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 A B S T R A C T

This project investigates the approximate controllability of a class of stochastic integrodifferential equations in 
Hilbert space with non-local beginning conditions. In a departure from the conventional concerns expressed 
in the literature, we will not consider compactness or the Lipschitz criteria concerning the nonlocal term. We 
use the fact that the resolvent operator is compact. We first prove the controllability of the nonlinear system 
using Schauder’s fixed point theorem, a method known for its robustness; as well, we also use Grimmer’s 
resolvent operator theory. Subsequently, we employ the reliable approximation methods and the powerful 
diagonal argument to determine the approximate controllability of the stochastic system. To conclude, we 
present an example that validates our theoretical statement.
1. Introduction

This paper seeks to provide the necessary criteria for the approxi-
mate controllability of abstract nonlinear integrodifferential equations 
with nonlocal initial conditions powered by a cylindrical Wiener pro-
cess of the following form: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜗′(𝜎) = 𝐴𝜗(𝜎) + ∫

𝜎

0
𝛱(𝜎 − 𝑠)𝜗(𝑠)d𝑠 + 𝐶𝑢(𝜎) + 𝑓 (𝜎, 𝜗(𝜎))

+𝑔(𝜎, 𝜗(𝜎))d𝖶(𝜎), 𝜎 ∈ 𝐽 = [0, 𝑐]
𝜗(0) = ℎ(𝜗),

(1.1)

where the state 𝜗(⋅) takes values in the Hilbert space H, endowed with 
inner product ⟨⋅, ⋅⟩ and norm ‖⋅‖; the operator 𝐴 ∶ (𝐴) ⊂ H → H is the 
infinitesimal generator of a strongly continuous semigroup (𝑇 (𝜎))𝜎≥0 in 
H; for 𝜎 ≥ 0,𝛱(𝜎) is a closed linear operator with domain (𝛱(𝜎)) ⊃
(𝐴) independent of 𝜎. The nonlocal function ℎ is defined by

ℎ(𝜗) = ∫

𝑐

0
𝜁 (𝑠, 𝜗(𝑠))d𝑠.

Consider Y to be an additional separable Hilbert space powered by 
the same scalar product and norm as H (without any confusion), the 
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set {𝖶(𝜎) ∶ 𝜎 ≥ 0} is a given Y-valued Wiener process with a 
finite trace nuclear covariance operator  ≥ 0 defined on a complete 
filtered probability space (𝛺, , {𝜎}𝜎≥0,P), with {𝜎}𝜎≥0 generated by 
the Wiener process 𝖶. The control functions 𝑢(⋅) belong to the Banach 
space of admissible control functions space 𝐿2

 (𝐽 ,Y), and 𝐶 ∶ Y → H
is a bounded linear operator. Later, the nonlinear functions 𝑓, 𝑔, and 𝜁
will be defined.

Stochastic differential equations are used in fields such as engi-
neering, economics, biology, electricity, etc., to model the noise effects 
that occur when studying the phenomena that appear in these fields 
(see [1–3], Da Prato and J. Zabesczyk book [4] and references therein). 
The study of the qualitative properties like existence, stability, optimal 
control, and controllability, among others, of these kinds of systems, 
has attracted great interest in the researcher and engineers community; 
for instance, we refer to [5,6] as references.

On the other hand, controllability is an important concept in control 
theory, both in deterministic and stochastic cases. In infinite dimension, 
we are always tempted to achieve exact controllability, i.e., to be 
able to steer a system between two arbitrary points 𝑣0, 𝑣1 in state 
space, as we are able to do in finite dimension. However, this is rarely 
https://doi.org/10.1016/j.sysconle.2025.106122
Received 6 January 2025; Received in revised form 20 April 2025; Accepted 27 Ap
vailable online 16 May 2025 
167-6911/© 2025 Elsevier B.V. All rights are reserved, including those for text and
ril 2025

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/sysconle
https://www.elsevier.com/locate/sysconle
mailto:ly.mamadou-pathe@ugb.edu.sn
mailto:ravikumarkpsg@gmail.com
mailto:ramkumarkpsg@gmail.com
mailto:chalishajardn@vmi.edu
mailto:mamadou-abdoul.diop@ugb.edu.sn
https://doi.org/10.1016/j.sysconle.2025.106122
https://doi.org/10.1016/j.sysconle.2025.106122
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2025.106122&domain=pdf


M.P. LY et al. Systems & Control Letters 203 (2025) 106122 
satisfied when the semigroup associated with a linear system is compact 
since the controllability operator is asked to be surjective, see [7,8] 
to learn more about this. Therefore, we need to switch from exact 
controllability to a weaker one, which is approximate controllability. 
In recent years, much work has been done in the study of approximate 
controllability of fractional differential systems in the deterministic 
and stochastic cases; see [9–13]. Sakthivel et al. [10] established the 
approximate controllability by assuming that the 𝐶0-semigroup is com-
pact and the nonlinear function is continuous and uniformly bounded. 
More recently, K. Nandhaprasadh, R. Udhayakumar [14], discussed 
the approximate boundary controllability of Hilfer fractional neutral 
stochastic differential inclusions with fractional Brownian motion (fBm) 
and Clarke’s subdifferential in Hilbert space, and examine whether mild 
solutions to a fractional stochastic evolution system with a fractional 
Caputo derivative on an infinite interval exist and are attractive, and 
in [15], S. Sivasankar et al. examine whether mild solutions to a frac-
tional stochastic evolution system with a fractional Caputo derivative 
on an infinite interval exist and are attractive. However, little has 
been done on the study of stochastic integrodifferential systems by 
means of the Grimmer resolvent operator properties. Diop et al. [16] 
studied the existence of optimal controls for some impulsive stochastic 
integrodifferential equations with state-dependent delay.

Moreover, the nonlocal property represents one of the most impor-
tant tools to consider when using integrodifferential in the applications 
we have described above. Indeed, nonlocal initial conditions mean that 
the current state of a system depends not only on its previous state 
but also on all its previous states. It also means that, contrary to the 
abstract differential equation, where the initial condition is taken to 
be 𝜗(0) = 𝜗0, in order to check the state of nonlocal equations at 
a given point, information about the values of the system far from 
that point is needed; one can see [17] for more explanation about 
the importance of the nonlocal initial condition property. Differential 
equations with the nonlocal property have been investigated by many 
authors [17,18], and in the paper of Byszewski [19], the study of 
differential equations by taking into account the nonlocal property has 
been introduced for the first time. But more often, the restrictions, 
such as compactness or the Lipschitz condition, that are imposed on 
the nonlocal term ℎ in the literature are too strong and are not easily 
satisfied in practical applications. To relax these conditions on ℎ, Liang 
et al. [20] introduced the following assumption:
(𝐇𝟎) For any 𝑥, 𝑦 ∈ 𝐶([0, 𝑐];𝑋),  there exist a constant 𝛽 ∈ (0, 𝑐) such that 

𝑥(𝜎) = 𝑦(𝜎)(𝜎 ∈ [𝛽, 𝑐]) implies ℎ(𝑥) = ℎ(𝑦)

This means that the values of the solution 𝜗(𝜎) when 𝜎 takes zero do 
not affect ℎ. In this work, contrary to what is supposed in the above 
hypothesis (H0), we consider that the nonlocal term ℎ(𝜗) depends on 
all values of the solution 𝜗(⋅) on the whole interval [0, 𝑐]. In [21], 
Yonghong Ding and Yongxiang Li study the approximate controllability 
of fractional stochastic evolution equations with nonlocal conditions. 
Therefore, based on this work, [21], with the help of the compactness 
of the resolvent operator ℜ(𝜎), the techniques of stochastic analysis, 
approximation technique, diagonal argument, and Schauder’s fixed 
point theorem, to establish the approximate controllability results, 
considering weaker assumptions like continuity of ℎ.

The main contributions of this paper are summarized in the follow-
ing points:

∙ A new result on the approximate controllability of nonlocal 
stochastic integrodifferential equations in Hilbert space is ob-
tained.

∙ We relax the compactness conditions on the nonlocal term and 
use the Grimmer resolvent operator and the fixed point theory to 
establish the existence of a mild solution for system (1.1).

∙ Finally, we use approximation techniques and the diagonal ar-
gument to prove the approximate controllability of our system 
(1.1).
2 
The rest of this work is organized as follows. In Section 2, we recall 
some notions and basic known facts that will help us establish our 
results. In Section 3, we define the notion of a mild solution and give 
sufficient conditions that ensure its existence. In Section 4, we establish 
the approximate controllability of the system (1.1). In Section 5, we 
give an example to illustrate the feasibility of our obtained results.

2. Preliminaries results

In this section, we present the well-known essential facts, basic 
definitions, lemmas, and preliminary results that are used throughout 
this paper.

2.1. Wiener process

All through this work we consider (𝛺, ,{𝜎
}

0≤𝜎≤𝑐 ,P) with 𝑐 > 0 an 
arbitrarily fixed time horizon, as a filtered complete probability space 
satisfying the usual conditions, which means that the filtration is a 
right continuous increasing family and 0 contains all P-null sets of the 
filtration  . We also consider H and Y as two real separable Hilbert 
spaces, with ⟨⋅, ⋅⟩H, ⟨⋅, ⋅⟩Y their inner product and ‖ ⋅ ‖H, ‖ ⋅ ‖Y their 
corresponding vector norms, respectively. Let {𝑒𝑘

}

𝑘∈N be a complete 
orthonormal basis of Y consisting of eigenvectors of  corresponding 
to the eigenvalues 𝜆𝑘, 𝑘 ∈ N. Suppose that the set {𝖶(𝜎) ∶ 𝜎 ≥ 0} is 
a cylindrical Y− valued Brownian motion or Wiener process defined 
on the filtered probability space (𝛺, ,{𝜎

}

𝜎≥0 ,P) with finite trace 
nuclear covariance operator  ≥ 0 denoted by:

𝑇 𝑟() =
∞
∑

𝑘=1
𝜆𝑘 = 𝜆 < +∞,

which satisfies that 𝑒𝑘 = 𝜆𝑘𝑒𝑘, 𝑘 ∈ N. Let {𝛾𝑘(𝜎), 𝑘 ∈ N
} be a sequence 

of one-dimensional standard Wiener processes mutually independent 
on (𝛺, , {}𝜎≥0 ,P) such that for 𝜎 ≥ 0, 

𝖶(𝜎) =
∞
∑

𝑘=1

√

𝜆𝑘𝛾𝑘(𝜎)𝑒𝑘, (2.1)

where

𝛾𝑘(𝜎) =
1

√

𝜆𝑘
⟨𝖶(𝜎), 𝑒𝑘⟩, 𝑘 ∈ N,

represents a pair of independent real-valued Brownian motions on 
(𝛺, ,

{

𝜎
}

𝜎≥0 ,P) (see [4] for more details on the series (2.1)).
Furthermore, we review the meaning of the H-valued stochastic 

integral in relation to the Y-valued -Wiener process 𝖶. Let 𝐿0
2 =

𝐿2(
1
2 (Y),H) represent the space of all Hilbert–Schmidt operators from 


1
2 𝑌  into H with the norm

‖𝜙‖2
𝐿0
2
= 𝑇 𝑟((𝜙1∕2)(𝜙1∕2)∗),

where 𝜙∗ is the adjoint of the operator 𝜙 ∈ 𝐿0
2. We observe that, here, 

this norm can be reduced to

‖𝜙‖2
𝐿0
2
= 𝑇 𝑟(𝜙𝜙∗) =

∞
∑

𝑘=1
‖

√

𝛾𝑘𝜙𝑘‖
2.

