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Abstract: Probiotics are living microbes that impart overall health benefits when introduced
appropriately. They play important roles in activating the immune system, inhibiting pathogens,
balancing gut microbiota, providing relief from inflammatory diseases, and helping prevent chronic
conditions such as cancer. In this manuscript, we address the multifaceted uses of probiotics in
medicinal, food, and cosmetic industries, emphasizing new encapsulation techniques that improve
their stability and effectiveness. Demonstrating their uses in food enrichment, disease prevention, and
delivery systems, the manuscript offers valuable recommendations for the use of probiotics in different
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fields. It also anticipates future directions, such as the invention of new encapsulation techniques, the
use of probiotics as personalized nutrition, and the application of their therapeutic benefits to new areas
such as metabolic and neurodegenerative diseases. The paper demonstrates the potential of probiotics
as promising candidates for the promotion of animal and human health in the modern era.

Keywords: Clinical applications; encapsulation; food supplements; immune system; gut microbiota;
probiotics

1. Introduction

Probiotics have become a crucial component in the development of functional foods and are well-
known for their beneficial health effects. [1,2]. Lilly and Stillwell [3] were the pioneers in defining
probiotics as living microbes that provide health advantages to the host. The Food and Agriculture
Organization (FAQO) and the World Health Organization (WHO) subsequently defined probiotics as
"living microorganisms that, when administered in adequate amounts, offer health benefits to the host" [4].
The word "probiotic," coming from the Latin pro and the Greek Bio (meaning "for life"), was first used
by Werner Kollath in 1953. He described probiotics as biologically active substances that play a crucial
role in promoting health [5]. Various bacterial genera have been recognized as possible probiotics,
including Pediococcus, Lactococcus, Enterococcus, Streptococcus, Propionibacterium, and Bacillus [6].
Nonetheless, the predominantly utilized strains are from Lactobacillus and Bifidobacterium [7], which
are involved in the biotransformation of mycotoxins present in food [2], the production of essential
vitamins such as vitamin K, riboflavin, and folate [2,7], and the fermentation of non-digested dietary
fibers in the colon [8]. Probiotics additionally promote host health by preventing the establishment of
harmful microorganisms. This is achieved via competitive inhibition at mucosal binding sites and the
adjustment of host immune responses, thereby enhancing intestinal barrier function [9]. Probiotics are
especially beneficial in managing clinical issues like irritable bowel syndrome, inflammatory bowel
disease, obesity, Parkinson's disease, diabetes, Alzheimer's, colic in infants, and rheumatoid
arthritis [10-17]. Probiotics offer health benefits such as the regulation of gut microbiota, reduction of
lactose intolerance symptoms, improved absorption of macro and micronutrients, and a lower
incidence of allergic reactions in sensitive individuals [18]. Probiotics are usually obtained from
fermented foods or dietary supplements, including dairy and non-dairy options [19]. They likewise aid
in preserving a healthy gut microbiome and have clinical uses, such as treating or preventing issues
like Helicobacter pylori infection, diarrhea, hypertension, ventilator-associated pneumonia, acute
pancreatitis, diabetes, migraines, autism, and colon cancer [20]. Probiotics can greatly affect the
makeup of specific gut microbes, although they may not change the whole microbial community. They
have antimicrobial characteristics associated with their generation of hydrogen peroxide, organic acids,
ethanol, or protein mechanisms (bacteriocins) [21,22]. Consequently, probiotics are being incorporated
more frequently into various food products, including drinks, yogurt, ice cream, and baked goods.
Despite their various advantages, a key difficulty in utilizing probiotics is their sensitivity to food
processing conditions and gastrointestinal (GI) stresses. Recent advancements in technology, such as
nanoencapsulation and genetic engineering, have greatly enhanced the resilience of probiotic strains
in adverse environmental and physiological conditions [23]. They have antimicrobial characteristics
associated with their generation of hydrogen peroxide, organic acids, ethanol, or protein-based
mechanisms (bacteriocins) [24]. The advancement of microencapsulation methods is essential for
safeguarding probiotics against environmental stressors [22—-26]. Probiotic therapy is essential for
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promoting healthy growth in both humans and animals. In recent decades, probiotics and other
beneficial microorganisms have significantly enhanced human health and the quality of food and
nutrition. Although the health benefits of probiotics vary depending on the strain, food products should
contain approximately 10° live bacteria per gram or milliliter [27]. Probiotics have demonstrated
promising effects in the prevention and management of various clinical disorders, including
rheumatoid arthritis, obesity, Parkinson's disease, diabetes, Alzheimer’s disease, infantile colic, and
irritable bowel syndrome [11-17,28]. The applications of probiotics extend beyond human health,
playing a key role in livestock, aquaculture, and poultry management, as well as in the prevention and
treatment of both communicable and noncommunicable diseases, such as bacterial, viral, parasitic, or
fungal infections, nervous system disorders, obesity, cancer, and allergic conditions. They also show
promise in pre-operative and post-operative processes. Recently, probiotic-rich diets have become vital,
with elevated levels of probiotic consumption through animal products, fermented fruits, juices, and
other food items [29]. Numerous studies have highlighted the role of probiotics in preventing and
managing inflammatory diseases and allergic disorders such as atopic dermatitis and rhinitis, as well
as in the prevention of diarrheal diseases, infection control, and as natural antibiotics. Probiotics have
also been shown to aid in the treatment or prevention of colon and bladder cancers [30,31]. In this
review, we emphasize the gaps, such as the multifaceted role of probiotics in health promotion,
focusing on their mechanisms in disease prevention, potential to enhance food products, and the
emergence of innovative delivery systems. We mostly contribute comprehensive insights into
probiotics, including their types, methods of administration, encapsulation in functional foods, and
their clinical applications for the treatment or prevention of various diseases, and provide a
comprehensive analysis of the mechanisms involved and the current perspectives on the therapeutic
applications of probiotics. We also delve into their safe integration into major food matrices and assess
their role in preventing diseases and promoting health.

2. Characteristic features of probiotic bacteria

The identification and functional attributes of probiotics are important criteria for the
identification of beneficial microorganisms that enhance human health. Probiotics are consumable,
non-toxic, and non-pathogenic. Significant features are their acid and bile salt resistance, which
enables them to survive the harsh environment of the digestive tract [32]. In addition, probiotics must
have the ability to survive and live on both the gastrointestinal and urinary tracts and find niches in
them to exert favorable health benefits. Probiotics must be stable and remain alive for long storage,
particularly in fermentation and food manufacturing. Another important feature of these microbes is
their ability to synthesize antimicrobial compounds that help to repress pathogenic microorganisms [33].
They regulate the host immune system, promoting a balanced immune reaction and enhanced health [34].
In addition, probiotics play a role in repairing or replacing gut microflora, assisting in the maintenance
of a healthy intestinal environment. Coupled with their microbial benefits, probiotics have been found
to reduce cholesterol, providing cardiovascular protection [35]. They exhibit anti-carcinogenic and
anti-mutagenic activities, which help in inhibiting cancer [36]. Probiotics are also known to reduce
symptoms of irritable bowel syndrome (IBS) and vyield therapeutic relief to individuals with
gastrointestinal discomfort. Probiotics play a critical role in inhibiting the development of pathogenic
organisms and hence promoting a healthy microbial balance and protecting the host from infections.
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3. Probiotics: Possible mode of action

