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MSC: This project investigates the approximate controllability of a class of stochastic integrodifferential equations in
34K50 Hilbert space with non-local beginning conditions. In a departure from the conventional concerns expressed
45D05 in the literature, we will not consider compactness or the Lipschitz criteria concerning the nonlocal term. We
34HO5 use the fact that the resolvent operator is compact. We first prove the controllability of the nonlinear system
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resolvent operator theory. Subsequently, we employ the reliable approximation methods and the powerful
diagonal argument to determine the approximate controllability of the stochastic system. To conclude, we
present an example that validates our theoretical statement.

1. Introduction

This paper seeks to provide the necessary criteria for the approxi-
mate controllability of abstract nonlinear integrodifferential equations
with nonlocal initial conditions powered by a cylindrical Wiener pro-
cess of the following form:

9 (c) = Ad(c) + /6 II(c — 5)3(s)ds + Cu(o) + f(0,9(0))
0

+2(c,9(0)dW(0), ¢ € J = [0, c] (1.1
9(0) = h(9),

where the state J(-) takes values in the Hilbert space H, endowed with
inner product (-, -) and norm ||-||; the operator A : D(A) Cc H — H is the
infinitesimal generator of a strongly continuous semigroup (7'(¢)), in
H; for ¢ > 0, I1(c) is a closed linear operator with domain D(I1(s)) D
D(A) independent of ¢. The nonlocal function # is defined by

h@) = /C ¢(s,9(s))ds.
0

Consider Y to be an additional separable Hilbert space powered by
the same scalar product and norm as H (without any confusion), the

set {W(o) o > 0} is a given Y-valued Wiener process with a
finite trace nuclear covariance operator Q > 0 defined on a complete
filtered probability space (22, F, {F, },50.P), with {F,},o generated by
the Wiener process W. The control functions u(-) belong to the Banach
space of admissible control functions space L?,(J ,Y),and C : Y - H
is a bounded linear operator. Later, the nonlinear functions f, g, and ¢
will be defined.

Stochastic differential equations are used in fields such as engi-
neering, economics, biology, electricity, etc., to model the noise effects
that occur when studying the phenomena that appear in these fields
(see [1-3], Da Prato and J. Zabesczyk book [4] and references therein).
The study of the qualitative properties like existence, stability, optimal
control, and controllability, among others, of these kinds of systems,
has attracted great interest in the researcher and engineers community;
for instance, we refer to [5,6] as references.

On the other hand, controllability is an important concept in control
theory, both in deterministic and stochastic cases. In infinite dimension,
we are always tempted to achieve exact controllability, i.e., to be
able to steer a system between two arbitrary points vy, v; in state
space, as we are able to do in finite dimension. However, this is rarely

* Corresponding author at: Department of Applied Mathematics, Mallory Hall, Virginia Military Institute (VMI), Lexington, VA 24450, USA.
E-mail addresses: ly.mamadou-pathe@ugb.edu.sn (M.P. LY), ravikumarkpsg@gmail.com (R. Kasinathan), ramkumarkpsg@gmail.com (R. Kasinathan),
chalishajardn@vmi.edu (D. Chalishajar), mamadou-abdoul.diop@ugb.edu.sn (M.A. Diop).

1 All authors contributed equally to this research.

https://doi.org/10.1016/j.sysconle.2025.106122

Received 6 January 2025; Received in revised form 20 April 2025; Accepted 27 April 2025

Available online 16 May 2025

0167-6911/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/sysconle
https://www.elsevier.com/locate/sysconle
mailto:ly.mamadou-pathe@ugb.edu.sn
mailto:ravikumarkpsg@gmail.com
mailto:ramkumarkpsg@gmail.com
mailto:chalishajardn@vmi.edu
mailto:mamadou-abdoul.diop@ugb.edu.sn
https://doi.org/10.1016/j.sysconle.2025.106122
https://doi.org/10.1016/j.sysconle.2025.106122
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2025.106122&domain=pdf

M.P. LY et al.