Let (𝐽 , 𝐿2(𝛺,H)) represent the Banach space of all continuous map-
pings from 𝐽 to 𝐿2(𝛺,H) that fulfill sup𝜎∈𝐽 (E‖𝜗(𝜎)‖2) < ∞. We refer 
to (𝐽 , 𝐿2(𝛺,H)) as the space of all 𝜎 -adapted measurable processes 
𝜗 ∈ (𝐽 , 𝐿2(𝛺,H)) endowed with the norm ‖𝜗‖ = (E‖𝜗(𝜎)‖)1∕2.

The result that follows will be used to calculate the system’s stochas-
tic integral. 

Lemma 2.1 ([22]). If 𝑔 ∶ 𝐽 × H → 𝐿(𝑌 ,H) is continuous function and 
𝜗 ∈ (𝐽 , 𝐿2(𝛺,H)), then

E‖∫ 𝑔(𝜎, 𝜗(𝜎))d𝖶(𝜎)‖2 ≤ 𝑇 𝑟()∫ E‖𝑔(𝜎, 𝜗(𝜎))‖2d𝜎.

𝐽 𝐽
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2.2. Integrodifferential equation

By defining 𝑌  as a Banach space, (𝐴) powered with the graph norm 
given by
‖𝑦‖𝑌 ∶= ‖𝐴𝑦‖ + ‖𝑦‖ for 𝑦 ∈ 𝑌 .

Let us take into account the following Cauchy problem: 
⎧

⎪

⎨

⎪

⎩

𝜗′(𝜎) = 𝐴𝜗(𝜎) + ∫

𝜎

0
𝛱(𝜎 − 𝑠)𝜗(𝑠)𝑑𝑠 for 𝜎 ≥ 0

𝜗(0) = 𝜗0 ∈ 𝖷.
(2.2)

To deal with a resolvent operator, we suppose that 𝐴 and 𝛱(⋅) meet 
the following criteria:

(R1) 𝐴 is the infinitesimal generator of a 𝐶0-semigroup 𝑇 (𝜎), 𝜎 ≥ 0 of 
uniformly bounded operators in 𝖷.

(R2) For all 𝜎 ≥ 0,𝛱(𝜎) is a closed linear operator from (𝐴) to 
𝖷 and 𝛱(𝜎) ∈ 𝐵(𝑌 ,𝖷). For any 𝑦 ∈ 𝑌 , the map 𝜎 → 𝛱(𝜎)𝑦
is bounded, differentiable, and the derivative 𝜎 → 𝛱 ′(𝜎)𝑦 is 
bounded uniformly continuous on R+.

Definition 2.2 ([23]). Let 𝜗0 ∈ 𝑌 . A solution 𝜗(⋅) of (2.2) is a function 
that belongs to 𝐶([0,∞), 𝑌 ) ∪𝐶1([0,∞),𝖷) so that 𝜗(0) = 𝜗0 and (2.2) is 
satisfied for all 𝜎 ≥ 0.

The definition of a resolvent operator (in the sense of Grimmer) follows 
logically from the definition given above. 

Definition 2.3 ([23]). A resolvent for Eq. (2.2) is a bounded linear 
operator-valued function ℜ(𝜎) ∈ 𝐵(𝖷) for 𝜎 ≥ 0, having the following 
properties:

(a) ℜ(0) = 𝐼 and |ℜ(𝜎)| ≤ 𝑀𝑒𝛽𝜎 for some constants 𝑀 > 0 and 
𝛽 ∈ R.

(b) For each 𝜗 ∈ 𝖷,ℜ(𝜎)𝜗 is continuous for 𝜎 ≥ 0.
(c) ℜ(𝜎) ∈ 𝐵(𝑌 ) for 𝜗 ∈ 𝑌 ,ℜ(⋅)𝜗 ∈ 1([0,+∞);𝖷)∩([0; +∞); 𝑌 ) and

ℜ′(𝜎)𝜗 = 𝐴ℜ(𝜎)𝜗 + ∫

𝜎

0
𝛱(𝜎 − 𝑠)ℜ(𝑠)𝜗d𝑠

= ℜ(𝜎)𝐴𝑣 + ∫

𝜎

0
ℜ(𝜎 − 𝑠)𝛱(𝑠)𝜗d𝑠, 𝜎 ≥ 0,

We recommend reading [23,24] and the reference therein, for more 
information about the resolvent operators and some of their most 
crucial characteristics. 

Theorem 2.4 ([23]). Assume that (𝐇𝟏) − (𝐇𝟐) hold. Then there exists a 
unique resolvent operator for the Cauchy problem (1.1).

In the following, we give some results for the existence of solutions 
for the following integrodifferential equation: 
⎧

⎪

⎨

⎪

⎩

𝜗′(𝜎) = 𝐴𝑣(𝜎) + ∫

𝜎

0
𝛱(𝜎 − 𝑠)𝜗(𝑠)𝑑𝑠 + 𝑞(𝜎) for 𝜎 ≥ 0

𝜗(0) = 𝜗0 ∈ 𝖷,
(2.3)

where 𝑞 ∶ R+ → 𝖷 is a continuous function. 

Definition 2.5 ([23]). A continuous function 𝜗 ∶ R+ → 𝖷 is a strict 
solution of Eq.  (2.3) if:

1. 𝜗 ∈ 1(R+;𝖷)
⋂

(R+; 𝑌 ) and
2. 𝜗 satisfies Eq.  (2.3).

Theorem 2.6 ([23]). Assume that (H1)-(H2) is verified. If 𝜗 is a strict 
solution of Eq.  (2.3), then

𝜗(𝜎) = ℜ(𝜎)𝜗0 + ∫

𝜎
ℜ(𝜎 − 𝑠)𝑞(𝑠)𝑑𝑠 𝑓𝑜𝑟 𝜎 ≥ 0.
0

3 
Lemma 2.7 ([24]). Assume that (R1)-(R2) is satisfied. The resolvent 
operator (ℜ(𝜎))𝜎≥0 is compact for 𝜎 > 0 if and only if the semigroup 
(𝑇 (𝜎))𝜎≥0 is compact for 𝜎 > 0.

Lemma 2.8 ([23]). Assume that (R1)-(R2) is satisfied. If the resolvent 
operator (ℜ(𝜎))𝜎≥0 is compact for 𝜎 > 0, then it is norm continuous (or 
continuous in the uniform operator topology) for 𝜎 > 0.

Lemma 2.9 ([24]). For all 𝑐 > 0, there exists a constant 𝛾 = 𝛾(𝑐) such that
‖ℜ(𝜎 + 𝜖) −ℜ(𝜖)ℜ(𝜎)‖𝖷 ≤ 𝛾𝜖, for 0 ≤ 𝜖 ≤ 𝜎 ≤ 𝑐.

In the following, we give the related definition of approximate 
controllability. 

Definition 2.10.  The admissible set of system (1.1) at the terminal 
time 𝑐 is then referred to as

(𝑐) =
{

𝜗(𝑐, 𝑢) ∶ 𝑢 ∈ 𝐿2
 (𝐽 ,Y)

}

,

where 𝜗(𝑐; 𝑢) denotes the state value of system (1.1) at the terminal 
time 𝑐 which corresponds to the control 𝑢.

The above leads to the definition of approximate controllability of 
system (1.1). 

Definition 2.11 ([11]). The stochastic nonlocal integrodifferential sys-
tem (1.1) is said to be approximately controllable on the interval 𝐽 if we 
have (𝑐) = H. That is, for all 𝜖 > 0 and every desired final state 𝜗1 ∈ H, 
there exists a control 𝑢 ∈ 𝐿2

 (𝐽 ,Y) such that 𝜗 satisfies ‖𝜗(𝑐) − 𝜗1‖ < 𝜖.
In order to determine the approximate controllability result of 

system (1.1), we take into account the approximate controllability of 
the subsequent linear integrodifferential system: 

⎧

⎪

⎨

⎪

⎩

𝜗′(𝜎) = 𝐴𝜗(𝜎) + ∫

𝜎

0
𝛱(𝜎 − 𝑠)𝜗(𝑠)d𝑠 + 𝖢𝑢(𝜎) for 𝜎 ∈ 𝐽 = [0, 𝑐]

𝜗(0) = 𝜗0,

(2.4)

and define the following controllability and resolution operators,
⎧

⎪

⎨

⎪

⎩

𝛥𝑐0 = ∫

𝑐

0
ℜ(𝑐 − 𝑠)𝖢𝖢∗ℜ∗(𝑐 − 𝑠)d𝑠

𝑆(𝜇, 𝛥𝑐0) = (𝜇𝐼 + 𝛥𝑐0)
−1, 𝜇 > 0,

where the operators 𝖢∗ and ℜ∗(𝜎) denote the adjoint of 𝖢 and ℜ(𝜎), 
respectively. It is commonly known that the operator 𝛥𝑐0 is linearly 
bounded and that ‖𝑆(𝜇, 𝛥𝑐0)‖ ≤ 1

𝜇 . 

Lemma 2.12 ([25]). The linear system (2.4) is said to be approximately 
controllable on [0, 𝑐] if and only if, 𝜇𝑆(𝜇, 𝛥𝑐0) → 0 when 𝜇 → 0 in the strong 
operator topology.

Lemma 2.13 ([5]). For any 𝜗̃𝑐 ∈ 𝐿2(𝛺,H), there exists a function 𝜙 ∈
𝐿2
 (𝛺;𝐿2(𝐽 , 𝐿0

2)) so that,

𝜗̃𝑐 = E𝜗̃𝑐 + ∫

𝑐

0
𝜙(𝑠)d𝖶(𝑠).

A control function can now be introduced for any 𝜇 > 0, 𝜗̃𝑐 ∈
𝐿2(𝛺,H) by 

𝑢𝜇(𝜎, 𝜗) =𝖢∗ℜ∗(𝑐 − 𝜎)(𝜇𝐼 + 𝛥𝑐0)
−1

[

(E𝜗̃𝑐 −ℜ(𝑐)ℎ(𝜗)) + ∫

𝑐

0
𝜙(𝑠)d𝖶(𝑠)

− ∫

𝑐

0
ℜ(𝑐 − 𝑠)𝑓 (𝑠, 𝜗(𝑠))d𝑠

−
𝑐
ℜ(𝑐 − 𝑠)𝑔(𝑠, 𝜗(𝑠))d𝖶(𝑠)

]

.

