium difficile* infection: reviewing the need for a multistrain probiotic. *Benef Microbes* 4: 39–51. https://doi.org/10.3920/BM2012.0049
- 163. Ollech JE, Shen NT, Crawford CV, et al. (2016) Use of probiotics in prevention and treatment of patients with *Clostridium difficile* infection. *Best Pract Res Clin Gastroenterol* 30: 111–118. https://doi.org/10.1016/j.bpg.2016.01.002
- 164. Saitoh T, Yamamoto M, Miyagishi M, et al. (2005) A20 is a negative regulator of IFN regulatory factor 3 signaling. *J Immunol* 174: 1507–1512. https://doi.org/10.4049/jimmunol.174.3.1507
- 165. Seino Y (2010) The committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus: report of the committee on the classification and diagnostic criteria of diabetes mellitus. *J Diabetes Investig* 1: 212–228. https://doi.org/10.1111/j.2040-1124.2010.00074.x
- 166. Wang L, Shang Q, Guo W, et al. (2020) Evaluation of the hypoglycemic effect of probiotics via directly consuming glucose in intestines of STZ-induced diabetic mice and glucose water-induced diabetic mice. *J Funct Foods* 64: 103614. https://doi.org/10.1016/j.jff.2019.103614
- 167. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, et al. (2011) Effect of probiotic yogurt containing *Lactobacillus acidophilus* and *Bifidobacterium lactis* on lipid profile in individuals with type 2 diabetes mellitus. *J Dairy Sci* 94: 3288–3294. https://doi.org/10.3168/jds.2010-4128
- 168. Zhang Y, Li L, Guo C, et al. (2016) Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: a meta-analysis. *BMC Gastroenterol* 16: 1–11. https://doi.org/10.1186/s12876-016-0470-z
- 169. Babadi M, Khorshidi A, Aghadavood E, et al. (2019) The effects of probiotic supplementation on genetic and metabolic profiles in patients with gestational diabetes mellitus: a randomized, double-blind, placebo-controlled trial. *Probiotics Antimicrob Proteins* 11: 1227–1235. https://doi.org/10.1007/s12602-018-9490-z
- 170. Zhang Z, Liang X, Lv Y, et al. (2020) Evaluation of probiotics for improving and regulation metabolism relevant to type 2 diabetes in vitro. *J Funct Foods* 64: 103664. https://doi.org/10.1016/j.jff.2019.103664
- 171. Aljutaily T, Huarte E, Martinez-Monteagudo S, et al. (2020) Probiotic-enriched milk and dairy products increase gut microbiota diversity: a comparative study. *Nutr Res* 82: 25–33. https://doi.org/10.1016/j.nutres.2020.06.017
- 172. Nobili V, Mosca A, Alterio T, et al. (2019) Probiotics and child gastrointestinal health. In: Guandalini S, Indrio F, editors. *Advances in Microbiology, Infectious Diseases and Public Health*. Springer, 1–14.
- 173. Rad AH, Abbasalizadeh S, Vazifekhah S, et al. (2017) The future of diabetes management by healthy probiotic microorganisms. *Curr Diabetes Rev* 13: 582–589. https://doi.org/10.2174/1573399812666161014112515

- 174. Kim YG, Baltabekova AZ, Zhiyenbay EE, et al. (2017) Recombinant Vaccinia virus-coded interferon inhibitor B18R: expression, refolding and a use in a mammalian expression system with a RNA-vector. *PLoS One* 12: e0189308. https://doi.org/10.1371/journal.pone.0189308
- 175. Shao T, Hsu R, Rafizadeh DL, et al. (2023) The gut ecosystem and immune tolerance. *J Autoimmun* 141: 103114. https://doi.org/10.1016/j.jaut.2023.10311
- 176. Kesika P, Sivamaruthi BS, Chaiyasut C (2019) Do probiotics improve the health status of individuals with diabetes mellitus? A review on outcomes of clinical trials. *Biomed Res Int* 2019: 1531567. https://doi.org/10.1155/2019/1531567
- 177. Tonucci LB, dos Santos KMO, Licursi de Oliveira L, et al. (2017) Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study. *Clin Nutr* 36: 85–92. https://doi.org/10.1016/j.clnu.2015.11.011
- 178. Jiang Y, Yang J, Wei M, et al. (2025) Probiotics alleviate painful diabetic neuropathy by modulating the microbiota—gut—nerve axis in rats. *J Neuroinflamm* 22: 30. https://doi.org/10.1186/s12974-025-03352-3
- 179. Kocsis T, Solym ár M, Németh D, et al. (2020) Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. *Sci Rep* 10: 11787. https://doi.org/10.1038/s41598-020-68440-1
- 180. Liang T, Wu L, Xi Y, et al. (2020) Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: an update of meta-analysis. *Crit Rev Food Sci Nutr* 61: 1670–1688. https://doi.org/10.1080/10408398.2020.1764488
- 181. Paquette S, Appanna VD, Tharmalingam S, et al. (2023) The Effects of Oral Probiotics on Type 2 Diabetes Mellitus (T2DM): A Clinical Trial Systematic Literature Review. *Nutrients* 15: 4690. https://doi.org/10.3390/nu15214690