The mechanisms through which probiotics operate involve several important processes that
benefit the host. These include the release of antimicrobial substances, regulation of the immune
system, reduction of allergic infection risks, enhancement of intestinal barrier functions, modulation
of gene expression, suppression of harmful organisms, and the production of functional proteins like
lactase and natural enzymes [31]. Probiotic microorganisms are decisive for improving the microbial
stability within the host and protecting the intestinal epithelial membranes from detrimental pathogens.
They produce short-chain fatty acids (SCFAS) such as lactic acid, propionic acid, butyric acid, and
acetic acid, which help them thrive in low pH environments, regulate the host's immune response, and
inhibit pathogen growth, highlighting the essential qualities of probiotics. These microorganisms
generate antimicrobial substances that combat infections, prevent pathogen adhesion, address nutrient
deficiencies, eliminate toxin receptors, and modulate the host's immune system. The action
mechanisms of probiotics can be summarized as follows: Preventing pathogenic microorganisms from
adhering to the intestinal epithelium, regulating SCFA production, enhancing immune responses,
modulating lipid metabolism, and suppressing intestinal pro-inflammatory cytokine activity [37-39].
The effects of probiotics are closely linked to the species of organisms present in the gut. They promote
host health by managing gut mucosal immunity, inhibiting pathogenic microorganisms, improving the
gut microenvironment, strengthening the intestinal barrier, reducing inflammation, and enhancing
antigen-specific immune responses [40,41]. Maintaining the intestinal barrier is crucial for ensuring
intestinal integrity and function. GIT microbiota composition varies between individuals, with
beneficial or pathogenic microbes engaging in symbiotic relationships. Probiotics can promote an
increase in beneficial gut microbiota and inhibit pathogenic or opportunistic microbes. Moreover,
probiotic therapy is an effective modern approach to treating intestinal infections, exerting its action
through various mechanisms, including the production of antimicrobial substances, competition for
nutrient substrates, competitive exclusion, enhancement of intestinal barrier function, and modulation
of the immune system [42]. Probiotics bring about host health through several mechanisms, including
intestinal microbiota modulation, immune homeostasis, enhancement of epithelial barrier function,
and gene expression. The release of antimicrobial compounds (e.g., bacteriocins, organic acids,
reuterin) that suppress pathogens like Staphylococcus aureus, E. coli, Salmonella, and Clostridioides
difficile by disrupting membranes and inhibiting adhesion is one of the major mechanisms. They also
bring innate immunity by stimulating Paneth cells to release antimicrobial peptides like defensins and
lysozyme [43] (Table 1).
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Table 1. Probiotics and their influence on plants and animals, and their key benefits.

Type Microorganisms  Examples Key Benefits References
Lactic Lactobacillus L. acidophilus, L. casei, Improves digestion, enhances immunity, and [44-46]
Acid L. rhamnosus, L. produces lactic acid
Bacteria plantarum
(LAB) Bifidobacterium  B. bifidum, Colon health modulates the immune system  [47,48]
B. longum, and battles gastrointestinal infections
B. breve
Streptococcus S.thermophilus Supports lactose digestion and is used in [49]
dairy fermentation
Enterococcus E. faecium, Gut health (especially in animals) inhibits [50]
E. durans pathogens
Spore- Bacillus B. subtilis, Heat-stable, supports gut flora, and isused in  [51]
Forming B. coagulans, food and animal probiotics
Bacteria B. clausii
Yeast Saccharomyces S. boulardii Prevents antibiotic-associated and traveler’s [52]
Probiotics  (Yeast) diarrhea, and restores microbiota
Next- Akkermansia A. muciniphila Supports metabolic health and may reduce [53]
Generation obesity and insulin resistance
Probiotics  Faecalibacterium F. prausnitzii Anti-inflammatory, associated with a [54]
healthy gut in IBD (Inflammatory Bowel
Disease) patients
Clostridium C. butyricum Produces butyrate and supports mucosal [55]
barrier integrity
Synbiotics  Various L. rhamnosus + inulin, Enhances probiotic survival and [56]
(Probiotics B. longum + FOS colonization and provides synergistic gut
+ health benefits
Prebiotics)

Probiotics stimulate host pattern recognition receptors (e.g., TLRs), modulating NF-xB and
MAPK signaling to suppress proinflammatory cytokines (e.g., TNF-o, IL-6) and induce anti-
inflammatory mediators like IL-10 and TGF-B. Probiotics stimulate Tregs and modulate the
Th1/Th2/Th17 axis, promoting immune tolerance and mucosal immunity (e.g., increased sIgA, NK
cell activation). Probiotics in allergy prevention restore microbial stimuli critical for immune
maturation, suppress IgE responses, and promote Treg differentiation, improving eczema and allergic

rhinitis [57].
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Probiotics at the gut barrier increase tight junction proteins (e.g., occludin, claudins) and
mucins (e.g., MUC>), reducing intestinal permeability. Competitive exclusion also prevents
colonization by pathogens by occupying the binding sites and limiting the accessibility of nutrients.
Molecularly, they modulate gene expression, downregulate inflammatory genes, and enhance
epithelial survival through probiotic-derived proteins (e.g., p40, p75) and surface layer proteins. Some
strains like Lactobacillus and Bifidobacterium inhibit pathogen invasion and toxin action, maintain gut
homeostasis, and reduce antibiotic-associated effects. Growing evidence is connecting probiotics with
systemic actions via microbiota—gut—organ axes, impacting respiratory and neurological well-being,
with possible therapeutic applications in treating infections such as COVID-19 [58] (Table 2 and
Figure 1).
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Figure 1. Probiotics application in the prevention and control of diseases.
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Table 2. Applications of probiotics.

Probiotic strain

Dose and administration

Study type/model

Response

Bifidobacterium
lactis Bb-12 and
Lactobacillus
rhamnosus
(LGG)
Lactobacillus
fermentum  VRI-
033 PCC
Lactobacillus F19

GG

B. infantis BB-02,
Streptococcus
thermophilus TH-
4, and B. lactis BB-
12

r

Mixture  of
caseli, L.
rhamnosus, L.
plantarum, and B.
lactis

Oral administration of 3 x
108 CFU of LGG and 10°
CFU of B. lactis for 4 weeks

1x10° CFU twice daily for 8
weeks

1 108 CFU/day for 4-6
months

A mixture of B. infantis BB-
02 (300 108 CFU), S.
thermophilus TH-4 (350
<10 CFU), and B. lactis
BB-12 (350 x 10° CFY),
Total: 1 x10°CFU per 1.5 g
in a powder once daily, until
discharged from the hospital
or term-corrected age

Oral administration at 2 x
10° CFU in each strain,
twice daily for 6 weeks

RDBS with 27
infants with
atopic disease

RDBPS with 56
children

RDBPS with 179
infants

MDPR with 1099
very preterm
infants

DBPS with 100
children

After 2 months, a major improvement in the skin condition occurred in
the probiotic group. (SCORAD) and the attentiveness of soluble CD4+
decreased in the probiotic groups

A decrease in the SCORAD indicator was seen in the probiotic-treated
group. After the study, more children treated with this probiotic had
milder atopic dermatitis

The increasing occurrence of eczema at 13 months was lower in the
probiotic group. At 13 months, the INF-y/IL-4 percentage was higher
in the probiotic group. No differences in serum concentrations of IgE
There were no differences in the occurrence of eczema between the two
groups. Similarly, the incidences of atopic eczema, food allergy,
wheezing, and atopic sensitization were comparable in both groups.

The combination of probiotics did not inhibit the growth of other
strains, but no changes in clinical development were seen between the
treated and placebo groups

Application References
Atopic eczema [59]
Atopic dermatitis ~ [60]
Eczema [61]
Eczema,  atopic [62]
sensitization, food

allergy, and

wheezing

Atopic dermatitis  [63]
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Probiotic strain Dose and administration Study type/model  Response Application References
Lactobacillus NM NM Cell proliferation and Caco-2 and HT-29 [64]
pentosus B281 Cell cycle arrest (G1)

Lactobacillus
plantarum B282

Bacillus NM NM >90% | Cell proliferation LoVo, HT-29, [65]
polyfermenticus AGS

KU3

Lactobacillus NM NM | Cell proliferation Caco-2, HT-29 [66]

plantarum A7

Lactobacillus

rhamnosus GG

Lactobacillus NM NM | Cell proliferation and Induction of apoptosis DLD-1, HGC-27  [67]
paracasei

IMPC2.1

Lactobacillus

rhamnosus GG

Bacillus NM NM |Cell colony formation in cancer cells (N/E on normal colonocytes) NMC460 [68]
polyfermenticus

Lactobacillus Colitis was induced by 30 Rat model No positive effects on the rat’s gut permeability, weight changes, colon CD-like [69]
plantarum mg (0.6 mL of 5% aqueous (TBSN) microscopic scores, and the level of blood albumins;

species 299 solution) of TNBS. 7 days

supplementation of 10°
colony forming units (CFU)
of Lactobacillus plantarum
(in oat fiber) following
colitis initiation.