satisfied when the semigroup associated with a linear system is compact
since the controllability operator is asked to be surjective, see [7,8]
to learn more about this. Therefore, we need to switch from exact
controllability to a weaker one, which is approximate controllability.
In recent years, much work has been done in the study of approximate
controllability of fractional differential systems in the deterministic
and stochastic cases; see [9-13]. Sakthivel et al. [10] established the
approximate controllability by assuming that the Cy-semigroup is com-
pact and the nonlinear function is continuous and uniformly bounded.
More recently, K. Nandhaprasadh, R. Udhayakumar [14], discussed
the approximate boundary controllability of Hilfer fractional neutral
stochastic differential inclusions with fractional Brownian motion (fBm)
and Clarke’s subdifferential in Hilbert space, and examine whether mild
solutions to a fractional stochastic evolution system with a fractional
Caputo derivative on an infinite interval exist and are attractive, and
in [15], S. Sivasankar et al. examine whether mild solutions to a frac-
tional stochastic evolution system with a fractional Caputo derivative
on an infinite interval exist and are attractive. However, little has
been done on the study of stochastic integrodifferential systems by
means of the Grimmer resolvent operator properties. Diop et al. [16]
studied the existence of optimal controls for some impulsive stochastic
integrodifferential equations with state-dependent delay.

Moreover, the nonlocal property represents one of the most impor-
tant tools to consider when using integrodifferential in the applications
we have described above. Indeed, nonlocal initial conditions mean that
the current state of a system depends not only on its previous state
but also on all its previous states. It also means that, contrary to the
abstract differential equation, where the initial condition is taken to
be 9(0) = 9, in order to check the state of nonlocal equations at
a given point, information about the values of the system far from
that point is needed; one can see [17] for more explanation about
the importance of the nonlocal initial condition property. Differential
equations with the nonlocal property have been investigated by many
authors [17,18], and in the paper of Byszewski [19], the study of
differential equations by taking into account the nonlocal property has
been introduced for the first time. But more often, the restrictions,
such as compactness or the Lipschitz condition, that are imposed on
the nonlocal term 4 in the literature are too strong and are not easily
satisfied in practical applications. To relax these conditions on 4, Liang
et al. [20] introduced the following assumption:

(HO) For any x,y € C([0,c]; X), there exist a constant g € (0, ¢) such that
x(0) = y(o)(o € [, c]) implies h(x) = h(y)

This means that the values of the solution d(¢) when ¢ takes zero do
not affect . In this work, contrary to what is supposed in the above
hypothesis (HO), we consider that the nonlocal term A(9) depends on
all values of the solution 8(-) on the whole interval [0,c]. In [21],
Yonghong Ding and Yongxiang Li study the approximate controllability
of fractional stochastic evolution equations with nonlocal conditions.
Therefore, based on this work, [21], with the help of the compactness
of the resolvent operator R(s), the techniques of stochastic analysis,
approximation technique, diagonal argument, and Schauder’s fixed
point theorem, to establish the approximate controllability results,
considering weaker assumptions like continuity of A.

The main contributions of this paper are summarized in the follow-
ing points:

+ A new result on the approximate controllability of nonlocal
stochastic integrodifferential equations in Hilbert space is ob-
tained.

» We relax the compactness conditions on the nonlocal term and
use the Grimmer resolvent operator and the fixed point theory to
establish the existence of a mild solution for system (1.1).

« Finally, we use approximation techniques and the diagonal ar-
gument to prove the approximate controllability of our system
(1.1).
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The rest of this work is organized as follows. In Section 2, we recall
some notions and basic known facts that will help us establish our
results. In Section 3, we define the notion of a mild solution and give
sufficient conditions that ensure its existence. In Section 4, we establish
the approximate controllability of the system (1.1). In Section 5, we
give an example to illustrate the feasibility of our obtained results.

2. Preliminaries results

In this section, we present the well-known essential facts, basic
definitions, lemmas, and preliminary results that are used throughout
this paper.