- 182. Shirkhan F, Safaei F, Mirdamadi S, et al. (2024) The Role of Probiotics in Skin Care: Advances, Challenges, and Future Needs. *Probiotics Antimicrob Proteins* 16: 2132–2149. https://doi.org/10.1007/s12602-024-10319-y
- 183. Freitas ADS, Barroso FAL, Jan G, et al. (2024) Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. *Probiotics Antimicrob Proteins* 16: 1687–1723. https://doi.org/10.1007/s12602-024-10247-x
- 184. Cai J, Shao L, Zhao S, et al. (2022) The effects of three weight management methods on body composition and serum lipids of overweight and obese people. *Front Nutr* 9: 1073576. https://doi.org/10.3389/fnut.2022.1073576
- 185. Park SJ, Sharma A, Lee HJ (2023) Postbiotics against Obesity: Perception and Overview Based on Pre-Clinical and Clinical Studies. *Int J Mol Sci* 24: 6414. https://doi.org/10.3390/ijms24076414
- 186. Uusitupa HM, Rasinkangas P, Lehtinen MJ, et al. (2020) *Bifidobacterium animalis* subsp. *lactis* 420 for metabolic health: Review of the research. *Nutrients* 12: 892. https://doi.org/10.3390/nu12040892
- 187. Yan S, Li M, Cui W, et al. (2019) Effects of probiotic supplementation on the regulation of blood lipid levels in overweight or obese subjects: a meta-analysis. *Food Funct* 10: 1747–1759. https://doi.org/10.1039/c8fo02163e
- 188. Cai H, Meng K, Yu D, et al. (2022) *Lactobacillus plantarum* FRT4 alleviated obesity by modulating gut microbiota and liver metabolome in high-fat diet-induced obese mice. *Food Nutr Res* 66: 7640. https://doi.org/10.29219/fnr.v66.7974
- 189. Hruby A, Hu FB (2016) Saturated fat and heart disease: The latest evidence. *Lipid Technol* 28: 7–12. https://doi.org/10.1002/lite.201600001

- 190. Mitev K, Taleski V (2019) Association between the gut microbiota and obesity. *Open Access Maced J Med Sci* 7: 2050. https://doi.org/10.3889/oamjms.2019.586
- 191. Crovesy L, Masterson D, Rosado EL (2020) Profile of the gut microbiota of adults with obesity: a systematic review. *Eur J Clin Nutr* 74: 1251–1262. https://doi.org/10.1038/s41430-020-0607-6
- 192. Park DY, Ahn YT, Park SH, et al. (2013) Supplementation of *Lactobacillus curvatus* KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. *PLoS One* 8: e59470. https://doi.org/10.1371/journal.pone.0059470
- 193. Shiu WC, Liu ZS, Chen BY, et al. (2024) Oral administration of recombinant lactoferrinexpressing probiotics ameliorates diet-induced lipid accumulation and inflammation in nonalcoholic fatty liver disease in mice. *Foods* 13: 1079. https://doi.org/10.3390/foods13071079
- 194. Wang ZB, Xin SS, Ding LN, et al. (2019) The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: a systematic review and meta-analysis. *Evid Based Complement Alternat Med* 2019: 3862971. https://doi.org/10.1155/2019/3862971
- 195. Sanders ME, Benson A, Lebeer S, et al. (2018) Shared mechanisms among probiotic taxa: implications for general probiotic claims. *Curr Opin Biotechnol* 49: 207–216. https://doi.org/10.1016/j.copbio.2017.09.007
- 196. Kumar M, Nagpal R, Kumar R, et al. (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. *Exp Diabetes Res* 2012: 902917. https://doi.org/10.1155/2012/902917
- 197. Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. *Eur J Pharm Sci* 15: 1–9. https://doi.org/10.1016/S0928-0987(01)00209-3
- 198. Yan F, Polk DB (2011) Probiotics and immune health. *Curr Opin Gastroenterol* 27: 496–501. https://doi.org/10.1097/mog.0b013e32834baa4d
- 199. Mengheri E (2008) Health, probiotics, and inflammation. *J Clin Gastroenterol* 42 Suppl 3 Pt 2: S177–S178. https://doi.org/10.1097/MCG.0b013e31817eedc4
- 200. Lehtoranta L, Pitk äranta A, Korpela R (2014) Probiotics in respiratory virus infections. *Eur J Clin Microbiol Infect Dis* 33: 1289–1302. https://doi.org/10.1007/s10096-014-2086-y
- 201. Amenyogbe E, Huang JS, Ayisi CL, et al. (2024) Impact of probiotics, prebiotics, and synbiotics on digestive enzymes, oxidative stress, and antioxidant defense in fish farming: current insights and future perspectives. *Front Mar Sci* 11: 1368436. https://doi.org/10.3389/fmars.2024.1368436
- 202. Michail S (2009) The role of probiotics in allergic diseases. *Allergy Asthma Clin Immunol* 5: 5. https://doi.org/10.1186/1710-1492-5-5
- 203. Pawankar R, Canonica GW, Holgate ST, et al. (2011) World Allergy Organisation (WAO) white book on allergy. *World Allergy Organisation*. https://doi.org/10.3388/jspaci.25.341