(2.5)
∫0
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3. Existence of mild solution of system (1.1)

In this section, we establish the existence of a mild solution of the 
system (1.1). We assume that (R1) and (R2) are true in H for the 
remainder of this article.

The following is the definition of the mild solution for the system 
(1.1). 

Definition 3.1.  For any given control function 𝑢 ∈ 𝐿2
 (𝐽 ,Y), a 

stochastic process 𝜗 is said to be a mild solution of (1.1) on 𝐽 if 
𝜗 ∈ (𝐽 , 𝐿2(𝛺,H)) and satisfies

(i) 𝜗(𝜎), 𝜎 ∈ 𝐽 is 𝜎 - adapted and measurable;
(ii) 𝜗(𝜎), 𝜎 ∈ 𝐽 can be writing as the following

𝜗(𝜎) = ℜ(𝜎)ℎ(𝜗) + ∫

𝜎

0
ℜ(𝜎 − 𝑠)[𝑓 (𝑠, 𝜗(𝑠)) + 𝐶𝑢(𝑠)]d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)𝑔(𝑠, 𝜗(𝑠))d𝖶(𝑠).

We adopt the following weak assumptions for nonlinear functions 
𝑓, 𝑔, and nonlocal function ℎ in order to demonstrate the existence 
results of mild solution:

(H1) The function 𝑓 ∶ 𝐽 × H → H is Carathéodory continuous. 
Additionally, 𝜏𝑓 ∈ 𝐿1(𝐽 ,R+) exists along with a nondecreasing 
continuous function 𝛺𝑓 ∶ R+ → R+ such that
E‖𝑓 (𝜎, 𝜗)‖2H ≤ 𝜏𝑓 (𝜎)𝛺𝑓 (E‖𝜗‖2H), 𝑎.𝑒 𝜎 ∈ 𝐽 ,∀𝜗 ∈ H.

(H2) The function 𝑔 ∶ 𝐽 × H → 𝐿0
2 is Carathéodory continuous. 

Additionally, a function 𝜏𝑔 ∈ 𝐿1(𝐽 ,R+) exists, along with a 
nondecreasing continuous function 𝛺𝑔 ∶ R+ → R+ such that
E‖𝑔(𝜎, 𝜗)‖2

𝐿0
2
≤ 𝜏𝑔(𝜎)𝛺𝑔(E‖𝜗‖2H), 𝑎.𝑒 𝜎 ∈ 𝐽 ,∀𝜗 ∈ H.

(H3) The nonlocal term ℎ ∶  → H is continuous, and 𝜁 ∶ 𝐽 ×H → H
is a Carathéodory type function. Furthermore, there exist 𝜏𝜁 ∈
𝐿1(𝐽 ,R+) along with a nondecreasing continuous function 𝛺𝜁 ∶
R+ → R+ such that
E‖𝜁 (𝜎, 𝜗)‖2H ≤ 𝜏𝜁 (𝜎)𝛺𝜁 (E‖𝜗‖2H), 𝑎.𝑒 𝜎 ∈ 𝐽 ,∀𝜗 ∈ H.

Let 𝑀 = sup𝜎∈[0,𝑐] ‖ℜ(𝜎)‖ and 𝑀𝐶 = ‖𝐶‖.
First of all, based on the above assumptions, we then provide a few 

characteristics of the control 𝑢𝜇 which is defined above.

Lemma 3.2.  If the hypotheses (H1)-(H3) are met, then the following 
conclusions hold for any 𝜗 ∈ 𝐵𝑟.

(i) 𝑢𝜇(𝜎, 𝜗) is continuous in 𝐵𝑟;
(ii) E‖𝑢𝜇(𝜎, 𝜗)‖2 ≤ 𝐾𝑢, where

𝐾𝑢 =
4𝑀2

𝐶

𝜇2
𝑀2

(

2E‖𝜗̃𝑐 ∥2 +2𝑇 𝑟(𝑄)∫

𝑐

0
E‖𝜓(𝑠) ∥2 d𝑠 + 𝑐𝑀2

[

𝛺𝜁 (𝑟)‖𝜏𝜁‖𝐿1([0,𝑐],R+)

+𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿1([0,𝑐],R+) + 𝑇 𝑟(𝑄)𝑐𝛺𝜁 (𝑟)‖𝜏𝜁‖𝐿1([0,𝑐],R+)

]

)

.

Proof.  We go through the following steps to prove the two points: (i) 
and (ii). 

Step 3.2.1.  For 𝜎 ∈ 𝐽 and 𝜗 ∈ 𝐵𝑟, by using the Hölder inequality, 
hypotheses (H1)-(H3) and Lemma  2.1, we obtain:

E‖𝑢𝜇(𝜎, 𝜗)‖2 ≤4E‖𝖢∗ℜ∗(𝑐 − 𝜎)(𝜇𝐼 + 𝛥𝑐0)
−1
(

E𝜗̃𝑐 + ∫

𝑐

0
𝜙(𝑠)d𝖶(𝑠)

)

‖

2

+ 4E‖𝖢∗ℜ∗(𝑐 − 𝜎)(𝜇𝐼 + 𝛥𝑐0)
−1ℜ(𝑐)ℎ(𝜗)‖2

+ 4E‖𝖢∗ℜ∗(𝑐 − 𝜎)
𝑐
(𝜇𝐼 + 𝛥𝑐)−1ℜ(𝑐 − 𝑠)𝑓 (𝑠, 𝜗(𝑠))d𝑠‖2
∫0

𝑠

4 
+ 4E‖𝐶∗ℜ∗(𝑐 − 𝜎)∫

𝑐

0
(𝜇𝐼 + 𝛥𝑐𝑠)

−1ℜ(𝑐 − 𝑠)𝑔(𝑠, 𝜗(𝑠))d𝖶(𝑠)‖2

≤
4𝑀2

𝐶

𝜇2
𝑀2

(

2E‖𝜗̃𝑐‖2 + 2𝑇 𝑟(𝑄)∫

𝑐

0
E‖𝜙(𝑠)‖2d𝑠

)

+
4𝑀2

𝐶

𝜇2
𝑀4𝑐𝛺𝜁 (𝑟)‖𝜏𝜁‖𝐿[0,𝑐] +

4𝑀2
𝐶

𝜇2
𝑀4𝑐𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿1([0,𝑐],R+)

+
4𝑇 𝑟(𝑄)𝑀2

𝐶

𝜇2
𝑀4𝑐𝛺𝑔(𝑟)‖𝜏𝑔‖𝐿1([0,𝑐],R+)

=
4𝑀2

𝐶

𝜇2
𝑀2

(

2E‖𝜗̃𝑐 ∥2 +2𝑇 𝑟(𝑄)∫

𝑐

0
E‖𝜓(𝑠) ∥2 d𝑠

+ 𝑐𝑀2

[

𝛺𝜁 (𝑟)‖𝜏𝜁‖𝐿1([0,𝑐],R+)

+ 𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿1([0,𝑐]) + 𝑇 𝑟(𝑄)𝑐𝛺𝜁 (𝑟)‖𝜏𝜁‖𝐿1([0,𝑐],R+)

]

)

= 𝐾𝑢,

which implies that (ii) is satisfied.

Step 3.2.2.  Now, we prove that (i) is satisfied. Suppose 𝜗𝑛 → 𝜗 in 𝐵𝑟, 
then we get from (H1)-(H3)

𝑓 (𝜎, 𝜗𝑛(𝜎)) → 𝑓 (𝜎, 𝜗(𝜎)), 𝑔(𝜎, 𝜗𝑛(𝜎)) → 𝑔(𝜎, 𝜗(𝜎)),

𝜁 (𝜎, 𝜗𝑛(𝜎)) → 𝜁 (𝜎, 𝜗(𝜎)) 𝑎𝑠 𝑛 → ∞.

Additionally, by using the Lebesgue dominated convergence theorem and the 
Hölder inequality, for any 𝜎 ∈ 𝐽 , we can obtain

E‖𝖢∗ℜ∗(𝑐 − 𝜎)∫

𝜎

0
(𝜇𝐼 + 𝛥𝑐𝑠)

−1ℜ(𝜎 − 𝑠)[𝑓 (𝑠, 𝜗𝑛(𝑠)) − 𝑓 (𝑠, 𝜗(𝑠))]d𝑠‖2

≤
𝑀2

𝐶

𝜇2
𝑀4𝑐 ∫

𝜎

0
E‖𝑓 (𝑠, 𝜗𝑛(𝑠)) − 𝑓 (𝑠, 𝜗(𝑠))‖2d𝑠

→ 0 (𝑛→ ∞).

On the other hand, using Lemma  2.1, the Lebesgue dominated convergence 
theorem and the Hölder inequality, we arrive at, 

E‖𝖢∗ℜ∗(𝑐 − 𝜎)∫

𝜎

0
(𝜇𝐼 + 𝛥𝑐𝑠)

−1ℜ(𝜎 − 𝑠)[𝑔(𝑠, 𝜗𝑛(𝑠)) − 𝑔(𝑠, 𝜗(𝑠))]d𝖶(𝑠)‖2

≤
𝑇 𝑟(𝑄)𝑀2

𝐶𝑀
4

𝜇2 ∫

𝜎

0
E‖𝑔(𝑠, 𝜗𝑛(𝑠)) − 𝑔(𝑠, 𝜗(𝑠))‖2d𝑠

→ 0 (𝑛→ ∞).

(3.1)

Furthermore, by hypothesis (H3), we obtain that 
E‖𝖢∗ℜ∗(𝑐 − 𝜎)(𝜇𝐼 + 𝛥𝑐𝜎 )

−1ℜ(𝑐)[ℎ(𝜗𝑛) − ℎ(𝜗)]‖2

≤
𝑀2

𝐶𝑀
4

𝜇2
E‖ℎ(𝜗𝑛) − ℎ(𝜗)‖2d𝑠

→ 0 (𝑛→ ∞).

(3.2)

The following outcome follows from the inequality we obtained above:
E‖𝑢𝜇(𝜎, 𝜗𝑛) − 𝑢𝜇(𝜎, 𝜗)‖2

≤ 3E‖𝖢∗ℜ∗(𝑐 − 𝜎)(𝜇𝐼 + 𝛥𝑐𝑠)
−1ℜ(𝑐)[ℎ(𝜗𝑛) − ℎ(𝜗)]‖2

+3E‖𝖢∗ℜ∗(𝑐 − 𝜎)∫

𝑐

0
(𝜇𝐼 + 𝛥𝑐𝑠)

−1ℜ(𝑐)[𝑓 (𝑠, 𝜗𝑛) − 𝑓 (𝑠, 𝜗(𝑠))]d𝑠‖2

+3E‖𝐶∗ℜ∗(𝑐 − 𝜎)∫

𝑐

0
(𝜇𝐼 + 𝛥𝑐𝑠)

−1ℜ(𝜎 − 𝑠)[𝑔(𝑠, 𝜗𝑛) − 𝑔(𝑠, 𝜗(𝑠))]d𝑊 (𝑠)‖2

→ 0 (𝑛→ ∞).