2.1. Wiener process

All through this work we consider (2, F, {F, } o<o<e - P) With ¢ > 0 an
arbitrarily fixed time horizon, as a filtered complete probability space
satisfying the usual conditions, which means that the filtration is a
right continuous increasing family and 7|, contains all P-null sets of the
filtration 7. We also consider H and Y as two real separable Hilbert
spaces, with (-,-)y. (-, )y their inner product and || - ||g. |l - Ily their
corresponding vector norms, respectively. Let {e, } ey D€ @ complete
orthonormal basis of Y consisting of eigenvectors of Q corresponding
to the eigenvalues 4,,k € N. Suppose that the set {W(c) : ¢ >0} is
a cylindrical Y- valued Brownian motion or Wiener process defined
on the filtered probability space (£2,F, {Pa}azo’P) with finite trace
nuclear covariance operator Q > 0 denoted by:

0
TrQ)= Y I =A<+,

k=1
which satisfies that Qe, = A.e;, k € N. Let {y,(c), k € N} be a sequence
of one-dimensional standard Wiener processes mutually independent
on (2,F,{A},>o,P) such that for ¢ > 0,

W(o) = D Varoe, 2.1
k=1

where

1
7i(0) = —=(W(0),¢;),k €N,
VA

represents a pair of independent real-valued Brownian motions on
(2, F, {P6}0'>0 ,IP) (see [4] for more details on the series (2.1)).

Furthermore, we review the meaning of the H-valued stochastic
integral in relation to the Y-valued Q-Wiener process W. Let Lg =

1
L,(Q2(Y), H) represent the space of all Hilbert-Schmidt operators from
1

Q2Y into H with the norm

111, = Tr((@Q"/*)($Q"/?)"),

where ¢* is the adjoint of the operator ¢ € L(z). We observe that, here,
this norm can be reduced to

1%, = Tr¢Qe™) = . llv/ridel’
2 k=1

Let C(J, L?(©2, H)) represent the Banach space of all continuous map-
pings from J to L?(2,H) that fulfill sup,c;(E[|8(c)||>) < co. We refer
to M(J, L2(22, H)) as the space of all F,-adapted measurable processes
9 € C(J, L*(£2,H)) endowed with the norm [|9]| ,, = (E[|9(c)|))!/>.

The result that follows will be used to calculate the system’s stochas-
tic integral.

Lemma 2.1 ([22]). If g :
9 € C(J, LA(2,H)), then

J xH — L(Y,H) is continuous function and

E|l / 8@, 9(e)AW(0)||* < THQ) / Ellg(o. 9(c))||*do.
J J
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2.2. Integrodifferential equation

By defining Y as a Banach space, D(A) powered with the graph norm
given by
Iylly = llAyIl + lIyll for y € Y.

Let us take into account the following Cauchy problem:

9'(c) = AS(o) + / ’ (o — 5)3(s)ds for & > 0
0
9(0) = 9, € X.

(2.2)

To deal with a resolvent operator, we suppose that A and I1(-) meet
the following criteria:

(R1) A is the infinitesimal generator of a C,,-semigroup 7'(¢),c > 0 of
uniformly bounded operators in X.

(R2) For all ¢ > 0,II(c) is a closed linear operator from D(A) to
X and II(c) € B(Y,X). For any y € Y, the map ¢ — [I(o)y
is bounded, differentiable, and the derivative ¢ — II'(c)y is

bounded uniformly continuous on R*.

Definition 2.2 ([23]). Let 9, € Y. A solution 9(-) of (2.2) is a function
that belongs to C([0, o), Y) U C!([0, c0), X) so that 9(0) = 9, and (2.2) is
satisfied for all ¢ > 0.

The definition of a resolvent operator (in the sense of Grimmer) follows
logically from the definition given above.

Definition 2.3 ([23]). A resolvent for Eq. (2.2) is a bounded linear
operator-valued function R(c) € B(X) for ¢ > 0, having the following
properties:

(a) RO) = I and |R(c)| < MeP® for some constants M > 0 and
pER.

(b) For each 9 € X,R(c)3 is continuous for ¢ > 0.

() Ro)e BY)fordeY,R(-)J € Cl([O, +00); X)NC([0; +00); Y) and

m’(a)é)

AR(0)I + /lI I (o — s)R(s)dds
00'

R(o)Av + / R(o — ) (s)dds, o >0,
0

We recommend reading [23,24] and the reference therein, for more
information about the resolvent operators and some of their most
crucial characteristics.