- 204. Spacova I, Ceuppens JL, Seys SF, et al. (2018) Probiotics against airway allergy: host factors to consider. *Dis Model Mech* 11: dmm034314. https://doi.org/10.1242/dmm.034314
- 205. Akdis CA, Agache I (2014) The underlying mechanisms in allergy. https://www.zora.uzh.ch/id/eprint/140924/
- 206. Nowak-Węgrzyn A, Chatchatee P (2017) Mechanisms of tolerance induction. *Ann Nutr Metab* 70: 7–24. https://doi.org/10.1159/000457915
- 207. Song S, Lee SJ, Park DJ, et al. (2016) The anti-allergic activity of *Lactobacillus plantarum* L67 and its application to yogurt. *J Dairy Sci* 99: 9372–9382. https://doi.org/10.3168/jds.2016-11809
- 208. Ezendam J, De Klerk A, Gremmer ER, et al. (2008) Effects of *Bifidobacterium animalis* administered during lactation on allergic and autoimmune responses in rodents. *Clin Exp Immunol* 154: 424–431. https://doi.org/10.1111/j.1365-2249.2008.03788.x

- 209. Eslami M, Bahar A, Keikha M, et al. (2020) Probiotics function and modulation of the immune system in allergic diseases. *Allergol Immunopathol* 48: 771–788. https://doi.org/10.1016/j.aller.2020.04.005
- 210. Enomoto T, Sowa M, Nishimori K, et al. (2014) Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. *Allergol Int* 63: 575–585. https://doi.org/10.2332/allergolint.13-OA-0683
- 211. Osborn DA, Sinn JK (2007) Probiotics in infants for prevention of allergic disease and food hypersensitivity. *Cochrane Database Syst Rev* 4: CD006475. https://doi.org/10.1002/14651858.CD006475.pub2
- 212. Zhang GQ, Hu HJ, Liu CY, et al. (2016) Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. *Medicine* (*Baltimore*) 95: e2562. https://doi.org/10.1097/MD.00000000000002562
- 213. Zuccotti G, Meneghin F, Aceti A, et al. (2015) Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. *Allergy* 70: 1356–1371. https://doi.org/10.1111/all.12700
- 214. Rahman MS, Choi YH, Choi YS, et al. (2018) A novel antioxidant peptide, purified from *Bacillus amyloliquefaciens*, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression. *Food Chem* 239: 502–510. https://doi.org/10.1016/j.foodchem.2017.06.106
- 215. Wang Y, Wu Y, Wang Y, et al. (2017) Antioxidant properties of probiotic bacteria. *Nutrients* 9: 521. https://doi.org/10.3390/nu9050521
- 216. Suo H, Liu S, Li J, et al. (2018) *Lactobacillus paracasei* ssp. *paracasei* YBJ01 reduced D-galactose–induced oxidation in male Kuming mice. *J Dairy Sci* 101: 10664–10674. https://doi.org/10.3168/jds.2018-14758
- 217. Gaisawat MB, Iskandar MM, MacPherson CW, et al. (2019) Probiotic supplementation is associated with increased antioxidant capacity and copper chelation in *C. difficile*-infected fecal water. *Nutrients* 11: 2007. https://doi.org/10.3390/nu11092007
- 218. Cho SJ, Kim JS, Kim JM, et al. (2008) Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. *Int J Cancer* 123: 951–957. https://doi.org/10.1002/ijc.23593
- 219. Li B, Liang L, Deng H, et al. (2020) Efficacy and safety of probiotics in irritable bowel syndrome: A systematic review and meta-analysis. *Front Pharmacol* 11: 332. https://doi.org/10.3389/fphar.2020.00332
- 220. Gersemann M, Wehkamp J, Stange EF (2012) Innate immune dysfunction in inflammatory bowel disease. *J Intern Med* 271: 421–428. https://doi.org/10.1111/j.1365-2796.2012.02515.x
- 221. Cain AM, Karpa KD (2011) Clinical utility of probiotics in inflammatory bowel disease. *Altern Ther Health Med* 17: 72–79. https://doi.org/10.XXXX/ATHM.17.1.72
- 222. Bjarnason I, Sission G, Hayee BH (2019) A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease. *Inflammopharmacology* 27: 465–473. https://doi.org/10.1007/s10787-019-00595-4
- 223. Bakirtzi K, Law IKM, Xue X, et al. (2016) Neurotensin promotes the development of colitis and intestinal angiogenesis via Hif-1α–miR-210 signaling. *J Immunol* 196: 4311–4321. https://doi.org/10.4049/jimmunol.1501443
- 224. Chen X, Yang G, Song JH, et al. (2013) Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. *PLoS One* 8: e64227. https://doi.org/10.1371/journal.pone.0064227

- 225. Yao P, Tan F, Gao H, et al. (2017) Effects of probiotics on Toll like receptor expression in ulcerative colitis rats induced by 2,4,6-trinitro benzene sulfonic acid. *Mol Med Rep* 15: 1973–1980. https://doi.org/10.3892/mmr.2017.6226
- 226. Mykhal'chyshyn HP, Bodnar PM, Kobyliak NM (2013) Effect of probiotics on proinflammatory cytokines level in patients with type 2 diabetes and nonalcoholic fatty liver disease. *Likars'ka sprava* 2: 56–62.