Continued on next page
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Probiotic strain Dose and administration Study type/model  Response Application References
Bifidobacterium daily oral supplementation Murine  model Reduction in the edema, decrease in the macroscopic damage and CD-like [70]
bifidum of 10° of B. bifidum PRL (TNBS) histological scores, decrease in weight loss, and anti-inflammatory
PRL2010 2010. Colitis (TNBS 2.5 effects

mg/mice) was induced in the

5th day of probiotic strain

feeding.
Bifidobacterium 7 days supplementation Murine model Defense against a reduction in colon length, better picture of the colon  UC-like [71]
animalis  subsp. (twice a day) with 1.2 x10%° (DSS) histology, decrease in apoptosis in the epithelial layer, reduction in the
lactis BB12 CFU Bifidobacterium level of TNF-a;

animalis subsp. lactis BB12

by oral gavage before

colitis. Colitis was induced

by 3% DSS added to

drinking water for 6 days.
Lactobacillus Colitis was induced by Murine model Regulation of the NF-kB pathway and a decrease in the inflammatory  UC-like [72]
delbrueckii administering 3% (w/v) (DSS) state

dextran  sulfate  sodium

(DSS) in the drinking water
for 7 days.
Probiotic treatment (5x10°)
CFU in mice began one day
before colitis induction and
continued until sacrifice.

AIMS Microbiology
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Probiotic strain Dose and administration Study type/model  Response Application References
Saccharomyces Patients with CD in Human model Useful to regulate remission and bowel sealing CD [73]
boulardii remission (based on Crohn’s
disease activity index) were
supplemented  with  S.
boulardii about 4 <108 cells
every 8 h as an oral capsule
formulation during
3months.
L. rhamnosus GG, (10*CFU) 1 capsule per day RDPBS IWC (p <0.001) obesity and [74]
B. lactis overweight
L. salivarius  (10° CFU) 1 capsule per day RDPBS No effect obesity and [75]
UCC118 overweight
L. rhamnosus GG (10* CFU) 1 capsule per RDPBS Probiotic administration may decrease weight gain, particularly up to 4  obesity and [76]
day years of age (p = 0.08) overweight
L. acidophilus, L. (each 4.3 x<108 CFU) and Open-label, IBMI (p <0.05), | HC, and WC (p < 0.05) obesity and [77]
rhamnosus, B. (8.2 x<108CFU) randomized, overweight
bifidum, B. longum controlled trial
and E. faecium
L. casei, L. (Each 2 <108 CFU), vit. E, RTBS IBMI, | WC obesity and [78]
rhamnosus, S. A, C per day overweight

thermophilus, B.
breve,L.
acidophilus, B.
longum and

L. bulgaricus

AIMS Microbiology
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Probiotic strain Dose and administration Study type/model  Response Application References
Lactobacillus NM NM Reduces the risk associated with type 2 diabetes mellitus and increases Diabetes and [79,80]
acidophilus host's metabolic system, ensuring weight administration obesity
NCFM
Lactobacillus NM NM Majorly reduces in body mass index (BMI), waist, abdominal Visceral —Diabetes and [81]
gasseri SBT2055 Fat Area (VFA), and hip circumference. obesity
Enterococcus NM NM Reduces body weight, systolic Blood Pressure LDL-C (Low-Density Diabetes and [82]
faecium, Lipoprotein Cholesterol), and increases fibrinogen levels. obesity
Streptococcus
thermophilus
Bifidobacterium NM NM Decreases total cholesterol level Diabetes and [83]
animalis DSMZ obesity
23733,
Bifidobacterium
breve DSMz
23732
Lactobacillus NM NM Noticeably increases inhibitory antagonistic effect, and a main target Antagonistic [84,85]
species for pathogens (Gram-positives and Gram-negatives) and food spoilage activity

microorganisms
Lactococcus lactis NM NM Two dissimilar, primarily linear peptides, with or without post- Antagonistic
subsp  Cremoris translational modifications at the C-terminus, were attached as required. activity that is [86,87]
and Lb. brevis
Lactobacillus NM NM The production of bacteriocin increases the antibacterial activity of Antibacterial,anti- [88-90]

kefir,
Lactobacillus
kefiranofaciens,
and Lactobacillus
kefirgranum

intestinal epithelial cells. They also reduce inflammation and serum
cholesterol levels and produce an EPS known as kefiran.

cholesterol, and
anti-inflammation

AIMS Microbiology
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Probiotic strain Dose and administration Study type/model  Response Application References
Lactobacillus plantaFrum  NM NM Antioxidant activity Antioxidant [91-93]
activity
Lactobacillus plantarum, NM NM Antibacterial activity against pathogens Antimicrobial
Lactobacillus activity
fermentum, and
Saccharomyces cerevisiae
L. fermentum CECT5716 NM NM Increases antibody production against the Influenza virus Antiviral activity [94]
L. plantarum YMLOQ9 NM NM triggering of Thl immune response against HIN1 Influenza Antiviral activity [95]
virus
L. rhamnosus GG NM NM Production of IFN- and Ils against Respiratory syncytial virus  Antiviral activity [96]
(RSV)
E. faecium NCIMB 10415 NM NM Promotion of nitric oxide (NO) production and secretion of Antiviral activity — [97]
Interleukins  (IL-6 and IL-8) against Transmissible
gastroenteritis virus) TGEV
Lactobacillus sp. NM NM Rule of blood pressure Immune system [98]
Bacillus licheniformis NM NM Decrease the effect of antibiotics use in the treatment of Antibiotic [99]
diarrhea and can detoxify aflatoxin B1 up to 94.7% in food
matrices.
Bifidobacterium longum NM NM Action of gastrointestinal disorders Antibiotic [100]
CMCC P0001
Lactobacillus, NM NM positive effects on mental health and mood. Depression, [101]
Bifidobacterium Anxiety, and
Mental Disorders
Lactobacillus acidophilus NM NM Important antifungal activity Antifungal activity [102]

ATCC4495, Lactobacillus
plantarum NRRL B-4496

AIMS Microbiology
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Volume 11, Issue 3, 602—648.



614

Probiotic strain Dose and administration ~ Study type/model  Response Application References
Lactobacillus buchneri NM NM Antagonistic activity against Candida albicans Antifungal activity [103]
Weissella cibaria and Weissella NM NM Antimicrobial activity against L. monocytogenes, E. coli, Anti-microbial [104]
koreensis and Salmonella spp activity
Lactobacillus acidophilus, NM Gnotobiotic mice  Digest lactose and sugar in milk and other dairy products Lactose [105]
Lactobacillus delberukii intolerance
Lactobacillus reutri, NM Murine Stop the colonization of pathogenic bacteria Urinary tract [99,106,107]
Lactobacillus acidophilus, infection
Lactobacillus rhamnosus
GR-1
L. casei DN 114001 NM Human Cost-efficient way to treat antibiotic-associated diarrhea Antibiotic [108]
during antibiotic treatment treatment
L. acidophilus NM Clinical trials Clinical trials on adults (avg. age, 39) who were tested for  Antibiotic [109]
B. animalis subsp. lactis 12 days in three dissimilar groups: bio yogurt (n = 131), associated
L. delbrueckii subsp. bulgaricus commercial yogurt (N = 118), and no yogurt (N = 120). The diarrhea
S. thermophilus percentages of participants suffering AAD during this study (AAD)
are 6.9% (bio yogurt), 11.0% (commercial yogurt), and
14.2% (no yogurt), respectively.
L. casei ATCC 393 NM Murine  (CT26) Positive effect: Tumor inhibitory, anti-proliferative, and Anti-cancer [110]
and human pro-apoptotic response
(HT29) colon
carcinoma cell
lines
L. gasseri SBT2055 NM Human Boost of fat emulsion droplet size and the repression of  Anti-cholesterol [111]
lipase-mediated fat hydrolysis
L. helveticus NS8 NM Caco-2 Cells and Probiotics have immunomodulatory properties Immune system [112]