Theorem 2.4 ([23]). Assume that (H1) — (H2) hold. Then there exists a
unique resolvent operator for the Cauchy problem (1.1).
In the following, we give some results for the existence of solutions

for the following integrodifferential equation:

o
9 (c) = Av(o) + / I(c —5)3(s)ds + q(c) forec >0
0 (2.3)
9(0) = 9y € X,

where g : Rt - X is a continuous function.
Definition 2.5 ([23]). A continuous function 9 : R — X is a strict
solution of Eq. (2.3) if:

1. 8 € C!R*;X) (N C(R*;Y) and

2. 9 satisfies Eq. (2.3).

Theorem 2.6 ([23]). Assume that (H1)-(H2) is verified. If 9 is a strict
solution of Eq. (2.3), then

(o) = R(0)Iy + / R(oc — s)q(s)ds foroc >0.
0
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Lemma 2.7 ([24]). Assume that (R1)-(R2) is satisfied. The resolvent
operator (R(0)),»o is compact for o > 0 if and only if the semigroup
(T(0))450 is compact for ¢ > 0.

Lemma 2.8 ([23]). Assume that (R1)-(R2) is satisfied. If the resolvent
operator (R(0)),»q is compact for o > 0, then it is norm continuous (or
continuous in the uniform operator topology) for ¢ > 0.

Lemma 2.9 ([24]). For all ¢ > 0, there exists a constant y = y(c) such that
IR +e)—R(eR(O)lIx <ve, for0<e<o<ec

In the following, we give the related definition of approximate
controllability.

Definition 2.10. The admissible set of system (1.1) at the terminal
time c is then referred to as

R(c) = {19(0,14) ‘ue LZF(J,Y)},

where 9(c;u) denotes the state value of system (1.1) at the terminal
time ¢ which corresponds to the control u.

The above leads to the definition of approximate controllability of
system (1.1).

Definition 2.11 ([11]). The stochastic nonlocal integrodifferential sys-
tem (1.1) is said to be approximately controllable on the interval J if we
have R(c) = H. That is, for all ¢ > 0 and every desired final state 9, € H,
there exists a control u € L;(J ,Y) such that 9 satisfies ||9(c) — 9, <e.

In order to determine the approximate controllability result of
system (1.1), we take into account the approximate controllability of
the subsequent linear integrodifferential system:

8'(c) = AS(c) + / II(c — 5)3(s)ds + Cu(c) forc € J =[0,c]
0
9(0) = 9,
2.4

and define the following controllability and resolution operators,
A(c) = / R(c — 5)CC*R*(c — s)ds
0
S(u, Ay = (ul + Af))_l,ﬂ >0,

where the operators C* and R*(s) denote the adjoint of C and R(o),
respectively. It is commonly known that the operator 47 is linearly
bounded and that 1S (u, AN < %

Lemma 2.12 ([25]). The linear system (2.4) is said to be approximately
controllable on [0, c]if and only if, uS(u, A7) — 0 when p — 0 in the strong
operator topology.

Lemma 2.13 ([5]). For any 8, € L*(2,H), there exists a function ¢ €
L2(2; L*(J, LY)) so that,

3. =EJ, + / B(s)dW(s).
0

A control function can now be introduced for any x4 > 0,9, €
L?*(2,H) by

ut(c,9) =C*R*(c — o)(ul + 45)™" [ (ES, — R(c)h(9)) + / d(s)dW(s)
0
- /C R(c — 5)f(s,9(s))ds (2.5)
0

- / R(c - s)g(s,&(s))dW(s)] .
0
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3. Existence of mild solution of system (1.1)

In this section, we establish the existence of a mild solution of the
system (1.1). We assume that (R1) and (R2) are true in H for the
remainder of this article.

The following is the definition of the mild solution for the system
(1.1).

Definition 3.1. For any given control function u € L;(J ,Y), a

stochastic process 9 is said to be a mild solution of (1.1) on J if

9 € M(J, L*(2,H)) and satisfies

(i) 9(o).c € J is F,- adapted and measurable;
(ii) 9(o),0 € J can be writing as the following

o) = R(o)h(9) + / R(o — 9)[f(s,9(s)) + Cu(s)]ds
0
+ / R(o — 5)g(s, 9(s))dW(s).
0

We adopt the following weak assumptions for nonlinear functions
f,g, and nonlocal function 4 in order to demonstrate the existence
results of mild solution:

(H1) The function f J x H - H is Carathéodory continuous.
Additionally, 7, € L'(J,R*) exists along with a nondecreasing
continuous function 2, : R* — R* such that

Ellf (o, 9% < 7,(0)Q2;EIONZ), aec €, V9 e H.