- 227. Santos Rocha C, Lakhdari O, Blotti ère HM, et al. (2012) Anti-inflammatory properties of dairy *lactobacilli*. *Inflamm Bowel Dis* 18: 657–666. https://doi.org/10.1002/ibd.21834
- 228. Kumar CS, Reddy KK, Boobalan G, et al. (2017) Immunomodulatory effects of *Bifidobacterium bifidum* 231 on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. *Res Vet Sci* 110: 40–46. https://doi.org/10.1016/j.rvsc.2016.10.010
- 229. Imaoka A, Shima T, Kato K, et al. (2008) Anti-inflammatory activity of probiotic *Bifidobacterium*: enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. *World J Gastroenterol* 14: 2511. https://doi.org/10.3748/wjg.14.2511
- 230. Alipour B, Homayouni-Rad A, Vaghef-Mehrabany E, et al. (2014) Effects of *Lactobacillus casei* supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: a randomized double-blind clinical trial. *Int J Rheum Dis* 17: 519–527. https://doi.org/10.1111/1756-185X.12333
- 231. Sichetti M, De Marco S, Pagiotti R, et al. (2018) Anti-inflammatory effect of multistrain probiotic formulation (*L. rhamnosus*, *B. lactis*, and *B. longum*). *Nutr* 53: 95–102. https://doi.org/10.1016/j.nut.2018.02.005
- 232. Kao AP, Wang KH, Long CY, et al. (2011) Interleukin-1β induces cyclooxygenase-2 expression and promotes the invasive ability of human mesenchymal stem cells derived from ovarian endometrioma. *Fertil Steril* 96: 678–684. https://doi.org/10.1016/j.fertnstert.2011.06.041
- 233. Qamar A, Aboudola S, Warny M, et al. (2001) *Saccharomyces boulardii* stimulates intestinal immunoglobulin A immune response to *Clostridium difficile* toxin A in mice. *Infect Immun* 69: 2762–2765. https://doi.org/10.1128/IAI.69.4.2762-2765.2001
- 234. Matsumoto S, Hara T, Hori T, et al. (2005) Probiotic *Lactobacillus*-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. *Clin Exp Immunol* 140: 417–426. https://doi.org/10.1111/j.1365-2249.2005.02790.x
- 235. Sungur T, Aslim B, Karaaslan C, et al. (2017) Impact of Exopolysaccharides (EPSs) of *Lactobacillus gasseri* strains isolated from human vagina on cervical tumor cells (HeLa). *Anaerobe* 47: 137–144. https://doi.org/10.1016/j.anaerobe.2017.05.013
- 236. Yokota Y, Shikano A, Kuda T, et al. (2018) *Lactobacillus plantarum* AN1 cells increase caecal *L. reuteri* in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. *Int Immunopharmacol* 56: 119–127. https://doi.org/10.1016/j.intimp.2018.01.020
- 237. Yousefi B, Eslami M, Ghasemian A, et al. (2019) Probiotics importance and their immunomodulatory properties. *J Cell Physiol* 234: 8008–8018. https://doi.org/10.1002/jcp.27559
- 238. So SS, Wan ML, El-Nezami H (2017) Probiotics-mediated suppression of cancer. *Curr Opin Oncol* 29: 62–72. https://doi.org/10.1097/CCO.0000000000000342
- 239. Kahouli I, Malhotra M, Alaoui-Jamali M, et al. (2015) In-vitro characterization of the anti-cancer activity of the probiotic bacterium *Lactobacillus fermentum* NCIMB 5221 and potential against colorectal cancer. *J Cancer Sci Ther* 7: 224–235.