BALB/c mice

AIMS Microbiology
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Probiotic strain Dose and administration ~ Study type/model  Response Application References

L. rhamnosus HNOO1 and NM Human Antimicrobial performance against pathogens responsible  Antimicrobial [113]

L. acidophilus GLA-14 for both bacterial vaginosis and aerobic vaginitis activities

L. plantarum CRL 725 NM NM Riboflavin production in foods Food [114]

L. plantarum S48 and P1201 NM NM Conjugated linoleic acid production in foods Food [115]

B. animalis IM386 + L. NM NM Lactose intolerance Food [116]

plantarum MP2026

Saccharomyces boulardii NM Human Avoidance of antibiotic-associated diarrhea; B-lactamins or  Antibiotic [117]
tetracyclins and Miscellaneous, Gastroenteritis

Akkermansia muciniphila NM NM Anticipation of obesity and metabolic disorders Obesity [118,119]

weight loss

Abbreviation: Decrease; human colonic cancer cells: Caco-2, HT-29, SW1116, HCT116, SW480, DLD-1, LoVo; human gastric adenocarcinoma cells: AGS; Mus musculus colon
carcinoma cells: CT26; HGC-27, HGT-1; human colonic epithelial cells: NMC460; UC- ulcerative colitis; CD-Crohns disease; WC—uwaist circumference; HC—hip circumferences;

RDBS-Randomized, double-blind study; RDBPS-Randomized, double-blind, placebo-controlled study; Scoring Atopic Dermatitis(SCORAD);

MDPR-multi-center, double-

blind,placebo-controlled, RTBS randomized trial; Randomized triple-blinded controlled trial L-Lactobacillus; B-Bifidobacterium and Bacillus; E-Enterococcus and Escherichia; W-
Weissella; S-Saccharomyces, Streptococcus, and Salmonella; C—Candida; NM-Not mentioned
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4. Probiotics action in antimicrobial activity

Numerous studies have indicated that the use of probiotics effectively curtails the growth of
pathogenic microorganisms and enhances the immune function of the host [120-124]. As research
evolves, innovative probiotic strains with specific antimicrobial properties are being recognized,
providing promising applications in both clinical and functional food domains. Probiotics exhibit
antimicrobial properties through various mechanisms, functioning at several biological levels. These
mechanisms include competitive exclusion, where probiotics compete with pathogens for limited
receptors on the epithelial surface, as well as for nutrients [125,126]. Probiotics show broad-spectrum
antimicrobial activity through a variety of synergistic mechanisms that operate at molecular, cellular,
and ecological levels [127]. A primary mode of action involves the production of antimicrobial
substances such as organic acids (e.g., lactic and acetic acids), which decrease the local pH and create
an inhospitable environment for pathogenic microbes. Probiotics exert antimicrobial effects through a
multifaceted array of mechanisms that function across molecular, cellular, and ecological levels. These
beneficial microbes, mostly strains of Lactobacillus and Bifidobacterium, produce a range of
antimicrobial compounds such as bacteriocins, organic acids (like lactic and acetic acid), and hydrogen
peroxide, which directly inhibit pathogenic bacteria by disrupting their membranes or metabolic
functions [128]. Probiotics also engage in competitive exclusion by occupying epithelial binding sites
and outcompeting pathogens for essential nutrients, thereby preventing their colonization. They
enhance host immunity by modulating cytokine profiles, promoting anti-inflammatory responses, and
strengthening epithelial barrier integrity through the upregulation of tight junction proteins [129].
Furthermore, some probiotics interfere with quorum-sensing pathways of pathogens, disrupting
microbial communication and suppressing virulence gene expression. They also contribute to restoring
and maintaining a balanced microbiota composition, which indirectly limits the proliferation of
opportunistic pathogens. Emerging evidence suggests that certain probiotics possess antiviral and
antifungal capabilities, mediated by the secretion of bioactive molecules such as exopolysaccharides.
Collectively, these multifactorial mechanisms underscore the potential of probiotics as effective agents
for antimicrobial defense and microbiome regulation. They also compete with pathogens for adhesion
sites and nutrients in the gut epithelium, a process known as competitive exclusion. Additionally,
probiotics enhance the host’s mucosal barrier integrity and modulate immune responses, promoting
the production of anti-inflammatory cytokines and immunoglobulins that further suppress pathogen
colonization. Studies emphasize the importance of strain-specific effects and the need for robust in
vitro and in vivo models to evaluate probiotic efficacy under physiologically relevant conditions. They
also produce antimicrobial metabolites such as organic acids, bacteriocins, reuterin, and secondary bile
acids that can directly suppress pathogen growth [130,131]. Probiotics can interfere with pathogen
virulence mechanisms by preventing biofilm formation and inhibiting the production of toxins and
enzymes [132]. Some probiotics, like Propioniferax innocua, can break down mature biofilms [130].
Additionally, probiotics enhance the host's innate immunity by stimulating the production of
antimicrobial peptides by Paneth cells (They are known for their role in innate immunity and intestinal
homeostasis) in the intestine, providing another layer of defense against pathogens [133]. In a nutshell,
probiotics employ a multi-faceted approach to antimicrobial activity, encompassing direct antagonism,
competitive exclusion, and host-mediated effects. These mechanisms contribute to maintaining
microbial balance in the gut and strengthening the intestinal barrier against pathogens. However, it's
important to note that not all probiotic strains have similar therapeutic effects, highlighting the need
for rigorous clinical trials to elucidate strain-specific benefits. Probiotics have been proven to
effectively inhibit pathogenic microorganisms and improve the immune responses of the host [120-124].
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They synthesize bioactive compounds, including bacteriocins, lactic acid, pyroglutamate, and
hydrogen peroxide, which specifically target pathogens and stimulate immune pathways [134-140].
These compounds are known to inhibit microbes such as E. coli, Salmonella typhimurium, Yersinia
enterocolitica, and Clostridium difficile [141]. Specific strains like Lactobacillus fermentum
TcUESCO1 and L. plantarum ATCC 8014 show strong antimicrobial properties and survival
capabilities in intestinal conditions [142,143]. Lactobacillus paracasei, L. rhamnosus GG, and L.
acidophilus KS400 also demonstrate inhibitory effects against various pathogens, including
Salmonella enterica and vaginal pathogens [144-146]. Bifidobacterium and Lactobacillus species
exhibit antimicrobial and antifungal activities, particularly B. bifidum PTCC 1644, which inhibits
Aspergillus parasiticus and reduces aflatoxin levels [147,148]. Bacteriocins from Bifidobacterium
further suppress a wide range of pathogens [149]. Probiotics are effective against Helicobacter pylori,
enhancing immune response, reducing inflammation, and alleviating symptoms, especially through
Lactobacillus species like L. reuteri [150,151].