(H2) The function g JxH — Lg is Carathéodory continuous.
Additionally, a function r,

. € L'(J,R") exists, along with a
nondecreasing continuous function 2, : R* — R* such that

Ellg(o. )y < 7g(0) 2 EII). ae o€ J.V9 € H.
(H3) The nonlocal term 4 : M — H is continuous, and ¢ : J xH — H
is a Carathéodory type function. Furthermore, there exist 7, €

L'(J,R*) along with a nondecreasing continuous function Q
R* — R* such that

E¢ (0. O3 < 7.(0)Q2E9IIZ). ae o € J,V9 € H.
Let M = sup,¢(q, [IR(0)|l and M = ||C]|.

First of all, based on the above assumptions, we then provide a few
characteristics of the control u# which is defined above.

Lemma 3.2. If the hypotheses (H1)-(H3) are met, then the following
conclusions hold for any 9 € B,.

() u”(c,9) is continuous in B,;
(i) E|lu¥(c,9)|?> < K,, where

amz ~ ¢
K, =2 (2]E||19C 112 +2Tr(Q)/ Elly(s) |I? ds + cM? [Qg(r)nfc||L1<[0,c,jIm
0

+2,007, Nl oz + TR Pz | oy ze ] )

Proof. We go through the following steps to prove the two points: (i)
and (ii).

Step 3.2.1. For ¢ € J and 9 € B,, by using the Hélder inequality,
hypotheses (H1)-(H3) and Lemma 2.1, we obtain:

Bl 9 S4EICR e~ o)t + 457 (B0 + [ glorawes) )P
0
+ 4E|C*R*(c — o)(ul + 457 R(c)hI)|)?

+ 4E||IC*R*(c - 0) /L(,u + 4R (e — 5) (s, 9(s))ds |
0
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+ 4E||IC*R*(c — a)/ (ul + Ai)'lm(c — 5)g(s, 9(s)dW(s)||?
0

amg o ¢ 2
<M (289,17 +27r0) [ Ellgo)ds)
0
Mg‘ 4 4Mé 4
" M Qe o + 7M e (llzsllLrgoerre

ATrQME |
—M e, (M7l L1 go.c1re

4
+

4M€‘ 2 Qq 2 ¢ 2
=7M (2E||z90 I +2Tr(Q) [ Ellw(s) |II* ds
0
+ eM? [Qg(nllrgllu([o,clmﬂ

+ Q/'(")||Tf||1_l(|0,c]) + T"(Q)C-Qg(")“”fg||L!(|0,c].]R+) :| )

=K,
which implies that (ii) is satisfied.
Step 3.2.2. Now, we prove that (i) is satisfied. Suppose 9, — 9 in B,,
then we get from (H1)-(H3)

f(0,8,(0)) = f(c,9(0))., g(0,9,(c)) = g(c,9(0)),
{(0,9,(0)) = {(c,9(0)) as n = co.

Additionally, by using the Lebesgue dominated convergence theorem and the
Holder inequality, for any o € J, we can obtain

EIC*R*(c - o) / (ul + 457" R(o = (5, 9,(5)) — £ (s, 9(s)]ds|
0
2

M o

< 7M“c / E|lf (s, 8,(s) = f (s, (s> ds
0

-0 (- ).
On the other hand, using Lemma 2.1, the Lebesgue dominated convergence
theorem and the Holder inequality, we arrive at,

E|[C*R*(c - o) / (I + 47" R (6 = 9)[g(s, 9,(5)) — &(s, I(sHIAW(S)?

0

TrQ)MZM*
s _—
U2

/0 Ellg(s. 8,(s)) — (s, 9(s)|Pds

-0 —> ).

3.1
Furthermore, by hypothesis (H3), we obtain that
EIIC*R*(c — o)(ul + A2 'R()[A(®,) — h9)]|>
2 pr4
<< —E||A(9,) - h(®)]ds (3.2)
U

-0 (n > o).

The following outcome follows from the inequality we obtained above:
Ellu"(0,9,) = (o, I*

< 3E|IC*R* (¢ — o)(ul + A)T'R(©[A(,) — A(D]|I?