Therefore, 𝑢𝜇(𝜎, 𝜗) is continuous in 𝐵𝑟.

This completes the proof. □

We assume that the following hypothesis is true in order to discuss 
the controllability of the system (1.1).
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(H4) There is a constant 𝛾 ∈ (0, 𝑐) such that, for all 𝜎 ∈ [𝛾, 𝑐],

𝑓 (𝜎, 𝜗1(𝜎)) = 𝑓 (𝜎, 𝜗2(𝜎)),
𝑔(𝜎, 𝜗1(𝜎)) = 𝑔(𝜎, 𝜗2(𝜎)),
𝜁 (𝜎, 𝜗1(𝜎)) = 𝜁 (𝜎, 𝜗2(𝜎)),

where 𝜗1, 𝜗2 ∈ (𝐽 , 𝐿2(𝛺,H)) with 𝜗1(𝜎) = 𝜗2(𝜎), 𝜎 ∈ [𝛾, 𝑐].

Theorem 3.3.  Suppose that the hypotheses (H1)-(H3) are met, and that
(H4) is satisfied. Following that, the global issue (1.1) has at least one mild 
solution in 𝐵𝑟 if and only if there is a positive constant 𝑟 that satisfies the 
following condition: 
3𝑀2𝑐𝛺𝜁 (𝑟)‖𝜏𝜁‖𝐿[0,𝑐] +6𝑀2𝑐

(

2𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿[0,𝑐] +𝑀2
𝐶𝑐𝐾𝑢

)

+3𝑇 𝑟(𝑄)𝑐1∕2𝛺𝑔(𝑟)‖𝜏𝑔‖𝐿1([0,𝑐]) ≤ 𝑟.
(3.3)

Proof.  Whenever 𝑟 > 0, define
𝐵𝑟(𝛾) =

{

𝑣 ∈ ([𝛾, 𝑐], 𝐿2(𝛺,H)); E‖𝜗(𝜎)‖2 ≤ 𝑟,∀𝜎 ∈ [𝛾, 𝑐]
}

.

It is clear that for each 𝜗 ∈ 𝐵𝑟(𝛾), a function 𝜗̄ ∈ 𝐵𝑟 exists such that 
𝜗(𝜎) = 𝜗̄(𝜎), 𝜎 ∈ [𝛾, 𝑐].

Let define the following mappings on 𝐵𝑟(𝛾):
(𝑓 ∗𝜗)(𝜎) = 𝑓 (𝜎, 𝜗̄(𝜎)), (𝑔∗𝜗)(𝜎) = 𝑔(𝜎, 𝜗̄(𝜎)), 𝜎 ∈ [0, 𝑐], and ℎ∗(𝜗) = ℎ(𝜗̄).

Then, it is simple to verify that 𝑓 ∗, 𝑔∗, ℎ∗ is well-defined on 𝐵𝑟(𝛾) and 
continuous by using hypothesis (H1)-(H4). Furthermore, assume that 
the following estimations are met: 

E‖(𝑓 ∗𝜗)(𝜎)‖2 ≤ 𝜏𝑓 (𝜎)𝛺𝑓 (E‖𝜗‖2), 𝑎.𝑒 𝜎 ∈ 𝐽 , ∀𝜗 ∈ 𝐵𝑟(𝛾),

E‖(𝑔∗𝜗)(𝜎)‖2
𝐿0
2
≤ 𝜏𝑔(𝜎)𝛺𝑔(E‖𝜗‖2), 𝑎.𝑒 𝜎 ∈ 𝐽 , ∀𝜗 ∈ 𝐵𝑟(𝛾),

E‖(ℎ∗𝜗)(𝜎)‖2 ≤ 𝑐𝛺𝜁 (𝑟)(‖𝜏𝜁‖𝐿[0,𝑐]), ∀𝜗 ∈ 𝐵𝑟(𝛾).

(3.4)

For any 𝜇 > 0, define an operator 𝛹𝛾 on 𝐵𝑟(𝛾) as follows:

(𝛹𝛾𝜗)(𝜎) = ℜ(𝜎)ℎ∗(𝜗) + ∫

𝜎

0
ℜ(𝜎 − 𝑠)[(𝑓 ∗𝜗)(𝑠) + 𝐶𝑢̃𝜇(𝑠, 𝜗)]d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)(𝑔∗𝜗)(𝑠)d𝖶(𝑠), 𝜎 ∈ [𝛾, 𝑐],

where the control 𝑢̃𝜇(𝜎, 𝜗) is defined by

𝑢̃𝜇(𝜎, 𝜗) = 𝖢∗ℜ∗(𝑐 − 𝜎)(𝜇𝐼 + 𝛥𝑐0)
−1

[

E𝜗̃𝑐 −ℜ(𝑐)𝑔∗(𝜗) + ∫

𝑐

0
𝜙(𝑠)d𝖶(𝑠)

− ∫

𝑐

0
ℜ(𝑐 − 𝑠)𝑓 ∗(𝑠, 𝜗(𝑠))d𝑠 − ∫

𝑐

0
ℜ(𝑐 − 𝑠)𝑔∗(𝜗)(𝑠)d𝖶(𝑠)

]

.

It is easy to see that 𝑢̃𝜇(𝜎, 𝜗) satisfies the results of Lemma  2.13.
For the rest of the proof, we use  Schauder’s fixed point Theorem

to prove that 𝛹𝛾 has a fixed point. We go through four steps to take 
this: 

Step 3.3.1.  We start by asserting that there is a positive number 𝑟 such 
that 𝛹𝛾 maps 𝐵𝑟(𝛾) into itself, i.e., there is a positive number 𝑟 = 𝑟(𝛾) for 
each 𝛾 > 0 such that 𝛹𝛾 (𝐵𝑟) ⊂ 𝐵𝑟. For all 𝜗 ∈ 𝐵𝑟(𝛾) and 𝜎 ∈ [𝛾, 𝑐], it 
follows from (3.3) and (3.4), Lemma  2.7 and Hölder’s inequality that

E‖(𝛹𝛾𝜗)(𝜎)‖2 ≤ 3E‖ℜ(𝜎)ℎ∗(𝜗)‖2 + 3E‖∫

𝜎

0
ℜ(𝜎 − 𝑠)[(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]d𝑠‖2

+ 3E‖∫

𝜎

0
ℜ(𝜎 − 𝑠)(𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

≤ 3𝑀2𝑐𝛹𝜁 (𝑟)‖𝜏𝜁‖𝐿[0,𝑐] + 3𝑀2
∫

𝜎

0
E‖(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)‖2d𝑠

+ 3𝑇 𝑟(𝑄)𝑀2
∫

𝜎

0
E‖(𝑔∗𝜗)(𝑠)‖2

𝐿0
2
d𝑠

≤ 3𝑀2𝑐𝛺𝜁 (𝑟)‖𝜏𝜁‖𝐿[0,𝑐] + 6𝑀2𝑐

(

𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿([0,𝑐]) +𝑀2
𝐶𝑐𝐾𝑢

)

+ 3𝑇 𝑟(𝑄)𝛺𝑔(𝑟)𝑐1∕2‖𝜏𝑔‖𝐿1([0,1])

≤ 𝑟,
5 
which implies that 𝛹𝛾 maps 𝐵𝑟(𝛾) into itself.

Step 3.3.2.  We establish that the operator 𝛹𝛾 ∶ 𝐵𝑟(𝛾) → 𝐵𝑟(𝛾) is 
continuous. Let 𝑣𝑛, 𝜗 ∈ 𝐵𝑟(𝛾) and 𝜗𝑛 → 𝜗(𝑛 → ∞), then for any 𝜎 ∈ [𝛾, 𝑐], 
we have
E‖(𝛹𝛾𝜗𝑛)(𝜎) − (𝛹𝛾𝜗)(𝜎)‖2≤ 4E‖ℜ(𝜎)(ℎ∗(𝜗𝑛) − ℎ∗(𝜗))‖2

+4E‖∫

𝜎

0
ℜ(𝜎 − 𝑠)[(𝑓 ∗𝜗𝑛)(𝑠) − (𝑓 ∗𝜗)(𝑠)]d𝑠‖2

+4E ∥ ∫

𝜎

0
ℜ(𝜎 − 𝑠)[(𝑔∗𝜗𝑛)(𝑠)

− (𝑔∗𝜗)(𝑠)]d𝖶(𝑠) ∥2

+4E‖∫

𝜎

0
𝐶ℜ(𝜎 − 𝑠)[𝑢𝜇(𝑠, 𝜗𝑛) − 𝑢𝜇(𝑠, 𝜗)]d𝑠‖2.

Then by the continuity of the nonlocal function ℎ∗ and nonlinear functions 
𝑓 ∗, 𝑔∗, and using Lemma  2.13 and the Lebesgue dominated convergence 
theorem, we obtain
E‖(𝛹𝛾𝜗𝑛)(𝜎) − (𝛹𝛾𝜗)(𝜎)‖2 → 0(𝑛→ ∞), 𝜎 ∈ [𝛾, 𝑐].

That implies, ‖(𝛹𝛾𝜗𝑛)(𝜎) − (𝛹𝛾𝜗)(𝜎)‖ → 0(𝑛 → ∞), mean that 𝛹𝛾 is 
continuous in 𝐵𝑟(𝛾).

Step 3.3.3.  We show that 𝛹𝛾 is a completely continuous operator on 
𝐵𝑟(𝛾). Since the compactness of the resolvent operator ℜ(𝜎), 𝜎 > 0 implies 
that {ℜ(𝜎)ℎ∗(𝜗) ∶ 𝜗 ∈ 𝐵𝑟(𝛾)} is pre-compact in H for each 𝜎 ∈ [𝛾, 𝑐]. So, by 
using Lemma  2.7, we obtain that {ℜ(⋅)ℎ∗(𝜗) ∶ 𝜗 ∈ 𝐵𝑟(𝛾)} is equicontinuous.

Additionally, assume 𝜎 ∈ [𝛾, 𝑐] be fixed, ∀𝛼 ∈ (0, 𝜎) and ∀𝛾 > 0 define 
an operator 𝛹𝛼 on 𝐵𝑟(𝛾) using the formula:

(𝛹𝛼𝜗)(𝜎) = ∫

𝜎−𝛼

0
ℜ(𝜎 − 𝑠)[(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]d𝑠

+ ∫

𝜎−𝛼

0
ℜ(𝜎 − 𝑠)(𝑔∗𝜗)(𝑠)d𝖶(𝑠)

= ℜ(𝛼)∫

𝜎−𝛼

0
ℜ((𝜎 − 𝑠) − 𝛼)[(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]d𝑠

+ℜ(𝛼)∫

𝜎−𝛼

0
ℜ((𝜎 − 𝑠) − 𝛼)(𝑔∗𝜗)(𝑠)d𝖶(𝑠).