5. Probiotics action in the immune system

Probiotics significantly influence the host immune system by modulating innate and adaptive
immune responses through diverse mechanisms. They regulate the production of cytokines and
immunoglobulins, maintaining a critical balance between pro-inflammatory and anti-inflammatory
pathways [152,153]. Probiotics play a crucial role in modulating both innate and adaptive immunity in
humans through various mechanisms. These beneficial microorganisms inhabit the intestines and
change the composition of the gut microbiota, which subsequently impacts host immunity [154].
Influencing the gut microbiome, probiotics can improve overall immunity and enhance the quality of
life for individuals. Probiotics affect innate immunity by stimulating epithelial innate immune
responses, such as increasing the production of epithelial-derived TNF-alpha and restoring the function
of the epithelial barrier [155]. They also activate NF-kB, which is vital for innate immune responses.
Interestingly, this stimulation of innate immunity by probiotics promotes gut health, contrary to the
conventional belief that probiotics primarily have an anti-inflammatory effect [155]. In terms of
adaptive immunity, probiotics impact T cell and B cell-mediated responses, which can be either
beneficial or harmful to the host depending on the context and site of infection [156]. Furthermore,
probiotics help regulate intestinal adaptive immunity by maintaining immune tolerance towards
symbionts and preserving the integrity of the intestinal barrier [157]. They also modulate DC/NK
interactions, balance T-helper cell responses, and promote the secretion of polymeric IgA [158].
Recent research has uncovered that innate immunity has a memory capacity referred to as "trained
immunity” [159]. For instance, Lactobacillus plantarum O6CC2 enhances Thl cytokine responses,
including interleukin-12 (IL-12) and interferon-gamma (IFN-y), during influenza infections by
activating natural killer (NK) cells, which are essential for early-stage defense [160]. Similarly,
Lactobacillus paracasei CNCM-I-1518 modifies pro-inflammatory and anti-inflammatory cytokine
profiles in the lungs and alters immune cell counts, thereby reducing viral loads and improving
outcomes following influenza infection [160]. In enteric infections caused by Escherichia coli and
Salmonella, probiotics such as Lactobacillus rhamnosus enhance the expression of toll-like
receptors (TLR2 and TLR9) and NOD-like receptors (NLRs), while modulating cytokine expression,
including IL-4, IL-6, IL-12, and IL-10, which play pivotal roles in mucosal immunity [161,162].
Probiotics also regulate cell signaling pathways, such as NF-kxB and MAPK, which are vital in
controlling immune responses during clostridial infections [163,164]. Moreover, certain probiotics,
such as Bifidobacterium breve MCC1274, stimulate IL-8 and IFN production while activating
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interferon regulatory factor-3 (IRF3), providing protection against viral pathogens [165]. Probiotics
are considered potential candidates for stimulating trained immunity, although the exact mechanisms
are not fully understood. This concept opens new therapeutic avenues for enhancing innate immune
responses through probiotic administration. Probiotics exhibit diverse effects on both innate and
adaptive immunity. They stimulate innate immune responses, regulate adaptive immunity, and
potentially enhance trained immunity

6. Probiotics action in diabetes

Diabetes mellitus (DM), a genetic and environmental metabolic disorder of long duration, is a
serious global health concern [166]. It causes cardiovascular system, kidney, eye, and nerve
impairment, with an increased risk of heart disease and stroke [167]. Probiotics have been shown to
manage type 2 diabetes mellitus (T2DM). Probiotic yogurts containing Lactobacillus acidophilus La5
and Bifidobacterium lactis Bb12 increase fasting glucose and antioxidant activity [168]. Clinical trials
have reported reductions in fasting plasma glucose (by 15.92 mg/dL) and HbAlc (by 0.53%) following
probiotic use [169]. A six-week study using a probiotic capsule with L. acidophilus, L. casei, B. bifidum,
and L. fermentum showed improved insulin sensitivity, gene expression, and lipid profiles [170].
Probiotic use also enhances fasting glucose levels, reduces inflammation, and increases antioxidant
capacity. Animal studies further support probiotics in lowering glucose levels, improving insulin
resistance, and modulating gut microbiota [171,172]. In pediatric cases, probiotics help manage obesity
and diabetes by regulating gut flora [173]. They also suppress inflammatory cytokines such as TNF-a,
IL-1B, and IL-6. In mouse models, probiotic cocktails reduced blood glucose, pancreatic inflammation,
and TLR4 expression while modulating cytokines and improving the Bcl-2/Bax ratio [167]. Probiotics
have indicated reassuring effects in diabetes management through various mechanisms: they can
improve insulin sensitivity and diminish autoimmune responses by modifying the intestinal microbiota,
reducing inflammatory reactions, and alleviating oxidative stress. They affect the host by regulating
intestinal permeability, the mucosal immune response, and the gut endocannabinoid system related to
inflammation and diabetes [174]. Furthermore, probiotics impact energy extraction from food and
biochemically alter molecules derived from the host or gut microbes [174]. The anti-diabetic effects
of probiotics include the reduction of pro-inflammatory cytokines via the NF-kB pathway, decreased
intestinal permeability, and reduced oxidative stress [175]. Short-chain fatty acids (SCFAS) produced
by probiotics are crucial for glucose homeostasis by activating G-protein-coupled receptors on L-cells,
which encourages the release of glucagon-like peptide-1 and peptide Y'Y, leading to increased insulin
secretion and appetite suppression [176].

Some research has shown inconsistent results regarding the effectiveness of probiotics in diabetes
management. While many studies suggest improvements in fasting blood glucose, insulin sensitivity,
and systemic inflammatory and antioxidant status in type 2 diabetic patients [177], others have pointed
out limitations in clinical trials [178]. This emphasizes the need for further research to develop solid
probiotic-based adjuvant treatment protocols for diabetes. Probiotics hold promise in diabetes
management by modulating gut microbiota, reducing inflammation and oxidative stress, enhancing
insulin sensitivity, and regulating glucose metabolism. However, more well-structured human clinical
studies are necessary to establish optimal dosages, treatment duration, and the long-term impacts of
probiotic interventions in diabetes management [179].

Investigations into the effects of probiotics on diabetes have produced promising findings;
however, there are notable gaps in our knowledge of this field. Probiotic supplementation has been
correlated with improvements in glycemic control, lipid profiles, and inflammatory markers in
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individuals with type 2 diabetes [180,181]. However, inconsistencies in results arise due to differences
in probiotic formulations, dosages, and treatment durations [182]. This variability highlights the need
for standardized protocols and more comprehensive clinical trials to establish evidence-based
treatment guidelines [10]. While many researchers have focused on the influence of probiotics on
metabolic parameters, there is a lack of research into the specific mechanisms of action. More
investigation is needed to clarify how probiotics impact the gut-skin and gut-skin-brain axes, as well
as their effects on intestinal microbiota and host metabolism. Safety evaluations and long-term studies
are crucial to identify potential adverse effects and to determine the best dosages for probiotic
supplementation [183]. Additionally, the lack of regulatory oversight raises concerns about the quality
and labeling accuracy of commercial probiotic products, particularly for at-risk populations [184].