+3E||C*R*(c - o')/ (I + A" RS (5.9,) = (s, 9(s)]ds]|?
0

+3E[|C*R*(c - a)/ (I + £ 'R0 - 9)[g(s,9,) — g(s, I(sNIAW ()|
0

-0 ((n— ).

Therefore, u*(c,9) is continuous in B,.
This completes the proof. []

We assume that the following hypothesis is true in order to discuss
the controllability of the system (1.1).
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(H4) There is a constant y € (0, c¢) such that, for all ¢ € [y, c],

f(0,8,(0)) = f(0,9,(0)),
g(c,9,(0)) = g(o, 9,(0)),
{(0,9,(0)) = {(0,9,(0)),

where 9,,9, € M(J, L*(Q,H)) with 9,(c) = 9,(c),0 € [y.c].
Theorem 3.3. Suppose that the hypotheses (H1)-(H3) are met, and that
(H4) is satisfied. Following that, the global issue (1.1) has at least one mild

solution in B, if and only if there is a positive constant r that satisfies the
following condition:

3M2e (NIl Lo +6M2c(2!2f(r)llrf||uo,c] + MécKu) 3.3)
+3TH Q) 22, (NNl L1 oy < 7-
Proof. Whenever r > 0, define

B = {v € M{iy.cl, (@ H)); B9 <r.¥o € [1.cl}.

It is clear that for each 9 € B,(y), a function d € B, exists such that
8(0) = I(o), 0 € [y, cl.
Let define the following mappings on B.,(y):

(f*9)0) = f(o,8()), (g*9)(0) = g(5,9(6)), 6 €[0,c], and A*(9) = h(D).

Then, it is simple to verify that f*,g*, h* is well-defined on B,(y) and
continuous by using hypothesis (H1)-(H4). Furthermore, assume that
the following estimations are met:

El(/*9)@)II* < 7,(0)Q,E[9]?). ae o € J. V9 € B,(y).
Bl I, < (@B, aeo €, WEBM.  (34)

EN(* 9@ < cQ:(r)lz |l o)) V9 € B, ().

For any u > 0, define an operator ¥, on B,(y) as follows:
#,90) =R+ /00 R(o = H(f*I)(s) + Cit (s, 9lds
+ /(r R(e — )" NS)AW(s), 0 € [y, cl,
where the contr(())l i*(c,9) is defined by
W#(.9)= C*R*(c—o)ul + 45" [ EJ, - R(c)g*(9) + /OC B(s)AW(s)
- /OE R(c = 5)f"(s,9(s)ds — /OC R(c — $)g"(9)(s)dW(s) ] .

It is easy to see that ii#(o, 9) satisfies the results of Lemma 2.13.

For the rest of the proof, we use Schauder’s fixed point Theorem
to prove that ¥, has a fixed point. We go through four steps to take
this:

Step 3.3.1. We start by asserting that there is a positive number r such
that ¥, maps B,(y) into itself, i.e., there is a positive number r = r(y) for

each y > 0 such that ¥,(B,) C B,. For dll 9 € B,(y) and ¢ € [y,c], it
follows from (3.3) and (3.4), Lemma 2.7 and Holder’s inequality that

I, <EIR@H G + 321 [ Ro = 9190+ G, lasl
+ 381 [ R = 9 DO
<M o + 303 [ EIG 00+ Cat s, s
+srom? [ I 0 IRds
<3MeQ (Ol g, + 6M2c<9f(r)||rf||mc]) + MécK,,)

+ 3THQ)Q2, (e Nzl Loy
<r,
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which implies that ¥, maps B,(y) into itself.

Step 3.3.2. We establish that the operator ¥, B.(y) - B.(y) is
continuous. Let v,,9 € B.(y) and 9, — 9(n — ), then for any ¢ € [y, c],
we have

E[[(#,9,)(0) — (7,9)(0)|2< 4EIR(c)(h*(8,) — h* )]

+41E||/ R(o = )I(*9,)() = (f*9)()1ds|)*
0

F4E | / R(o — )I(g°9,)(s)
0
(" DSIAWS) |12
+4E|| / CR(c — s)[ut(s, 9,) — ut (s, 19)](15”2.
0

Then by the continuity of the nonlocal function h* and nonlinear functions
f*, g%, and using Lemma 2.13 and the Lebesgue dominated convergence
theorem, we obtain

Ell(¥,9,)(c) — (‘I’ﬁ))(o‘)”2 - 0(n = ),0 €[y,cl.