- 240. Ranjbar F, Akbarzadeh F, Homayouni A (2016) Probiotics usage in heart disease and psychiatry. *Elsevier Inc* 61: 807–811. https://doi.org/10.1016/B978-0-12-802189-7.00061-7
- 241. Malik SS, Saeed A, Baig M, et al. (2018) Anticarcinogenicity of microbiota and probiotics in breast cancer. *Int J Food Prop* 21: 655–666. https://doi.org/10.1080/10942912.2018.1448994
- 242. Vasanthi V, Sanjeev K, Rajkumar K, et al. (2023) Immune modulation by probiotics in deterring carcinogenesis with an emphasis on oral cancer: A narrative review. *Cancer Res Stat Treat* 6: 425–431. https://doi.org/10.4103/crst.crst_361_22
- 243. Gao Z, Guo B, Gao R, et al. (2015) Microbiota dysbiosis is associated with colorectal cancer. *Front Microbiol* 6: 20. https://doi.org/10.3389/fmicb.2015.00020
- 244. Marashi A, Hasany S, Moghimi S, et al. (2024) Targeting gut-microbiota for gastric cancer treatment: a systematic review. *Front Med* 11: 1412709. https://doi.org/10.3389/fmed.2024.1412709
- 245. Yeung CY, Chiang Chiau JS, Cheng ML, et al. (2015) Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model. *PLoS One* 10: e0138746. https://doi.org/10.1371/journal.pone.0138746
- 246. Huang F, Li S, Chen W, et al. (2023) Postoperative probiotics administration attenuates gastrointestinal complications and gut microbiota dysbiosis caused by chemotherapy in colorectal cancer patients. *Nutrients* 15: 356. https://doi.org/10.3390/nu15020356
- 247. Wierzbicka A, Mańkowska-Wierzbicka D, Mardas M, et al. (2021) Role of Probiotics in Modulating Human Gut Microbiota Populations and Activities in Patients with Colorectal Cancer—A Systematic Review of Clinical Trials. *Nutrients* 13: 1160. https://doi.org/10.3390/nu13041160
- 248. Górska A, Przystupski D, Niemczura MJ, et al. (2019) Probiotic Bacteria: A Promising Tool in Cancer Prevention and Therapy. *Curr Microbiol* 76: 939–949. https://doi.org/10.1007/s00284-019-01679-8
- 249. Das S, Paul DK, Anshu K, et al. (2017) Childhood cancer incidence in India between 2012 and 2014: report of a population-based cancer registry. *Indian Pediatr* 54: 1033–1036. https://doi.org/10.1007/s13312-017-1207-y
- 250. Kim Y, Lee D, Kim D, et al. (2008) Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by *Bifidobacterium adolescentis* SPM0212. *Arch Pharm Res* 31: 468–473. https://doi.org/10.1007/s12272-001-1180-y
- 251. Śliżewska K, Chlebicz-Wójcik A, Nowak A (2021) Probiotic properties of new *Lactobacillus* strains intended to be used as feed additives for monogastric animals. *Probiotics Antimicrob Proteins* 13: 146–162. https://doi.org/10.1007/s12602-020-09674-3
- 252. Liu Z, Qin H, Yang Z, et al. (2011) Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery—a double-blinded study. *Aliment Pharmacol Ther* 33: 50–63. https://doi.org/10.1111/j.1365-2036.2010.04492.x
- 253.Li J, Sung CYJ, Lee N, et al. (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. *Proc Natl Acad Sci U S A* 113: E1306–E1315. https://doi.org/10.1073/pnas.1525387113
- 254. Konishi H, Fujiya M, Tanaka H, et al. (2016) Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. *Nat Commun* 7: 12365. https://doi.org/10.1038/ncomms12365

- 255. Lee NK, Han KJ, Son SH, et al. (2015) Multifunctional effect of probiotic *Lactococcus lactis* KC24 isolated from kimchi. *LWT-Food Sci Technol* 64: 1036–1041. https://doi.org/10.1016/j.lwt.2015.07.019
- 256. Donaldson MS (2004) Nutrition and cancer: a review of the evidence for an anti-cancer diet. *Nutr J* 3: 19. https://doi.org/10.1186/1475-2891-3-19
- 257. Yazdi MH, Dallal MMS, Hassan ZM, et al. (2010) Oral administration of *Lactobacillus acidophilus* induces IL-12 production in spleen cell culture of BALB/c mice bearing transplanted breast tumour. *Br J Nutr* 104: 227–232. https://doi.org/10.1017/S0007114510000516
- 258. Kassayova M, Bobrov N, Strojný L, et al. (2014) Preventive effects of probiotic bacteria *Lactobacillus plantarum* and dietary fiber in chemically-induced mammary carcinogenesis. *Anticancer Res* 34: 4969–4975.
- 259. Faghfoori Z, Pourghassem Gargari B, Saber A, et al. (2020) Prophylactic effects of secretion metabolites of dairy lactobacilli through downregulation of ErbB-2 and ErbB-3 genes on colon cancer cells. *Eur J Cancer Prev* 29: 201–209. https://doi.org/10.1097/CEJ.000000000000393
- 260. Ishikawa H, Akedo I, Otani T, et al. (2005) Randomized trial of dietary fiber and *Lactobacillus casei* administration for prevention of colorectal tumors. *Int J Cancer* 116: 762–767. https://doi.org/10.1002/ijc.21115