7. Probiotics action in obesity and cholesterol

Probiotics have shown promising actions in obesity and cholesterol management, but several gaps
in the research have to be addressed. The mechanisms through which probiotics work on obesity are
yet to be determined [185]. Even though studies have shown their capacity to modulate gut microbiota,
affect lipid metabolism, and affect inflammatory processes, larger trials are warranted to describe the
pathways precisely [186,187]. Large-scale, methodologically sound clinical trials are needed to
establish the safety and efficacy of probiotic interventions for the treatment of obesity and lipid
control [188]. Longitudinal studies must also be performed to determine the long-term consequences
of probiotic supplementation. A severe deficiency in the standardization of study design and
methodology is to blame for much of the heterogeneity of results and potential biases [189]. Such
limitations must be addressed in future research using stricter and more consistent methods. The
interaction between probiotics, gut microbiota, and the gut-brain axis about obesity and cognitive
processes must be examined further as well [189]. Obesity, driven by modern lifestyles, is a major
global health issue, with projections indicating that by 2030, 38% of adults will gain weight and 20%
will be obese [190]. Contributing factors include energy imbalance, sedentary behavior, and gut
microbiota composition. The intestinal microbiota influences obesity directly through organ
interactions and indirectly via metabolites like short-chain fatty acids (SCFAs) [191]. A higher
Firmicutes/Bacteroidetes (F/B) ratio is associated with increased body weight [192]. Probiotics help
regulate body weight and adipose tissue by modulating physiological functions and hormone secretion,
including leptin and adiponectin. Strains such as Lactobacillus acidophilus, L. casei, and
Bifidobacterium longum show hypocholesterolemia and anti-obesity effects through thermogenic and
lipolytic activity. Lactobacillus gasseri BNR17 reduces adipose tissue and regulates leptin, while L.
acidophilus and B. longum demonstrate similar benefits. Lactobacillus curvatus HY7601 and L.
plantarum KY1032 (5 x 10° CFU/day for over two months) reduced fat accumulation, BMI, and
inflammatory markers (IL-1p, TNF-a, IL-6, MCP-1) and enhanced fatty acid oxidation in the liver [193].
L. rhamnosus GG and L. sakei NR28 also decreased the F/B ratio and reduced obesity-related markers
in mice [194]. Probiotics from the Lactobacillus and Bacillus genera lowered body weight, F/B ratio,
and hepatic steatosis in high-fat-diet models [195]. Additionally, Lactobacillus species in foods like
yogurt improve cholesterol profiles [196]. Probiotics reduce cholesterol by deconjugating bile salts,
which hinders lipid absorption [197]. Lactobacillus reuteri CRL1098 significantly lowers cholesterol,
triglycerides, and the HDL-to-LDL ratio without affecting microbial composition [198]. While
probiotics exhibit potential in tackling obesity and cholesterol-related challenges, considerable
research gaps remain. Future investigations should concentrate on identifying specific strains and
mechanisms of action, conducting extensive clinical trials, and standardizing research methodologies
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to yield more definitive evidence regarding the effectiveness of probiotics in managing obesity and
cholesterol levels.

8. Probiotics action in allergic infections and antioxidant response

Probiotics have revealed promising effects across a range of health conditions, including allergic
infections and antioxidant responses. However, there are notable research gaps in understanding their
mechanisms of action and effectiveness. In terms of allergic infections, while probiotics have indicated
potential benefits, the outcomes of clinical studies are in the preliminary stages and need further
validation [199]. The specific mechanism by which probiotics prevent pathogen-induced membrane
damage and modulate the immune system remains largely unknown [200]. Additionally,
inconsistencies in study designs, outcome measures, probiotic strains, dosages, and matrices used in
clinical trials make it difficult to reach definitive conclusions [201]. Concerning antioxidant responses,
there is a significant gap in research regarding the precise role of probiotics in modulating oxidative
stress and antioxidant defense systems across fish species [202]. The variations in experimental design
and species-specific responses add to the complexity of this field. Interestingly, while probiotics
demonstrate therapeutic potential for immune response-related conditions such as allergies and eczema,
their effectiveness in treating bronchial asthma has not been established [203]. Furthermore, the
influence of probiotics on specific viruses in respiratory tract infections has not been sufficiently
studied [201]. Future research should aim to standardize methodologies, explore species-specific
responses, and clarify the mechanisms of probiotic action in allergic infections and antioxidant
responses. Long-term studies with larger sample sizes, comparing different probiotic strains and
dosages, are necessary to establish strong correlations between dietary interventions and the observed
effects [201,202]. Additionally, further research is needed to understand the interactions between
probiotics and other factors. Allergic diseases pose a major global health and economic burden [204].
They result from hypersensitivity reactions of the immune system to allergens, activating mast cells
and basophils and releasing allergic mediators. Symptoms range from mild (sneezing, rashes) to
severe (anaphylaxis) [205,206]. WHO identifies several allergic conditions, such as asthma,
anaphylaxis, rhinitis, eczema, and hives, as well as triggers like food, drugs, and insect stings.
Probiotics are being explored for their anti-inflammatory potential in allergy prevention, though the
topic remains debated [207]. Lactobacillus plantarum L67, for instance, promotes IL-12 and IFN-y
production [208], while probiotics in general restore gut homeostasis and interact with immune cells
to reduce allergy symptoms [209]. They also boost mucosal IgA and activate T and B cells [210].
Bifidobacterium species have been shown to lower early eczema and atopic dermatitis risks in infants [211],
and Lactobacillus strains help prevent respiratory allergies by reducing MMP9 expression and
inflammation in lung tissue [212]. Meta-analyses support the role of probiotics in preventing allergic
conditions in children [213,214]. Oxidation is essential for energy production but generates reactive
oxygen species (ROS), such as Oz, H20:, and -OH, which may cause cellular damage if uncontrolled [215].
Probiotics exhibit antioxidant properties through enhancing antioxidase activity, producing antioxidant
metabolites, and modulating signaling pathways and gut microbiota. Lacticaseibacillus rhamnosus has
shown strong antioxidant activity in physically stressed individuals [216], and Lactobacillus paracasei
spp. paracasei YBJO1 improved serum SOD and GSH-Px activity in a dose-dependent manner, with
increased hepatic and splenic protein expression in mice [217]. Various probiotics also enhance
enzymes like glutathione S-transferase, glutathione reductase, GSH peroxidase, SOD, and catalase,
offering protection against oxidative and carcinogenic damage [218].
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9. Probiotics action in inflammatory bowel disease

Probiotic therapy holds great potential as an alternative management option for inflammatory
bowel disease (IBD), but the current evidence remains weak [219]. Meta-analyses of randomized
clinical trials indicate that probiotics have a significant impact on reducing symptoms like bloating and
flatulence in patients with IBD and improve the quality of life in comparison to control groups [220].
IBD is a collection of chronic inflammatory disorders of the gastrointestinal tract (GIT) with features
of diarrhea, fever, abdominal pain, ulcerative colitis, chronic disease progression, weight loss, and
nutritional deficiencies, including iron deficiency anemia [221,222]. Probiotic therapy has the potential
to be beneficial in the management of ulcerative colitis, but evidence of its efficacy in Crohn's disease
is conflicting [223]. Probiotics have been shown to induce intestinal angiogenesis by vascular
endothelial growth factor receptor (VEGFR) signaling, which is of importance in modulating acute
and chronic inflammation in intestinal mucosal tissue involved in IBD [224,225]. Probiotics are
important in immune system modulation by lowering inflammation through multiple pathways. They
control Toll-like receptor (TLR) and G-protein coupled receptor (GPR) pathways and stimulate anti-
inflammatory regulatory agents like A20, Bcl-3, and MKP-1, inhibiting lipopolysaccharide (LPS)-
stimulated TLR4 activation [226]. Certain pathways targeted by probiotics include the NF-xB,
mitogen-activated protein kinase (MAPK), and pattern recognition receptor (PRR) pathways.
Probiotics also block LPS binding to the CD14 receptor, inhibiting NF-kB activation and pro-
inflammatory cytokine induction [227]. Lactobacillus delbrueckii derived from dairy controls the NF-
kB pathway, dramatically attenuating inflammation in a DSS-colitis mouse model [228]. Treatment
with Bifidobacterium bifidum increases anti-inflammatory cytokines such as IL-10 but decreases pro-
inflammatory cytokines such as IL-1 in the colon [229]. Likewise, Bifidobacterium strains inhibit pro-
inflammatory cytokines such as IL-8 but induce IL-10 production in peripheral blood mononuclear
cells from ulcerative colitis patients [230]. Probiotics have been observed to elevate anti-inflammatory
cytokines like IL-10 and IL-12 and lower pro-inflammatory cytokines like IL-1f and IL-6 in different
infections [231,232]. This modulation is attributed to NF-xB and interferon-gamma (IFN-y)
suppression, alteration of cyclooxygenase-2 (COX-2), and elevated secretory IgA [233,234]. The
Lactobacillus casei strain greatly decreases IL-6 and IFN-y production in lipopolysaccharide (LPS)-
evoked murine chronic IBD models, improving anti-inflammatory responses [235]. Lactobacillus
gasseri also has shown greater anti-inflammatory effects against breast cancer by lowering TNF-a and
promoting IL-10 production [236]. Administration of live and heat-killed Lactobacillus plantarum
ANL1 has been reported to modulate the composition of gut microbiota and induce anti-inflammatory
action in murine models of IBD. The mechanisms involved were found to occur through the generation
of nitrogen oxide and exclusion of RAW264.7 cells from the toxic action of hydrogen peroxide, as
revealed by in vitro experiments [237]. Probiotics also inhibit LPS binding to CD14 receptors,
inhibiting total NF-«B activation and pro-inflammatory signaling [238].