Then, by the compactness of ℜ(𝛼), the set {(𝛹𝛼𝜗)(𝜎) ∶ 𝜗 ∈ 𝐵𝑟(𝛾)} is 
relatively compact in H. We denote

(𝛹𝛼1 𝜗)(𝜎) = ∫

𝜎−𝛼

0
ℜ(𝜎 − 𝑠)[(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]d𝑠

+∫

𝜎−𝛼

0
ℜ(𝜎 − 𝑠)(𝑔∗𝜗)(𝑠)d𝖶(𝑠),

for any 𝜗 ∈ 𝐵𝑟(𝛾). Using (3.4), Lemmas  2.1 and 2.9, and Hölder inequality, 
we obtain
E‖(𝛹𝛼1 𝜗)(𝜎) − (𝛹𝛼𝜗)(𝜎)‖2

= E ∥ ∫

𝜎−𝛼

0
[ℜ(𝛼)ℜ((𝜎 − 𝑠) − 𝛼) −ℜ(𝜎 − 𝑠)]

(

(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)
)

d𝑠

+ ∫

𝜎−𝛼

0
[ℜ(𝛼)ℜ((𝜎 − 𝑠) − 𝛼) −ℜ(𝜎 − 𝑠)](𝑔∗𝜗)(𝑠)d𝖶(𝑠) ∥2

≤ 4E‖∫

𝜎

0
[ℜ(𝛼)ℜ((𝜎 − 𝑠) − 𝛼) −ℜ(𝜎 − 𝑠)]

(

(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)
)

d𝑠‖2

+ 4E‖∫

𝜎

𝜎−𝛼
[ℜ(𝛼)ℜ((𝜎 − 𝑠) − 𝛼) −ℜ(𝜎 − 𝑠)]

(

(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)
)

d𝑠‖2

+ E‖∫

𝜎

0
[ℜ(𝛼)ℜ((𝜎 − 𝑠) − 𝛼) −ℜ(𝜎 − 𝑠)](𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

+ E‖∫

𝜎

𝜎−𝛼
[ℜ(𝛼)ℜ((𝜎 − 𝑠) − 𝛼) −ℜ(𝜎 − 𝑠)](𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

≤ 4(𝛾ℎ)2 ∫

𝜎

0
E‖(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)‖2d𝑠 + 4(𝛾ℎ)2

× ∫

𝜎

𝜎−𝛼
E‖(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)‖2d𝑠

+ 4𝑇 𝑟(𝑄)(𝛾ℎ)2
𝜎
E‖(𝑔∗𝜗)(𝑠)‖2d𝑠 + 4𝑇 𝑟(𝑄)(𝛾ℎ)2

𝜎
E‖(𝑔∗𝜗)(𝑠)‖2d𝑠
∫0 ∫𝜎−𝛼
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≤ 8(𝛾ℎ)2𝑐
(

𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿1[0,𝑐] +𝑀
2
𝐶𝑐𝐾𝑢

)

+ 8(𝛾ℎ)2𝑐
(

2𝛺𝑓 (𝑟)‖𝜁𝑓‖𝐿1[0,𝑐] + 2𝑀2
𝐶𝑐𝐾𝑢

)

+ 4(𝛾ℎ)2𝑐1∕2𝑇 𝑟(𝑄)𝛺𝑔(𝑟)‖𝜏𝑔‖ + 4(𝛾ℎ)2𝑐1∕2𝑇 𝑟(𝑄)𝛺𝑔(𝑟)‖𝜏𝑔‖

→ 0(𝛾 → 0).

As a result, for each 𝜎 ∈ [𝛾, 𝑐], there exists relatively compact set arbitrarily 
close to the set {(𝛹1𝑣)(𝜎) ∶ 𝜗 ∈ 𝐵𝑟(𝛾)} in H. Hence, {(𝛹1𝜗)(𝜎) ∶ 𝜗 ∈ 𝐵𝑟(𝛾)}
is also relatively compact in H for 𝜎 ∈ [𝛾, 𝑐].

For the second part of this step, we will show that 𝛹1(𝐵𝑟(𝛾)) is an 
equicontinuous family of functions on [𝛾, 𝑐]. For any 𝜗 ∈ 𝐵𝑟(𝛾) and 𝛾 <
𝜎1 < 𝜎2 ≤ 𝑐, we obtain

E ∥ (𝛹1𝜗)(𝜎2) − (𝛹1𝜗)(𝜎1) ∥2= 6E ∥ ∫

𝜎2

𝜎1
ℜ(𝜎2 − 𝑠)[(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]d𝑠 ∥2

+ 6E ∥ ∫

𝜎1

0
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)][(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]d𝑠 ∥2

+ 6E‖∫

𝜎2

𝜎1
ℜ(𝜎2 − 𝑠)(𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

+ 6E‖∫

𝜎1

0
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)](𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

= 𝑙1 + 𝑙2 + 𝑙3 + 𝑙4.

To demonstrate that E‖(𝛹1𝜗)(𝜎2) − (𝛹1𝜗)(𝜎1)‖2 → 0(𝜎2 → 𝜎1), all that is 
left to do is verify that 𝑙𝑖 → 0 independently of 𝜗 ∈ 𝐵𝑟(𝛾) when 𝜎2 → 𝜎1 for 
𝑖 = 1, 2,… , 4.

For 𝑙1 and 𝑙2 when, using the assumption (3.4), Lemma  2.1, Lemma  2.7 
and Hölder inequality, we obtain the following estimations,

𝑙1 = 6E‖∫

𝜎2

𝜎1
ℜ(𝜎2 − 𝑠)[(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]d𝑠‖2

≤ 6𝑀2
∫

𝜎2

𝜎1
E‖[(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)]‖2d𝑠

≤ 12𝑀2
(

𝛺𝑓 (𝑟)‖𝜁𝑓‖𝐿1[0,𝑐] +𝑀
2
𝐶 (𝜎2 − 𝜎1)𝐾𝑢

)

(𝜎2 − 𝜎1)

→ 0(𝜎2 → 𝜎1).

𝑙3 = 6E‖∫

𝜎2

𝜎1
ℜ(𝜎2 − 𝑠)(𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

≤ 6𝑀2𝑇 𝑟(𝑄)∫

𝜎2

𝜎1
E‖(𝑔∗𝜗)(𝑠)‖2d𝑠

≤ 6𝑀2𝑇 𝑟(𝑄)𝛺𝑔(𝑟)‖𝜏𝑔‖𝐿1[0,1](𝜎2 − 𝜎1)
1∕2

→ 0(𝜎2 → 𝜎1).

Additionally, if 0 < 𝛾 < 𝜎1 is small enough, we derive the following 
inequality for 𝐼2 and 𝐼4:

𝑙2 = 6E‖∫

𝜎1

0
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)]

[

(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)
]

d𝑠‖2

≤ 12E‖∫

𝜎1−𝛼

0
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)]

[

(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)
]

d𝑠‖2

+ 12E‖∫

𝜎1

𝜎1−𝛼
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)]

[

(𝑓 ∗𝜗)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝜗)
]

d𝑠‖2

≤ 12 sup
𝑠∈[0,𝜎1−𝛼]

‖ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)‖2
(

2𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿[0,𝑐] + 2𝑀2
𝐶𝐾𝑢

)

(𝜎1 − 𝛼)

+ 12 sup
𝑠∈[𝜎1−𝛼,𝜎1]

‖ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)‖2
(

2𝛺𝑓 (𝑟)‖𝜏𝑓‖𝐿[0,𝑐] + 2𝑀2
𝐶𝐾𝑢

)

𝛼

→ 0(𝜎2 → 𝜎1).

𝑙4 = 6E‖∫

𝜎1

0
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)](𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

≤ 12E‖∫

𝜎1−𝛼

0
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)](𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

+ 12E‖∫

𝜎1

𝜎1−𝛼
[ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)](𝑔∗𝜗)(𝑠)d𝖶(𝑠)‖2

≤ 12𝑇 𝑟(𝑄)𝛺(𝑟) sup
𝑠∈[0,𝜎1−𝛼]

‖ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)‖2‖𝜏𝑔‖𝐿1([0,1]) ×
(

𝜎1 − 𝛼
)1∕2

+ 12𝑇 𝑟(𝑄) sup ‖ℜ(𝜎2 − 𝑠) −ℜ(𝜎1 − 𝑠)‖2𝛺(𝑟)‖𝜏𝑔‖𝐿1([0,1])𝛼
1∕2 → 0
𝑠∈[𝜎1−𝛼,𝜎1]

6 
→ 0(𝜎2 → 𝜎1).

Above all, we obtain that 𝑙𝑖=1,2,3,4 → 0 as 𝜎2 → 𝜎1, and 𝛾 → 0, which means 
𝛹1(𝐵𝑟(𝛾)) is equicontinuous.

As a result, the precompactness of  𝛹𝛾 (𝐵𝑟(𝛾)) is demonstrated by the
Arzela–Ascoli Theorem. Thus, by utilizing Schauder’s fixed point The-
orem, we conclude that 𝛹𝛾 has at least one fixed point 𝑣̃ ∈ 𝐵𝑟(𝛾), 
i.e:

𝜗(𝜎) = ℜ(𝜎)ℎ∗(𝜗̂) + ∫

𝜎

0
ℜ(𝜎 − 𝑠)

[

𝑓 ∗(𝜗̂)(𝑠) + 𝐶𝑢̃𝜇(𝑠, 𝜗̂)
]

d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)𝑔∗(𝑠, 𝜗̂)(𝑠)d𝖶(𝑠), 𝜎 ∈ [0, 𝑐].

Set

𝑧̃(𝜎) = ℜ(𝜎)ℎ∗(𝜗̂) + ∫

𝜎

0
ℜ(𝜎 − 𝑠)

[

𝑓 ∗(𝜗̂)(𝑠) + 𝐶𝑢̃𝜇(𝑠, 𝑧̃)
]

d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)𝑔∗(𝑠, 𝜗̂)(𝑠)d𝖶(𝑠), 𝜎 ∈ [0, 𝑐].