That implies, (¥, 9,)(0) = (F,9)©@)llpy = O(n — o), mean that ¥, is
continuous in B,(y).

Step 3.3.3. We show that ¥, is a completely continuous operator on
B,(y). Since the compactness of the resolvent operator R(c),c > 0 implies
that {R(e)h*(9) : 9 € B,(y)} is pre-compact in H for each ¢ € [y, c]. So, by
using Lemma 2.7, we obtain that {RR(-)h*(9) : 9 € B,(y)} is equicontinuous.

Additionally, assume o € [y, c] be fixed, Ya € (0,0) and Vy > 0 define
an operator ¥'* on B, (y) using the formula:

oc—a

P9() = R(o — HI(*I)(s) + Cit* (s, 9]ds
0
+ / R(o — 5)(g*9)(s)dW(s)
0
= ER(Ol)/ R((e = 5) = D(f*IN(s) + Cit* (s, 9)]ds
0

+ ER(a)/O ) R((c — 5) — a)(g"N(s)AW(s).

Then, by the compactness of R(«a), the set {(F*I)(oc) :
relatively compact in H. We denote

9 € B.(n)}is

c—a

Fi9) = R(o — HI(f*9)(s) + Ci* (s, 9)]ds
0

+/ i R(o = $)(g*N()AW(s),
0

for any 9 € B,(y). Using (3.4), Lemmas 2.1 and 2.9, and Holder inequality,
we obtain

E||(#}9)o) — ¥ 9)(o)*
-E1 [ T IR@R(e — 5~ @)~ R~ ) (96 + (5. )ds
+ /0 " IR@R (6 - 5) - 0~ Rio — g NEIWG) |
<4E| /0 "IR@R( —5) - )~ R(o — )] (¢ 9)6) +Cat'Gs, 9 )asl?
+ 4E|| /:a[fR(a)ER((a —)—a)— R — s)]((f*&)(s) +Cat(s, 8)>ds||2
+E| /0 "IR@R( —5) - )~ R(o — )& )W)
+E| ;mwm«a - 5) = @) = R — I NHAW(S) 12
<4(rhy? /0 TENG9)s) + Cat (s, 8)[2ds + 4y h)?

3 " BN 9)6) + Cat'Gs, 9l1Pds

+ 4T rH(Q)(yh) / Ell(g*9)(s)I*ds + 4T r(Q)(rh)? / Ell(g*9)(s)lI*ds
0

o—a
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< 8(yh)26<9f(r)||‘ff||u[0,cJ + M(ZZCKM)

+ 8(yh)2c<29f(")||ff||L1[o,c] + ZMéCKu>
+ 4 e PTHQ)IQ, (7, | +4rh)e P TrQ)IQ ()l |
- 0(y = 0).

As a result, for each ¢ € [y, c], there exists relatively compact set arbitrarily
close to the set {(¥,v)(c) : 9 € B,(y)} in H. Hence, {(¥;9)(c) : 9 € B.(y)}
is also relatively compact in H for ¢ € [y, c].

For the second part of this step, we will show that ¥,(B,(y)) is an
equicontinuous family of functions on [y,c]. For any 9 € B.(y) and y <
0, < 0, < ¢, we obtain

E |l (#9)c,) — @ 8o I>=6E || / A R(o, — H(*I(s) + Ca(s,9)]ds ||
41
+ 6E || / [R(o, — 5) — R(o, — )I*I)(s) + Cat (s, 9ds ||
0
o
+ 6IEll/ R(o, — )" N(AW ()|

o1
+ 6E|| / [R(o, - 5) — R(o, — )" N(S)AW ()|
0
=lL+L+1+1,
To demonstrate that E||(¥,9)(c,) — (7, 9)(e)II> = 0(c, = o), dll that is
left to do is verify that I; — 0 independently of 9 € B,(y) when ¢, — o, for
i=1,2,...,4