10. Probiotics action in cancer disease

Probiotics have shown potential in cancer prevention and therapy by improving gut health and
enhancing immune function [239], with colorectal cancer (CRC) being a primary focus [240]. In
gastrointestinal cancers, they strengthen the intestinal barrier, lower oxidative stress, and inhibit tumor
growth [241]. Some studies also suggest a reduced risk of breast cancer with regular probiotic intake [242],
and emerging evidence indicates benefits in oral cancer through immune modulation [243]. In CRC
patients, probiotics help regulate gut microbiota by increasing beneficial bacteria and reducing harmful
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species like Fusobacterium [244]. Postoperative gastric cancer patients benefit from reduced
inflammation and improved immunity through probiotic use [245]. During chemotherapy, probiotics
help restore gut flora, increasing beneficial microbes and reducing harmful ones, thereby improving
outcomes [246-248]. Further research is needed to evaluate the long-term effects of probiotics and to
optimize their use in cancer therapy. Proposed mechanisms include carcinogen degradation, short-
chain fatty acid (SCFA) production, regulation of cell proliferation and apoptosis, and enhancement
of immune signaling. Additionally, heat-killed probiotics, when combined with radiation therapy, have
been shown to suppress cancer cell growth [249]. Lactobacillus fermentum strains promote colon
epithelial health and inhibit cancer cell growth via SCFAs, while L. acidophilus and L. rhamnosus also
show anti-tumor activity [240]. Probiotic lactic acid bacteria modulate fecal enzymes linked to colon
cancer [250], and strains like Bifidobacterium adolescentis SPM0212 suppress cancer cell lines [251].
Lactobacillus strains produce peptidoglycans that inhibit cancer cells [252] and enhance chemotherapy
effects [253]. E. coli Nissle 1917 boosts anti-tumor immunity in liver cancer [254], and L. casei-
derived ferrichrome induces apoptosis via the JINK pathway [255]. Lactococcus lactis KC24 exhibits
anticancer effects on various cell lines [256]. Clinical and preclinical studies confirm probiotic roles
in carcinogen degradation, gut microbiota modulation, and enzyme reduction [257]. Probiotics also
combat breast cancer by modulating cytokines [258] and enhancing immune responses [259]. Strains
such as L. rhamnosus, L. casei, L. paracasei, and L. plantarum suppress cancer cell growth by
downregulating ErbB-2 and ErbB-3 [260], with clinical trials supporting improved anticancer
outcomes [261].

11. Encapsulation of probiotics

Biopolymers are essential in the microencapsulation process of probiotics for promoting their
storage and viability while being transported through the upper gastrointestinal tract [262]. Micro- and
nanoencapsulation methods have been efficient in enhancing the viability, stability, and long-term
storage of probiotics in food and pharmaceutical production [263]. Several encapsulation techniques,
including lyophilization, spray drying, extrusion, coacervation, and emulsion, have been used to attain
such results [264]. Probiotic encapsulation, normally conducted using biopolymer beads through
extrusion in water-in-oil emulsions, is a strong weapon to preserve probiotic cells under adverse
conditions. Methods such as spray drying, spray chilling, spray-freeze drying, freeze drying, extrusion,
coacervation, electro-spraying, and fluidized bed encapsulation have found extensive applications to
enhance probiotic viability and storage stability [265]. Pectin, for example, is commonly employed to
encapsulate probiotics through extrusion and emulsion methods since it promotes gastric and intestinal
resistant encapsulation [266]. Novel processes, such as electrospinning and electrospray processes,
have been promising to encapsulate probiotics effectively [267-269]. The encapsulation processes also
prevent degradation of probiotics and their bioactive compounds during food processing and digestion.
Encapsulation in bulk solid matrices such as milk protein, lactose, or polysaccharides through
techniques, including spray drying, freeze drying, and extrusion, is a standard procedure [270].
Encapsulation is a strong system for encapsulating whole cells or bioactive compounds, such as
enzymes, polyphenols, antioxidants, and micronutrients, in capsules for precise delivery.
Encapsulation techniques are divided by material size: microencapsulation (3—800 um) or
nanoencapsulation (10-1000 nm). These systems boost bioavailability and safeguard bioactive
compounds under suboptimal conditions. For example, xanthan-based encapsulation enhances the
viability of probiotics by a significant margin and regulates the targeted release of encapsulated
agents [271]. Chitosan-based encapsulation has also been proven to enhance the viability and survival
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of Bifidobacterium longum DD98 in intestinal conditions [271]. Conversely, xanthan—chitosan (XC)
blends improve Bifidobacterium bifidum survival at temperature conditions of 4 and 25 <C, in contrast
to nonencapsulated cells [272]. Alginate-chitosan blends effectively enhance probiotic viability during
colon delivery while minimizing porosity [273,274]. Additionally, new materials like k-carrageenan
have exhibited important advancements in probiotic viability and survival in the gut versus
unencapsulated cells [275]. Microencapsulation using k-carrageenan potentially inhibits Helicobacter
pylori infection in the stomach [276]. Polysaccharides and protein wall materials are generally utilized
for encapsulating probiotics [277]. These substances shield probiotics from poor conditions and boost
their resilience, hence minimizing cell loss in hydrocolloid matrices [278,279]. Various encapsulation
materials, such as xanthan, chitosan, and carrageenan, have proved useful in preserving the viability
of probiotics [280]. Microencapsulation is an important tool in creating nutraceutical products and new
food carriers for probiotics [281,282]. It is especially vital for increasing probiotic viability in acidic
environments in the stomach [283]. Moreover, multilayer encapsulation techniques provide better
survivability of probiotic cells [284,285] (Figure 2).
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Figure 2. Probiotics are encapsulated in different techniques.