- 261. Marcial-Coba MS, Knøchel S, Nielsen DS (2019) Low-moisture food matrices as probiotic carriers. *FEMS Microbiol Lett* 366: fnz006. https://doi.org/10.1093/femsle/fnz006
- 262. Cassani L, Gomez-Zavaglia A, Simal-Gandara J (2020) Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: from food processing and storage to their passage through the gastrointestinal tract. *Food Res Int* 129: 108852. https://doi.org/10.1016/j.foodres.2019.108852
- 263. Mahmoud M, Abdallah NA, El-Shafei K, et al. (2020) Survivability of alginate-microencapsulated *Lactobacillus plantarum* during storage, simulated food processing and gastrointestinal conditions. *Heliyon* 6: e03541. https://doi.org/10.1016/j.heliyon.2020.e03541
- 264. Frakolaki G, Giannou V, Kekos D, et al. (2020) A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. *Crit Rev Food Sci Nutr* 1–22. https://doi.org/10.1080/10408398.2020.1761773
- 265. Voo WP, Ravindra P, Tey BT, et al. (2011) Comparison of alginate and pectin based beads for production of poultry probiotic cells. *J Biosci Bioeng* 111: 294–299. https://doi.org/10.1016/j.jbiosc.2010.11.010
- 266. Garc á-Moreno PJ, Mendes AC, Jacobsen C, et al. (2018) Biopolymers for the nanomicroencapsulation of bioactive ingredients by electrohydrodynamic processing. In: *Polymers for Food Applications*. https://doi.org/10.1007/978-3-319-94625-2_17
- 267. Jacobsen C, Garcia-Moreno PJ, Mendes AC, et al. (2018) Use of electrospinning for encapsulation of sensitive bioactive compounds and applications in food. *Annu Rev Food Sci Technol* 9: 1–25. https://doi.org/10.1146/annurev-food-030117-012348
- 268. Lim LT, Mendes AC, Chronakis IS (2019) Electrospinning and electrospraying technologies for food applications. *Adv Food Nutr Res* 88: 1–41. https://doi.org/10.1016/bs.afnr.2019.02.005
- 269. Pandey P, Mishra HN (2020) Co-microencapsulation of γ-aminobutyric acid (GABA) and probiotic bacteria in thermostable and biocompatible exopolysaccharides matrix. *LWT* 110293. https://doi.org/10.1016/j.lwt.2020.110293
- 270. Ji R, Wu J, Zhang J, et al. (2019) Extending viability of *Bifidobacterium longum* in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. *Front Microbiol* 10: 1389. https://doi.org/10.3389/fmicb.2019.01389

- 271. Shu GW, He YX, Chen L, et al. (2018) Microencapsulation of *Bifidobacterium bifidum* BB01 by xanthan-chitosan: preparation and its stability in pure milk. *Artif Cells Nanomed Biotechnol* 46: S588–S596. https://doi.org/10.1080/21691401.2018.1431652
- 272. Rafi AA, Mahkam M (2015) Preparation of magnetic pH-sensitive microcapsules with an alginate base as colon specific drug delivery systems through an entirely green route. *RSC Adv* 5: 4628–4638. https://doi.org/10.1039/C4RA15170D
- 273. Jantarathin S, Borompichaichartkul C, Sanguandeekul R (2017) Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules and its effect on viability under heat process in shrimp feeding. *Mater Today Proc* 4: 6166–6172. https://doi.org/10.1016/j.matpr.2017.06.111
- 274. Dafe A, Etemadi H, Zarredar H, et al. (2017) Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. *Int J Biol Macromol* 97: 299–307. https://doi.org/10.1016/j.ijbiomac.2017.01.016
- 275. Gutierrez-Zamorano C, Gonzalez-Avila M, Diaz-Blas G, et al. (2019) Increased anti-Helicobacter pylori effect of the probiotic *Lactobacillus fermentum* UCO-979C strain encapsulated in carrageenan evaluated in gastric simulations under fasting conditions. *Food Res Int* 121: 812–816. https://doi.org/10.1016/j.foodres.2018.12.064
- 276. Burgain J, Gaiani C, Linder M, et al. (2011) Encapsulation of probiotic living cells: From laboratory scale to industrial applications. *J Food Eng* 104: 467–483. https://doi.org/10.1016/j.jfoodeng.2010.12.031
- 277. Kim JU, Kim B, Shahbaz HM, et al. (2017) Encapsulation of probiotic *Lactobacillus acidophilus* by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. *Int J Food Sci Technol* 52: 519–530. https://doi.org/10.1111/ijfs.13308
- 278. Rodrigues FJ, Omura MH, Cedran MF, et al. (2017) Effect of natural polymers on the survival of *Lactobacillus casei* encapsulated in alginate microspheres. *J Microencapsul* 34: 431–439. https://doi.org/10.1080/02652048.2017.1343872
- 279. Cavalheiro CP, Ruiz-Capillas C, Herrero AM, et al. (2015) Application of probiotic delivery systems in meat products. *Trends Food Sci Technol* 46: 120–131. https://doi.org/10.1016/j.tifs.2015.09.004