Obviously, 𝜗̂(𝜎) = 𝑧̃(𝜎) for 𝜎 ∈ [𝛾, 𝑐]. It is clear from the definitions of the 
functions 𝑓 ∗, 𝑔∗, and ℎ∗ that,

𝑧̃(𝜎) = ℜ(𝜎)ℎ∗(𝑧̃) + ∫

𝜎

0
ℜ(𝜎 − 𝑠)

[

𝑓 ∗(𝑧̃)(𝑠) + 𝖢𝑢̃𝜇(𝑠, 𝑧̃)
]

d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)𝑔∗(𝑠, 𝑧̃)(𝑠)d𝖶(𝑠), 𝜎 ∈ [0, 𝑐],

which implies, 𝑧̃ is a mild solution of system (1.1) in 𝐵𝑟.
This completes the proof. □

For all 𝛾 ∈ (0, 𝑐) and an arbitrary 𝜗 ∈ (𝐽 , 𝐿2(𝛺,H)), define 

(𝛾𝜗)(𝜎) =

{

𝜗(𝛾), 𝜎 ∈ [0, 𝛾],
𝜗(𝜎), 𝜎 ∈ [𝛾, 𝑐],

(3.5)

and

𝑓𝛾 (𝜎, 𝜗(𝜎)) = 𝑓 (𝜎, (𝜗)(𝜎)), 𝜎 ∈ [𝛾, 𝑐]

𝑔𝛾 (𝜎, 𝜗(𝜎)) = 𝑔(𝜎, (𝜗)(𝜎)), 𝜎 ∈ [𝛾, 𝑐]

𝜁𝛾 (𝜎, 𝜗(𝜎)) = 𝜁 (𝜎, (𝜗)(𝜎)), 𝜎 ∈ [𝛾, 𝑐]

It is clear that the functions 𝑓𝛾 , ℎ𝛾 and 𝜁𝛾 defined above meet the 
constraint (H4), resulting in the following lemma: 

Lemma 3.4.  Assume that (R1)-(R2) are satisfied. If the assumptions
(H1)-(H3) hold, then the following nonlocal problem 

⎧

⎪

⎨

⎪

⎩

𝜗′(𝜎) = 𝐴𝜗(𝜎) + ∫

𝜎

0
𝛱(𝜎 − 𝑠)𝜗(𝑠)𝑑𝑠 + 𝑔𝛾 (𝜎, 𝜗(𝜎))d𝖶(𝜎) + 𝐶𝑢𝜇(𝜎, (𝛾𝑛𝜗)(𝜎)),

𝜗(0) = ∫

𝜎

0
𝜁𝛾 (𝑠, 𝜗(𝑠))d𝑠,

(3.6)

has at least one mild solution in 𝐵𝑟, given that there is a positive constant 𝑟
such that (3.3) is satisfied.

Proof.  The proof is similar to the proof of Theorem  3.3 above. □

4. Approximate controllability results

In this section, we analyze the approximate controllability of the 
stochastic dynamical control system (1.1) by utilizing approximation 
techniques and a diagonal argument. 

Theorem 4.1.  Suppose that (H1)-(H3) are satisfied, then the stochastic 
control systems with nonlocal initial conditions (1.1) have at least one mild 
solution in (𝐽 , 𝐿2(𝛺,H)), provided that there exists a positive constant 𝑟
such that (3.3) is satisfied.
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Proof.  Let us consider {𝛾𝑛 ∶ 𝑛 ∈ N} to be a decreasing sequence in 
(0, 𝑐) with lim𝑛→∞ 𝛾𝑛 = 0. For any 𝑛, by Lemma  3.4, we assume that the 
following system 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜗(𝜎) = 𝐴𝜗(𝜎) + ∫

𝜎

0
𝛱(𝜎 − 𝑠)𝜗(𝑠)d𝑠 + 𝑓𝛾𝑛 (𝜎, 𝜗(𝜎)) + 𝑔𝛾𝑛 (𝜎, 𝜗(𝜎))d𝖶(𝜎)

+𝐶𝑢𝜇(𝜎, (𝛾𝑛𝜗)(𝜎)),

𝜗(0) = ∫

𝜎

0
𝜁𝛾𝑛 (𝑠, 𝜗(𝑠))d𝑠,

(4.1)

admits at least one mild solution 𝜗𝑛 ∈ 𝐵𝑟 for the constant 𝑟 satisfying 
(3.3), which is defined by

𝜗𝑛(𝜎) =ℜ(𝜎)∫

𝜎

0
𝜁𝛾𝑛 (𝑠, 𝜗(𝑠))d𝑠 + ∫

𝜎

0
ℜ(𝜎 − 𝑠)

[

𝑓𝛾𝑛 (𝑠, 𝜗𝑛(𝑠))

+ 𝐶𝑢𝜇(𝑠,𝛾𝑛𝜗𝑛(𝑠))
]

d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)(𝑔𝛾𝑛 (𝑠, 𝜗𝑛(𝑠)))d𝖶(𝑠), 𝜎 ∈ [0, 𝑐].

Let us suppose the following: 

𝑥𝑛(𝜎) =

{

𝜗𝑛(𝛾𝑛), 𝜎 ∈ [0, 𝛾𝑛],
𝜗𝑛(𝜎), 𝜎 ∈ [𝛾𝑛, 𝑐],

(4.2)

then 𝑥𝑛 ∈ 𝐵𝑟. We may deduce that given the characteristics of 𝑓𝛾𝑛 , 𝑔𝛾𝑛
and 𝜁𝛾𝑛 , 

𝜗𝑛(𝜎) = ℜ(𝜎)∫

𝜎

0
𝜁 (𝑠, 𝑥𝑛)d𝑠 + ∫

𝜎

0
ℜ(𝜎 − 𝑠)

[

𝑓 (𝑠, 𝑥𝑛(𝑠))

+𝖢𝑢𝜇(𝑠, 𝑥𝑛(𝑠))
]

d𝑠
+ ∫ 𝜎0 ℜ(𝜎 − 𝑠)(𝑔(𝑠, 𝑥𝑛(𝑠)))d𝖶(𝑠), 𝜎 ∈ [0, 𝑐].

(4.3)

We shall then demonstrate that the set {𝜗𝑛 ∶ 𝑛 ∈ N} is precompact in 
(𝐽 , 𝐿2(𝛺,H)). In light of this, we provide the following notations:

𝜗𝑛(𝜎) = ℜ(𝜎)∫

𝜎

0
𝜁 (𝑠, 𝜗𝑛(𝑠))d𝑠, 𝜎 ∈ [0, 𝑐],

𝜓𝑛(𝜎) =∫

𝜎

0
ℜ(𝜎 − 𝑠)

[

𝑓 (𝑠, 𝜗𝑛(𝑠)) + 𝖢𝑢𝜇(𝑠, 𝜗𝑛(𝑠))
]

d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)𝑔(𝑠, 𝜗𝑛(𝑠))d𝖶(𝑠), 𝜎 ∈ [0, 𝑐].

Consequently, all that is left to do is to demonstrate that the sets {𝜗𝑛 ∶
𝑛 ∈ N} and {𝜓𝑛 ∶ 𝑛 ∈ N} are precompact in the space (𝐽 , 𝐿2(𝛺,H)).

To do so, we go through the following steps: 

Step 4.1.1.  First, we can see that 𝑥𝑛 ∈ 𝐵𝑟 from the definition of 𝑥𝑛(𝜎). So, 
the hypotheses (H1)-(H3) are satisfied for functions 𝑓 (𝑠, 𝑥𝑛), 𝑔(𝑠, 𝑥𝑛(𝑠))
and ℎ(𝑠, 𝑥𝑛(𝑠)). Furthermore, the control function 𝑢𝜇(𝑠, 𝑥𝑛) satisfies the 
properties (i) and (ii) of Lemma  3.2. So, we easily prove that the set 
{𝜓𝑛 ∶ 𝑛 ∈ N} is precompact in (𝐽 , 𝐿2(𝛺,H)) by using the same arguments 
as in Theorem  3.3.

Step 4.1.2.  Secondly, we will show that the set {𝜗𝑛 ∶ 𝑛 ∈ N} is precompact 
in (𝐽 , 𝐿2(𝛺,H)).

It turns out that all we need to show is that the set

{∫

𝜎

0
𝜁 (𝑠, 𝑥𝑛(𝑠))d𝑠 ∶ 𝑛 ∈ N}

 is precompact in H.
Let {𝜇𝑛 ∶ 𝑛 ∈  } be a decreasing sequence in (0, 𝑐) such that 

lim𝑛→∞ 𝜇𝑛 = 0.

• For all 𝑛 ∈ N and 𝜎 ∈ [𝜇1, 𝑐], define the function 𝑧𝑛 ∶ [𝜇1, 𝑐] → H by 
𝑧𝑛(𝜎) = 𝜗𝑛(𝜎). From the fact that 𝑥𝑛 ∈ 𝐵𝑟, the set

{∫

𝜎

0
𝜁 (𝑠, 𝑥𝑛(𝑠))d𝑠 ∶ 𝑛 ∈ N}

is bounded.
7 
Meanwhile, from the fact that the resolvent operator ℜ(𝜎) is compact, 
and hence norm continuous (see, Lemma  2.8) for 𝜎 > 0, which implies 
that the set

{ℜ(𝜎)∫

𝜎

0
𝜁 (𝑠, 𝑥𝑛(𝑠))d𝑠 ∶ 𝑛 ∈ N}

is precompact in H for any 𝜎 ∈ [𝜇1, 𝑐] and {ℜ(⋅)∫

𝜎

0
𝜁 (𝑠, 𝑥𝑛(𝑠))d𝑠 ∶

𝑛 ∈ N} is equicontinuous.
Consequently, we conclude based on Arzela–Ascoli’s Theorem, that

{ℜ(𝜎)∫

𝜎

0
𝜁 (𝑠, 𝑥𝑛(𝑠))d𝑠 ∶ 𝑛 ∈ N}

is precompact in ([𝜇1, 𝑐], 𝐿2(𝛺,H)). Combining this with the pre-
compact nature of {𝜓𝑛 ∶ 𝑛 ∈ N} in (𝐽 , 𝐿2(𝛺,H)), we obtain that 
{𝑧𝑛 ∶ 𝑛 ∈ N} is precompact in ([𝜇1, 𝑐], 𝐿2(𝛺,H)). Thus, we can 
find a sub-sequence {𝜗1𝑛 ∶ 𝑛 ∈ N} ⊂ {𝜗𝑛 ∶ 𝑛 ∈ N} which is a Cauchy
sequence in ([𝜇1, 𝑐], 𝐿2(𝛺,H)).

• In the same manner, we can construct a sub-sequence {𝜗2𝑛 ∶ 𝑛 ∈ N} ⊂
{𝜗1𝑛 ∶ 𝑛 ∈ N}, which is a Cauchy sequence in ([𝜇2, 𝑐], 𝐿2(𝛺,H)). 
We demonstrate that there exists a sub-sequence {𝜗∗𝑛 ∶ 𝑛 ∈ N} ⊂
{𝜗𝑛 ∶ 𝑛 ∈ N} which is a Cauchy sequence in ([𝜇𝑛, 𝑐], 𝐿2(𝛺,H))
by following the previous steps again while employing a diagonal 
argument.

• In addition, {𝜗∗𝑛(𝜎) ∶ 𝑛 ∈ N} is a Cauchy sequence in H for every 
𝜎 ∈ (0, 𝑐].