12. Probiotics action in food supplements

Functional foods were initially released by the Japanese government back in 1991, covering a
broad spectrum of ingredients like proteins, vitamins, fibers, probiotic bacteria, and other additives to
improve human health [286]. Out of these, probiotic food formulations have become a major focus
area of study, greatly influencing the future food industry. The market value of probiotic supplements
escalated exponentially, from $3.3 billion in 2015 to an estimated $7 billion in 2025. The food and
agriculture sectors are changing at a tremendous pace, requiring continuous innovation and
technological advancements to enhance the quality of food products [287]. Probiotic functional foods
were found to have a beneficial effect on human health [42]. Probiotic bacteria that are ingested in the
range of 10® to 10° CFU per gram per day are specifically known to promote physiological
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functions [288,289]. Several food ingredients impact the viability and growth of these probiotic
bacteria. NaCl and KCI salts, sucrose and lactose sugars, sweeteners acesulfame and aspartame, and
artificial coloring and flavoring additives are some of the compounds that can impact probiotic stability.
Other factors such as aroma compounds (e.g., diacetyl, acetaldehyde, acetoin), nisin (a polypeptide
antibiotic), lysozyme, nitrites, and natamycin also play a significant role in supporting cell viability
and growth [290,291]. Probiotics bring many advantages, such as increased nutritional value,
preservation of gut flora, better immune system function, synthesis of antimicrobial substances, and
suppression of gut pathogens. Fermented foods with probiotics play a role in these effects by
generating peptides, enzymes, antimicrobial compounds, and antioxidants [292]. Meta-analyses and
randomized trials show that probiotic supplements are very effective in enhancing human health [293].
Some of the factors that affect the viability of probiotics in food items include conditions of storage,
humidity, and temperature. Moreover, probiotics are added to different food items, including yogurt,
cheese, milk, cereals, chocolate, sausages, dried products, meat, vegetables, and drinks [294]. Research
on probiotics delivered via gastrointestinal-targeted products like drug and food-based formulations is
progressing fast. Drug formulations have been more promising than food-based products in some
applications [295]. Probiotics improve the shelf life and safety of foodstuffs and are extensively
utilized in medical and veterinary applications owing to their safety profile. Fermented foods such as
fermented milk products, cheese, and yogurt are popular sources of probiotics [296]. Probiotic strains
like Bifidobacteria, Lactobacillus, and Streptococcus are found in fermented food products naturally [297].
Lactic acid bacteria help in food preservation by generating organic acids that prevent the action of
spoilage microorganisms. These bacteria are used in several fermented foods, such as yogurt, butter,
cheese, kefir, sourdough, brined vegetables, sauerkraut, soy curd, idli batter, uttapam, fermented meat,
and drinks [298-303]. Maintenance of the growth, viability, and survival of probiotic microorganisms
is essential for product formulation, and milk products are the most appropriate carriers in most cases.
In recent times, non-dairy products have also become popular for probiotic delivery. For instance,
pomegranate juice sustains the growth of L. acidophilus and L. paracasei [304]. Other non-dairy
substrates like fruits, vegetables, cereals, soy, and meat contain necessary nutrients such as proteins,
vitamins, dietary fibers, and antioxidants, which qualify them for the development of probiotics [305].
Foods such as milk, buttermilk, flavored liquid milk, milk powder, fermented milk, yogurt drinks, and
ice cream continue to be the favored carriers of probiotics. Nevertheless, cereals also demonstrate
potential as nutrient substrates, which augment the availability of vitamin B, lysine quality, and
diminish non-digestible carbohydrates upon fermentation [306]. Fruit products supplemented with
probiotics provide health benefits, a pleasant taste, and added market value [307,308]. For example,
probiotic drinks produced from peach juice fermented using L. delbrueckii are ideal for lactose-
intolerant consumers [309]. Moreover, olive-derived probiotic beverages are rich in nutrients because
they contain organic acids, phenols, antioxidants, and lactic acid bacteria like L. pentosus, L. plantarum,
L. mesenteroides, L. brevis, and Pediococcus cerevisiae [310] (Table 3 and Figure 3).
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Table 3. Encapsulation of probiotics.

Probiatic strain Materials Encapsulation Technology References
Saccharomyces boulardii Whey Agglomeration/Spray-drying [311]
Lactobacillus delbrueckii Soy protein isolate (SPI) and Complexation [312]
high methoxy pectin (HMP)
Lactobacillus rhamnosus GG Cellulose and chitosan Crosslinking [313]
Lactobacillus plantarum Aguamiel, Ag, or sweet whey, Double emulsion [314]
SW, as inner aqueous phase
Bifidobacterium animalis subsp. Whey protein concentrate and Electrospinning [315]
lactis Bb12 Pullulan
Bifidobacterium longum Alginate—human-like collagen Electrostatic droplet generation [316]
BIOMA 5920
Lactobacillus rhamnosus Whey protein isolate/whey Electrospraying/freeze [317]
ATCC 7469 protein isolate and inulin/whey drying/spray drying
protein isolate and inulin and
persian gum
Lactobacillus plantarum DKL 109 Na- alginate (Al), alginate/1% External ionic gelation [318]
gellan ~ gum,  Alginate/gum
Arabic
Lactobacillus paracasei LAFTI® Na-alginate Extrusion [319]
L26, Lactobacillus acidophilus Ki,
Bifidobacterium animalis BB-12,
Lactobacillus casei -01
Lactobacillus reuteri Sweet whey and shellac Fluidized bed [320,321]
microencapsulation
Lactobacillus acidophilus Chitosan and carboxymethyl Layer by layer [321]
cellulose
Lactobacillus casei Sodium caseinate and gellan Ph-induced gelation [322]
gum
Bifidobacterium lactis, Vegetable fat with lecithin Spray chilling [323]
Lactobacillus acidophilus
Lactobacillus reuteri DSM 17938  Alginates-chitosan Vibrating technology/extrusion [324]
Lactobacillus plantarum Whey protein isolate with Spray drying and freeze drying [325]
sodium alginate and denatured
whey protein isolate with sodium
alginate
Lactobacillus plantarum K-carrageenan Emulsification, freeze-drying, or [326]
extrusion.
Lactobacillus plantarum Sodium alginate (SA) PVA Electrospinning [327]
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Figure 3. Probiotics supplement in different food products.
13. Future perspectives

While traditional probiotic uses in foods and supplements remain relevant, new perspectives are
turning probiotics into precision-targeted biotherapeutics. Second-generation probiotics (e.g.,
Akkermansia muciniphila, Faecalibacterium prausnitzii) deliver targeted advantage in metabolic,
inflammatory, and/or neurodegenerative disease by defined molecular mechanisms. New technologies
in personalized nutrition and Al-driven microbiome analysis now enable the tailoring of probiotic
regimens to genetic and microbial profiles, and as a result, clinical outcomes are enhanced. Synthetic
biology has enabled engineered probiotics to detect disease biomarkers and deliver therapeutic
molecules like IL-10 in situ to offer intelligent, targeted treatment. Psychobiotics like Lactobacillus
rhamnosus act on the gut-brain axis and have the potential to treat mental disease. New delivery
technologies like smart encapsulation and stimulus-sensitive systems are improving viability, site-
specific action, and neuroprotection.

Aside from the gut, topical probiotics and postbiotics are transforming dermatology by
modulating the skin microbiome, but in agriculture and veterinary medicine, they reduce the use of
antibiotics and enhance animal and plant resilience. In space medicine, they sustain astronaut
microbiota in extreme environments, with engineered strains in progress for long-duration spaceflight.
Finally, probiotics are rapidly evolving from general health supplements to complex, microbiome-
directed treatments with applications in precision medicine, neurobiology, dermatology, sustainable
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agriculture, and space health. This is built on mechanistic insight, clinical proof, and new delivery
systems that place probiotics at the forefront of next-generation biotherapies.

14. Conclusion

Probiotics have become a cornerstone of health promotion, with enormous potential in a wide
range of applications in medicine, food, agriculture, aquaculture, and environmental management. This
review underscores their roles in disease prevention, immune system modulation, regulation of gut
microbiota, and functional food development. The novel encapsulation methods presented here have
great potential in promoting the stability and targeted delivery of probiotics and guaranteeing their
effectiveness across applications. To tap the full potential of probiotics, researchers should emphasize
optimizing encapsulation materials and methods for better viability in production, storage, and delivery.
Individualized probiotics customized to unique gut microbiomes are a promising area, with possible
applications in treating metabolic disorders, neurodegenerative disorders, and autoimmune diseases.
The application of probiotics in sustainable agriculture and aquaculture can also help meet global
health and environmental objectives. Probiotic incorporation into daily products and interdisciplinary
interactions between microbiology, food science, and biotechnology will be instrumental in further
developing their applications. Taking these paths enables probiotics to further develop as indispensable
resources for enhancing the health and well-being of human beings, animals, and environments.

Probiotic science is a dynamic and fast-evolving field with enormous potential to modulate
gastrointestinal, metabolic, allergic, and infectious diseases. While promising preclinical and early
clinical data are being reported, results are largely strain-dependent, context-specific, and derived from
small sample sizes and short-duration studies. This again highlights the essential need for high-quality,
large-scale clinical trials and standardized protocols to determine efficacy and safety. Mechanistically,
probiotics function by competitive exclusion, antimicrobial metabolite secretion, immune modulation,
enhancement of the epithelial barrier, and gut-organ axis communication. Next-generation and
designed probiotics with precision-targeted action are being developed based on advances in multi-
omics and synthetic biology. Postbiotics and paraprobiotics are safer, stable, and immunomodulatory
substitutes. However, heterogeneous global regulatory frameworks limit their use in clinical practice.
Future cross-disciplinary approaches with clinical research, molecular understanding, personalized
microbiome analysis, and regulatory harmonization are needed to reposition probiotics as general
supplements to precision biotherapeutics for human health, functional foods, and public health.
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