- 280. Corona-Hern ández RI, Álvarez-Parilla E, Lizardi-Mendoza J, et al. (2013) Structural stability and viability of microencapsulated bacteria: A review. *Compr Rev Food Sci Food Saf* 12: 614–628. https://doi.org/10.1111/1541-4337.12030
- 281. Sarao LK, Arora M (2017) Probiotics, prebiotics, and microencapsulation: A review. *Crit Rev Food Sci Nutr* 57: 344–371. https://doi.org/10.1080/10408398.2014.887055
- 282. Chang TMS, Prakash S (1998) Therapeutic uses of microencapsulated genetically engineered cells. *Mol Med Today* 4: 221–227. https://doi.org/10.1016/S1357-4310(98)01246-5
- 283. Anselmo AC, Mchugh KJ, Webster J, et al. (2016) Layer-by-layer encapsulation of probiotics for delivery to the microbiome. *Adv Mater* 28: 9442. https://doi.org/10.1002/adma.201603270
- 284. Laelorspoen N, Wongsasulak S, Yoovidhya T, et al. (2014) Microencapsulation of *Lactobacillus acidophilus* in zein–alginate core–shell microcapsules via electrospraying. *J Funct Foods* 7: 342–349. https://doi.org/10.1016/j.jff.2014.01.026
- 285. Granato D, Branco GF, Cruz AG, et al. (2010) Probiotic dairy products as functional foods. *Compr Rev Food Sci Food Saf* 9: 455–470. https://doi.org/10.1111/j.1541-4337.2010.00120.x
- 286. Savino T, Testa S, Petruzzelli AM (2018) Researcher understanding of food innovations in Nordic and Southern European countries: A systematic literature review. *Trends Food Sci Technol* 77: 54–63. https://doi.org/10.1016/j.tifs.2018.05.008

- 287. Gibson GR, Hutkins R, Sanders ME, et al. (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. *Nat Rev Gastroenterol Hepatol* 14: 491–502. https://doi.org/10.1038/nrgastro.2017.75
- 288. Knorr D (1998) Technology aspects related to microorganisms in functional foods. *Trends Food Sci Technol* 9: 295–306. https://doi.org/10.1016/S0924-2244(98)00051-X
- 289. Tripathi MK, Giri SK (2014) Probiotic functional foods: Survival of probiotics during processing and storage. *J Funct Foods* 9: 225–241. https://doi.org/10.1016/j.jff.2014.04.030
- 290. Vinderola CG, Costa GA, Regenhardt S, et al. (2002) Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. *Int Dairy J* 12: 579–589. https://doi.org/10.1016/S0958-6946(02)00046-8
- 291. Tamang JP, Shin DH, Jung SJ, et al. (2016) Functional properties of microorganisms in fermented foods. *Front Microbiol* 7: 578. https://doi.org/10.3389/fmicb.2016.00578
- 292. Hill C, Guarner F, Reid G, et al. (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat Rev Gastroenterol Hepatol* 11: 506–514. https://doi.org/10.1038/nrgastro.2014.66
- 293. Farnworth ER, Champagne C (2010) Production of probiotic cultures and their incorporation into foods. In: Watson RR, Preedy VR, *Bioactive Foods in Promoting Health*. Academic Press, 3–17. https://doi.org/10.1016/B978-0-12-374938-3.00001-3
- 294. Khedkar S, Carraresi L, Bröring S (2017) Food or pharmaceuticals? Consumers' perception of health-related borderline products. *PharmaNutrition* 5: 133–140. https://doi.org/10.1016/j.phanu.2017.10.002
- 295. Guarner F, Perdigon G, Corthier G, et al. (2005) Should yoghurt cultures be considered probiotic? *Br J Nutr* 93: 783–786. https://doi.org/10.1079/BJN20051428
- 296. El Sheikha AF, Hu DM (2020) Molecular techniques reveal more secrets of fermented foods. *Crit Rev Food Sci Nutr* 60: 11–32. https://doi.org/10.1080/10408398.2018.1506906
- 297. Canchaya C, Claesson MJ, Fitzgerald GF, et al. (2006) Diversity of the genus *Lactobacillus* revealed by comparative genomics of five species. *Microbiology* 152: 3185–3196. https://doi.org/10.1099/mic.0.29140-0
- 298. Caplice E, Fitzgerald GF (1999) Food fermentations: Role of microorganisms in food production and preservation. *Int J Food Microbiol* 50: 131–149. https://doi.org/10.1016/S0168-1605(99)00082-3
- 299. Giraffa G, Chanishvili N, Widyastuti Y (2010) Importance of lactobacilli in food and feed biotechnology. *Res Microbiol* 161: 480–487. https://doi.org/10.1016/j.resmic.2010.03.001
- 300. Kuipers OP, Buist G, Kok J (2000) Current strategies for improving food bacteria. *Res Microbiol* 151: 815–822. https://doi.org/10.1016/S0923-2508(00)01147-5
- 301. Oyewole OB (1997) Lactic fermented foods in Africa and their benefits. *Food Control* 8: 289–297. https://doi.org/10.1016/S0956-7135(97)00075-3
- 302. Patil MM, Pal A, Anand T, et al. (2010) Isolation and characterization of lactic acid bacteria from curd and cucumber. *Indian J Biotechnol* 9: 166–172.