Consequently, there exists a continuous function 𝜗∗ ∶ (0, 𝑐] → 𝐿2(𝛺,R)
such that for any 𝜇𝑘, 
lim
𝑛→∞

max
𝜎∈[𝜈,𝑐]

E‖𝜗∗𝑛(𝜎) − 𝜗
∗(𝜎)‖2 = 0. (4.4)

In addition, we demonstrate that {ℎ(𝜗∗𝑛) ∶ 𝑛 ∈ N} is a Cauchy sequence 
in H. Let 𝛾 ∈ (0, 𝑐), thus for any 𝜗1, 𝜗2 ∈ (𝐽 , 𝐿2(𝛺,H)) with 𝜗1(𝜎) =
𝜗2(𝜎), 𝜎 ∈ [𝛾, 𝑐] we obtain 

E‖ℎ(𝜗1) − ℎ(𝜗2)‖2 = E‖∫

𝛾

0
[𝜁 (𝑠, 𝜗1(𝑠)) − 𝜁 (𝑠, 𝜗2(𝑠))]d𝑠‖2

≤ ∫

𝛾

0
E‖𝜁 (𝑠, 𝜗1(𝑠)) − 𝜁 (𝑠, 𝜗2(𝑠))‖2d𝑠

→ 0 for 𝛾 → 0.

(4.5)

Thus, it is easy to see that ∀𝜖 > 0, there is a positive constant 𝛾0 < 𝑐 such 
that 
E‖ℎ(𝜗1) − ℎ(𝜗2)‖2 <

𝜖
16

(4.6)

for any 𝜗1, 𝜗2 ∈ (𝐽 , 𝐿2(𝛺,H)) with 𝜗1(𝜎) = 𝜗2(𝜎), 𝜎 ∈ [𝛾0, 𝑐]. Let us 
define the function 𝑧(𝜎) by 

𝑧(𝜎) =

{

𝜗∗(𝛾0), 𝜎 ∈ [0, 𝛾0],
𝜗∗(𝜎), 𝜎 ∈ [𝛾0, 𝑐].

(4.7)

Obviously, 𝑧 ∈ (𝐽 , 𝐿2(𝛺,H)). By the limit (4.4), we have
lim
𝑛→∞

max
𝜎∈[𝛾0 ,𝑐]

E‖𝜗∗𝑛(𝜎) − 𝑧
∗(𝜎)‖2 = 0.

From the definition of 𝛾 , we can easily see that
lim
𝑛→∞

‖𝛾0𝜗
∗
𝑛 − 𝑧‖ = 0.

By using continuity of ℎ, we can locate a natural integer 𝑘, such that
lim
𝑛→∞

E‖ℎ(𝛾0𝜗
∗
𝑛) − ℎ(𝑧)‖

2 < 𝜖
16
, 𝑛 > 𝑘.

As a result, we have for any 𝑚, 𝑛 > 𝑘,
E‖ℎ(𝜗∗𝑚) − ℎ(𝜗

∗
𝑛)‖

2 ≤ 4E‖ℎ(𝜗∗𝑚) − ℎ(𝛾0𝜗
∗
𝑛)‖

2 + 4E‖ℎ(𝛾0𝜗
∗
𝑚) − ℎ(𝑧)‖

2

+4E|||ℎ(𝛾0𝜗
∗
𝑛) − ℎ(𝑧)‖ + 4E|||ℎ(𝜗∗𝑛) − ℎ(𝛾0𝜗

∗
𝑛)‖

2

< 𝜖.

The above inequality implies that {ℎ(𝜗∗𝑛) ∶ 𝑛 ∈ N} is a Cauchy sequence in 
the Hilbert space H, namely, {ℎ(𝜗 ) ∶ 𝑛 ∈ N} is precompact in H. Finally, 
𝑛
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we can quickly confirm that using the notation (3.5),
E‖ℎ(𝜗𝑛) − ℎ(𝑧𝑛)‖2 → 0

𝑛→∞
,

which implies that

{∫

𝑐

0
𝜁 (𝑠, 𝑧𝑛(𝑠))d𝑠 ∶ 𝑛 ∈ N}

is precompact in H.

Above, we have established that the set {𝜗𝑛 ∶ 𝑛 ∈ N} is precompact 
in (𝐽 , 𝐿2(𝛺,H)). Consequently, a subsequence of {𝜗𝑛 ∶ 𝑛 ∈ N} still 
denoted by {𝜗𝑛 ∶ 𝑛 ∈ N} exists, and a function 𝜗0 ∈ 𝐵𝑟 such that 

lim
𝑛→∞

‖𝜗𝑛 − 𝜗0‖2 = 0. (4.8)

According to the definition of 𝑥𝑛, we obtain that 

‖𝑥𝑛 − 𝜗0‖2= max𝜎∈𝐽 E‖𝑥𝑛(𝜎) − 𝜗0(𝜎)‖2

≤ max𝜎∈[0,𝛾𝑛] E‖𝜗𝑛(𝛾𝑛) − 𝜗0(𝜎)‖
2 + max𝜎∈[𝛾𝑛 ,𝑐] E‖𝜗𝑛(𝛾𝑛) − 𝜗0(𝜎)‖

2

≤ 2E‖𝜗𝑛(𝛾𝑛) − 𝜗0(𝛾𝑛)‖2 + 2max𝜎∈[0,𝛾𝑛] E‖𝜗0(𝛾𝑛) − 𝜗0(𝜎)‖
2

+‖𝜗𝑛 − 𝜗0‖2
≤ 3‖𝜗𝑛 − 𝜗0‖2 + 2max𝜎∈[0,𝛾𝑛] E‖𝑣0(𝛾𝑛) − 𝜗0(𝜎)‖

2.

(4.9)

By using inequality (4.8) and (4.9) and taking the limit of (4.3) as 
𝑛→ ∞ one obtain that

𝜗0(𝜎) = ℜ(𝜎)∫

𝜎

0
𝜁 (𝑠, 𝜗0(𝑠))d𝑠 + ∫

𝜎

0
ℜ(𝜎 − 𝑠)[𝑓 (𝑠, 𝜗0(𝑠)) + 𝐶𝑢𝜇(𝑠, 𝜗0)]d𝑠

+ ∫

𝜎

0
ℜ(𝜎 − 𝑠)(𝑔(𝑠, 𝜗0(𝑠))d𝖶(𝑠)), 𝜎 ∈ [0, 𝑐]

This implies that 𝜗0 ∈ (𝐽 , 𝐿2(𝛺,H)) is a mild solution of system (1.1). 
Finally, the proof of Theorem  4.1 is finished. □

We use the following additional hypotheses in order to prove the 
approximate controllability of system (1.1).

(H5) The nonlinear function 𝑓 ∶ 𝐽 × H → H and 𝑔 ∶ 𝐽 × H → 𝐿0
2 are 

uniformly bounded.
(H6) The linear integrodifferential system (2.4) is approximately con-

trollable on the interval [0, 𝑐].

Remark 4.1.  In light of [26], the assumption (H6) is equivalent to 
𝜇𝑆(𝜇, 𝛥𝑐0) → 0 as 𝜇 → 0+ in the strong operator topology.

Theorem 4.2.  Assume that (H5) and (H6) are satisfied, in addition to 
Theorem  4.1 presumptions holding true. So, the nonlocal system (1.1) is 
approximately controllable on 𝐽 .

Proof.  Assume that 𝜗𝜇 is a mild solution of (1.1) in 𝐵𝑟. The stochastic 
Fubini theorem makes it simple to establish (at 𝑡 = 𝑇 )that 
𝜗𝜇(𝑐) = 𝜗̃𝑐 − 𝜇(𝜇𝐼 + 𝛥𝑐𝑠)

−1[E𝜗̃𝑐 −ℜ(𝑐)ℎ(𝜗𝜇)]

−∫

𝑐

0
𝜇(𝜇𝐼 + 𝛥𝑐𝑠)

−1𝜙(𝑠)d𝖶(𝑠)

− ∫

𝑐

0
𝜇(𝜇𝐼 + 𝛥𝑐0)

−1ℜ(𝑐 − 𝑠)𝑓 (𝑠, 𝜗𝜇(𝑠))d𝑠

−∫

𝑐

0
𝜇(𝜇𝐼 + 𝛥𝑐𝑠)

−1ℜ(𝑐 − 𝑠)𝑓 (𝑠, 𝜗𝜇(𝑠))d𝖶(𝑠).

(4.10)

So, from the hypothesis (H5) there is a set 𝐵𝑟 such that
‖𝑓 (𝜎, 𝜗𝜇(𝜎))‖2 + ‖𝑔(𝜎, 𝜗𝜇(𝜎))‖2 ≤𝑀

in [0, 𝑐]×𝛺. Thus, there is a sub-sequence {𝑓 (𝜎, 𝜗𝜇(𝜎)), 𝑔(𝜎, 𝜗𝜇(𝜎))}, still 
denoted by

{𝑓 (𝜎, 𝜗𝜇(𝜎)), 𝑔(𝜎, 𝜗𝜇(𝜎))}, weakly convergent to, say, {𝑓 (𝜎), 𝑔(𝜎)} in 
H × 𝐿0.
2

8 
By the notation (4.10), we have
E‖𝜗𝜇(𝑐) − 𝑣𝑐‖2 ≤ 6E‖𝜇(𝜇𝐼 + 𝛥𝑐0)

−1[E𝑣𝑐 −ℜ(𝑐)𝑔(𝜗𝜇)]‖2

+ 6𝑇 𝑟(𝑄)∫

𝑐

0
E‖𝜇(𝜇𝐼 + 𝛥𝑐0)

−1𝜙(𝑠)‖2
𝐿0
2
d𝑠

+ 6
(

∫

𝑐

0
E‖𝜇(𝜇𝐼 + 𝛥𝑐0)

−1ℜ(𝑐 − 𝑠)[𝑓 (𝑠, 𝜗𝜇(𝑠)) − 𝑓 (𝑠)]‖d𝑠
)2

+ 6
(

∫

𝑐

0
E‖𝜇(𝜇𝐼 + 𝛥𝑐0)

−1ℜ(𝑐 − 𝑠)𝑓 (𝑠)‖d𝑠
)2

+ 6𝑇 𝑟()∫

𝑐

0
E ∥ 𝜇(𝜇𝐼 + 𝛥𝑐0)

−1ℜ(𝑐 − 𝑠)

× [𝑔(𝑠, 𝜗𝜇(𝑠)) − 𝑔(𝑠)] ∥2 d𝑠

+ 6𝑇 𝑟()∫

𝑐

0
E‖𝜇(𝜇𝐼 + 𝛥𝑐0)

−1ℜ(𝑐 − 𝑠)𝑔(𝑠)‖2d𝑠.

On the other side, according to Remark 4.1, for all 0 ≤ 𝜎 ≤ 𝑐, we have 
𝜇(𝜇𝐼 + 𝛥𝑐𝜎 )

−1 → 0 strongly as 𝜇 → 0, along with ‖𝜇(𝜇𝐼 + 𝛥𝑐𝑠)
−1
‖ ≤ 1. 

Given that ℜ(𝜎), 𝜎 > 0 is compact and by the Lebesgue dominated 
convergence theorem, we have E‖𝜗𝜇(𝑐) −𝜗𝑐‖2 → 0 as 𝜇 → 0. In light of 
this, the stochastic control system (1.1) is approximately controllable 
on 𝐽 .

This ends the proof of this theorem. □

Remark 4.2.  The approach employed in this article can be expanded 
to the investigation of the approximate controllability of a deterministic 
system described by, 

⎧

⎪

⎨

⎪

⎩

𝜗(𝜎) = 𝐴𝜗(𝜎) + ∫

𝜎

0
𝛱(𝜎 − 𝑠)𝜗(𝑠)d𝑠 + 𝑓𝛾 (𝜎, 𝜗(𝜎)) + 𝖢𝑢(𝜎), 𝜎 ∈ [0, 𝑐]

𝜗(0) = ∫

𝜎

0
𝜁 (𝑠, 𝜗(𝑠))d𝑠,

(4.11)

with a right choice of an abstract space 𝐶(𝐽 ,H) endowed with the norm 
‖𝜗‖𝐶(𝐽 ,H) = max𝜎∈𝐽 ‖𝜗(𝜎)‖H.

5. Example

The following stochastic control system is taken into consideration 
to highlight the major finding. 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕
𝜕𝜎
𝜔(𝜎, 𝑥) =

𝜕2𝜔(𝜎, 𝑥)
𝜕𝑥2

+ ∫

𝜎

0
𝜃(𝜎 − 𝑠)

𝜕2𝑤(𝑠, 𝑥)
𝜕𝑥2

𝜔(𝑠)d𝑠

+𝑓 (𝜎, 𝜔(𝜎))(𝑥) + 𝑔(𝜎, 𝜔(𝜎, 𝑥) d𝖶(𝜎)
d𝜎 )

+𝑢(𝑥, 𝜎), 𝜎 ∈ [0, 𝑐], 𝑥 ∈ [0, 1]
𝜔(𝜎, 0) = 𝜔(𝜎, 1) = 0, 𝜎 ∈ [0, 𝑐],

𝜔(0, 𝑥) = ∫

1

0
𝛩(𝑠, 𝜔(𝑥, 𝑠))d𝑠, 𝑥 ∈ [0, 1],

(5.1)

where 𝖶(𝜎) denotes the one-dimensional Brownian motion defined on 
the filtered probability space (𝛺, , {𝜎}𝜎≥0,P), and 𝛩(𝜎, 𝜔) ∈ [0, 𝑐] ×
𝐿2([0, 1]). To write the system (5.1) into its abstract form like (1.1), we 
consider the space H = 𝖷 = K = 𝐿2([0, 1]) with the norm ‖ ⋅ ‖. Define 
the operator 𝐴 ∶ (𝐴) ⊂ H → H by 𝐴𝜔 = 𝜔′′, 𝜔 ∈ (𝐴), with domain

(𝐴) =
{

𝜔 ∈ H | 𝜔, 𝜕𝜔
𝜕𝑥

are absolutely continuous, 𝜕
2𝜔
𝜕𝑥2

∈ H,

𝜔(0) = 𝜔(1) = 0
}

.

It is well known that 𝐴 generates a compact semigroup 𝑇 (𝜎), 𝜎 ≥ 0 in H, 
which is supposed to be compact. This implies that the hypothesis (R1)
is satisfied. Furthermore, 𝐴 has a discrete spectrum, and its eigenvalues 
are −𝑛2, 𝑛 ∈ N with the corresponding normalized eigenvectors 𝑒𝑛(𝑥) =
√

2
𝜋 sin(𝑛𝑥), 0 ≤ 𝑥 ≤ 𝜋, 𝑛 = 1, 2,…. Then

𝐴𝜔 = −
∞
∑

𝑛2⟨𝜔, 𝑒𝑛⟩𝑒𝑛, 𝜔 ∈ 𝐷(𝐴),

𝑛=1
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with the associated semigroup defined by

𝑇 (𝜎)𝜔 =
∞
∑

𝑛=1
𝑒−𝑛

2𝜎
⟨𝜔, 𝑒𝑛⟩ 𝑒𝑛, 𝜔 ∈ 𝑋.

Let us define the operator 𝛱(𝜎) ∶ (𝐴) ⊂ H → H by

𝛱(𝜎)𝜔 = 𝜃(𝜎)𝐴𝜔, for 𝜎 ≥ 0 and 𝜔 ∈ (𝐴).

Also, consider the infinite-dimensional space K by

K = {𝑢|𝑢 =
∞
∑

𝑛=2
𝑢𝑛𝑤𝑛, }with

∞
∑

𝑛=2
𝑢2𝑛 < ∞, for all 𝑤 ∈ H.

In the space K, the norm is defined by ‖𝑢‖2K =
∑∞
𝑛 𝑢

2
𝑛. Now, the 

continuous linear operator 𝖢 ∶ K → H is defined by 𝖢𝑢 = 2𝑢2𝑤1 +
∑∞
𝑛=2 𝑢𝑛𝑤𝑛.
Moreover, for any 𝜎 ∈ 𝐽 , let

𝜗(𝜎)(𝑥) = 𝜔(𝜎, 𝑥), 𝖢𝑢(𝜎)(𝑥) = 𝑢(𝜎, 𝑥), for 𝜎 ∈ [0, 𝑐] and 𝑥 ∈ [0, 1]

𝑓 (𝜎, 𝜗(𝜎))(𝑥) =
𝜎𝜗(𝑥, 𝜎)

2(1 + 𝜗2(𝜎, 𝑥))
, 𝑔(𝜎, 𝜗(𝜎))(𝑥) = 1

1 + 𝑒𝜎
𝜗(𝜎, 𝑥)

1 + 𝜗2(𝜎, 𝑥)
 and 

𝜁 (𝜎, 𝜗(𝜎))(𝑥) = 𝛩(𝜎, 𝜗) = 2𝜎2 cos (
𝜗(𝑧, 𝜎)
𝜎

).

So, the system (5.1) can be rewritten into the abstract form as the initial 
system (1.1). Consequently, if 𝜃 ∶ R+ → R∗

+ is 𝐶1 function such that 𝜃
and 𝜃′ are bounded and uniformly continuous, we conclude that (R2)
is satisfied.

Furthermore,

‖𝑓 (𝜎, 𝜗(𝜎))‖2 ≤ ∫

1

0
‖

𝜎𝜗(𝑥, 𝜎)
2(1 + 𝜗2(𝑥, 𝜎))

‖

2d𝑥

≤ 𝜎2

4 ∫

1

0

‖

‖

‖

‖

𝜗(𝑥, 𝜎)
‖

‖

‖

‖

2
d𝑥

≤ 𝜎2

4
∥2 𝜗(𝜎) ∥2 .

So, for all 𝜎 ∈ [0, 𝑐], 𝜗 ∈ H,

E‖𝑓 (𝜎, 𝜗)‖2 ≤ 𝜎2

4
E‖𝜗(𝜎)‖2.

Further,

E‖𝑔(𝜎, 𝜗)‖2 ≤ E∫

1

0

‖

‖

‖

‖

1
(1 + 𝑒𝜎 )

𝜗(𝑥, 𝜎)
(1 + 𝜗2(𝑥, 𝜎))

‖

‖

‖

‖

2
d𝑥

≤
‖

‖

‖

‖

1
(1 + 𝑒𝜎 )

‖

‖

‖

‖

2
E∫

1

0

‖

‖

‖

‖

𝜗(𝑥, 𝜎)
(1 + 𝜗2(𝑥, 𝜎))

‖

‖

‖

‖

2
d𝑥

≤ 1
4 ∫

1

0
E‖𝜗(𝑥, 𝜎)‖2d𝑥

≤ 1
4
E‖𝜗(𝜎)‖2,

and

E‖𝜁 (𝜎, 𝜗)‖2 ≤ ∫

1

0
E‖𝜎2 sin

(

𝜗(𝑥, 𝜎)
𝜎

)

‖

2d𝑥

≤ 𝜎2 ∫

1

0
E‖𝜗(𝑥, 𝜎)‖2d𝑥

≤ 𝜎2E‖𝜗(𝜎)‖2,

which implies that, the (H1)-(H3) hold good with 𝜏𝑓 (𝜎) = 𝜎2

4 , 𝜏𝑔(𝜎) =
1
4 , 𝜏𝜁 (𝜎) = 𝜎2 and 𝜙𝑓 (𝜎) = 𝜙𝑔(𝜎) = 𝜙𝜁 (𝜎) = 𝜎. Hence, by Theorem  4.1, 
system (5.1) has a mild solution provided that (3.3) holds.

We use the following lemma to establish the approximate control-
lability of (5.1). 

Lemma 5.1 ([27]). Consider 𝜃(𝜎) ∈ 𝐿1(R+) ∩ 𝐶1(R+) with primitive 
𝛱(𝜎) ∈ 𝐿1

𝑙𝑜𝑐 (R
+) such that 𝛤 (𝜎) is non-positive, non-decreasing and 𝛱(0) =

−1. If the operator 𝐴 is self-adjoint and positive semi-definite, the resolvent 
operator ℜ̂(𝜎) associated with the system (2.2) is self-adjoint as well.
9 
From Lemma  5.1 above, the resolvent operator ℜ̂(𝜎) of (5.1) if 
self-adjoint. So it follows,
𝖢∗ℜ̂∗(𝜎)𝜗 = ℜ̂(𝜎)𝜗, for any 𝜗 ∈ 𝛴.

Let 𝖢∗ℜ∗(𝜎)𝜗 = 0, for all 𝜎 ∈ [0, 𝑐], then ℜ̂(𝜎)𝜗 = 0,∀𝜎 ∈ [0, 𝑐]. 
Since ℜ̂(0) = 𝐼 for 𝑙 = 0, we get 𝜗 = 0. So from [7](Theorem 
4.1.7), it follows that the linear control system corresponding to (5.1) 
is approximately controllable on 𝐽 , which means that Lemma  2.12 is 
satisfied. Therefore, by Theorems  4.1 and 4.2, the integrodifferential 
Eq. (5.1) is approximately controllable on 𝐽 .

6. Conclusion

In this article, we discussed the approximate controllability of a 
class of nonlinear stochastic integrodifferential equations with nonlocal 
initial conditions in a Hilbert space. By dropping the compactness 
conditions and the Lipschitz condition on the nonlocal term, we use a 
weaker growth condition on the nonlocal term to establish our result. 
Furthermore, the study of approximate controllability instead of the 
exact one is due to the fact that the resolvent operator related to the 
linear part of the main system is compact.

This work can further be extended for a second order (fractional) 
system to study the strongest notion of controllability called trajectory 
controllability by relaxing the compactness assumption on the resolvent 
operators/semigroups in the form of sine and cosine operators.
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