- 303. Mousavi ZE, Mousavi SM, Razavi SH, et al. (2011) Fermentation of pomegranate juice by probiotic lactic acid bacteria. *World J Microbiol Biotechnol* 27: 123–128. https://doi.org/10.1007/s11274-010-0436-1
- 304. Rivera-Espinoza Y, Gallardo-Navarro Y (2010) Non-dairy probiotic products. *Food Microbiol* 27: 1–11. https://doi.org/10.1016/j.fm.2008.06.008

- 305. Vijaya Kumar B, Vijayendra SVN, Reddy OVS (2015) Trends in dairy and non-dairy probiotic products-a review. *J Food Sci Technol* 52: 6112–6124. https://doi.org/10.1007/s13197-015-1795-2
- 306. Panghal A, Virkar K, Kumar V, et al. (2017) Development of probiotic beetroot drink. *Curr Res Nutr Food Sci J* 5: 265–273. https://doi.org/10.12944/CRNFSJ.5.3.10
- 307. Panghal A, Kumar V, Dhull SB, et al. (2017) Utilization of dairy industry waste-whey in formulation of papaya RTS beverage. *Curr Res Nutr Food Sci J* 5: 168–174. https://doi.org/10.12944/CRNFSJ.5.2.14
- 308. Pakbin B, Razavi SH, Mahmoudi R, et al. (2014) Producing probiotic peach juice. *Biotechnol Health Sci.* https://doi.org/10.17795/bhs-24683
- 309. Argyri AA, Zoumpopoulou G, Karatzas KAG, et al. (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by *in vitro* tests. *Food Microbiol* 33: 282–291. https://doi.org/10.1016/j.fm.2012.10.005
- 310. Duongthingoc D, George P, Katopo L, et al. (2013) Effect of whey protein agglomeration on spray dried microcapsules containing *Saccharomyces boulardii*. *Food Chem* 141: 1782–1788. https://doi.org/10.1016/j.foodchem.2013.04.093
- 311. Sun Q, Wang F, Han D, et al. (2014) Preparation and optimization of soy protein isolate—high methoxy pectin microcapsules loaded with *Lactobacillus delbrueckii*. *Int J Food Sci Technol* 49: 1287–1293. https://doi.org/10.1111/ijfs.12424
- 312. Singh P, Medronho B, dos Santos T, et al. (2018) On the viability, cytotoxicity and stability of probiotic bacteria entrapped in cellulose-based particles. *Food Hydrocoll* 82: 457–465. https://doi.org/10.1016/j.foodhyd.2018.04.027
- 313. Rodr guez-Huezo ME, Estrada-Fern ández AG, Garc á-Almend árez BE, et al. (2014) Viability of *Lactobacillus plantarum* entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. *LWT-Food Sci Technol* 59: 768–773. https://doi.org/10.1016/j.lwt.2014.07.004
- 314. López-Rubio A, Sanchez E, Wilkanowicz S, et al. (2012) Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. *Food Hydrocoll* 28: 159–167. https://doi.org/10.1016/j.foodhyd.2011.12.008
- 315. Su R, Zhu XL, Fan DD, et al. (2011) Encapsulation of probiotic *Bifidobacterium longum* BIOMA 5920 with alginate—human-like collagen and evaluation of survival in simulated gastrointestinal conditions. *Int J Biol Macromol* 49: 979–984. https://doi.org/10.1016/j.ijbiomac.2011.08.018
- 316. Moayyedi M, Eskandari MH, Rad AHE, et al. (2018) Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated *Lactobacillus rhamnosus* ATCC 7469. *J Funct Foods* 40: 391–399. https://doi.org/10.1016/j.jff.2017.11.016
- 317. Chun H, Kim CH, Cho YH (2014) Microencapsulation of *Lactobacillus plantarum* DKL 109 using external ionic gelation method. *Korean J Food Sci Anim Resour* 34: 692–699. https://doi.org/10.5851/kosfa.2014.34.5.692
- 318. Sousa S, Gomes AM, Pintado MM, et al. (2015) Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. *Food Bioprod Process* 93: 90–97. https://doi.org/10.1016/j.fbp.2013.11.007
- 319. Schell D, Beermann C (2014) Fluidized bed microencapsulation of *Lactobacillus reuteri* with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. *Food Res Int* 62: 308–314. https://doi.org/10.1016/j.foodres.2014.03.016
- 320. Priya AJ, Vijayalakshmi SP, Raichur AM (2011) Enhanced survival of probiotic *Lactobacillus acidophilus* by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. *J Agric Food Chem* 59: 11838–11845. https://doi.org/10.1021/jf203378s

- 321. Nag A, Han KS, Singh H (2011) Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. *Int Dairy J* 21: 247–253. https://doi.org/10.1016/j.idairyj.2010.11.002
- 322. de Lara Pedroso D, Thomazini M, et al. (2012) Protection of *Bifidobacterium lactis* and *Lactobacillus acidophilus* by microencapsulation using spray-chilling. *Int Dairy J* 26: 127–132. https://doi.org/10.1016/j.idairyj.2012.04.008
- 323. Fontana L, Bermudez-Brito M, Plaza-Diaz J, et al. (2013) Sources, isolation, characterisation and evaluation of probiotics. *Br J Nutr* 109: S35–S50. https://doi.org/10.1017/S0007114512004011
- 324. Obradović N, Volić M, Nedović V, et al. (2022) Microencapsulation of probiotic starter culture in protein—carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. *J Food Eng* 321: 110948. https://doi.org/10.1016/j.jfoodeng.2022.110948
- 325. Tee W, Nazaruddin R, Tan YN, et al. (2013) Effects of encapsulation on the viability of potential probiotic *Lactobacillus plantarum* exposed to high acidity condition and presence of bile salts. *Food Sci Technol Int* 20. https://doi.org/10.1177/1082013213488775
- 326. Yilmaz MT, Taylan O, Karakas CY, et al. (2020) An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. *Carbohydr Polym* 244: 116447. https://doi.org/10.1016/j.carbpol.2020.116447
- 327. Jayani T, Sanjeev B, Marimuthu S, et al. (2020) Bacterial Cellulose Nano Fiber (BCNF) as carrier support for the immobilization of probiotic *Lactobacillus acidophilus* 016. *Carbohydr Polym* 250: 116965. https://doi.org/10.1016/j.carbpol.2020.116965

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)