For 1, and I, when, using the assumption (3.4), Lemma 2.1, Lemma 2.7
and Holder inequality, we obtain the following estimations,

1, = 6E|| /02 R(oy — IS 9)(s) + Ca*(s, 9lds|?
41

<om? / CENC/*9)(s) + Cat (s, ]]Pds

1
< 12M2(.Qf(r)||§f||L1[0’L_] +M2(oy - ol)Ku)(az —o))

— 0(oy = 0)).

oy
Iy = 6E| / R(os - $)(g" NSAW(S)|2
o)

< 6M>Tr(0) / “Ellg*9)(s)IPds
o]

< 6M2Tr(Q)~Qg(r)||Tg||L1[0,1J(‘72 - 0'1)1/2
— 0(oy = o).

Additionally, if 0 < y < o, is small enough, we derive the following
inequality for I, and 1,:

I, = 6E|| / [R(o, — 5) — R(o| — )] [( £*9)(s) + Ca (s, &)]dsn2
0
< 12]E||/ "R, - 5) - Reo, —s)][(f*&)(s)+Cﬁ“(s,:9)]ds||2
0

#1280 [ o, -5 - RGo, = 9] 000+ Cat .9 asl?

op—a

<12 swp 1R, = 5) =R, = I (22,0l Nl o + 2MEK, )0, - @)

s€[0,01—a]

+ 12 sup

s€lo)—a,01]

IR0, = ) = Rioy = I (22, Pl 1 + 2MEK, )
- 0(c, = 0)).

I, = 6E] /0 " R0, - 9) - Ko, - (& HSIWE)P
< 128 /0 " R0y — 9 - Ko, - (& DS

o]
+ 12E|| / [R(o, — 5) — R(o, — 9 N()AW(s)||?

12
< 12Tr(Q)R2(r) sup  [|R(oy — ) — R(oy - S)||2||Tg||1_l(m,1j) X ("l - 0‘)

s€l0,0,—al

+ 12Tr(Q) sup

s€lo)—a,01]

1R(c, — 5) = R(o; — DI, Nl 1 gopa’’? = 0
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- 0(c, = 0y).

Above dll, we obtain that I;_; 5 3 4 = 0 as 6, - oy, and y — 0, which means
¥, (B,(y)) is equicontinuous.

As a result, the precompactness of ¥,(B,(y)) is demonstrated by the
Arzela-Ascoli Theorem. Thus, by utilizing Schauder’s fixed point The-

orem, we conclude that ¥, has at least one fixed point & € B,(y),
ie:

o) =R+ /0 "R ) [ F*@)s) + Ca s, ﬁ)]ds
+ /0 ! R(o — 5)g* (s, )(s)dW(s), o € [0, c].
Set
2(0) = R(o)h* (D) + /0 "R —s) [ F*@)(s) + CaatGs, z)]ds
+ /0 ! R(o — 5)g* (s, 9)(s)dW(s), 0 € [0, c].

Obviously, () = 2(0) for o € [y,cl. It is clear from the definitions of the
functions f*, g*, and h* that,

2(0) = R(o)h*(2) + / R(o - s) [ FHE)(s) + Cit(s, z)]ds
0

+ /06 R(o — 9)g"(s, D()AW(s), 6 € [0, c],
which implies, Z is a mild solution of system (1.1) in B,.
This completes the proof. []
For all y € (0,¢) and an arbitrary § € M(J, L>(22, H)), define

Iy), 0 €10,7],
do),0 € [y,cl,

(N, 9)(0) = { (3.5)

and

f1(0,8(0) = f(o,(N)(0)), o Er,c]
8,(0,9(0)) = g(6, (N 9)(0)), 0 €[y,c]

£, (0,8(0)) = {(0,(N'8)(0)), o €r,c]

It is clear that the functions f,,#, and ¢, defined above meet the
constraint (H4), resulting in the following lemma:

Lemma 3.4. Assume that (R1)-(R2) are satisfied. If the assumptions
(H1)-(H3) hold, then the following nonlocal problem

8 (c) = Ad(c) + / II(c — 5)9(s)ds + g, (o, 9(6))dW(c) + Cu* (o, (Nn&)(a)),
- 0
90) = [ £,(s, 9(s))ds,
)
(3.6)

has at least one mild solution in B,, given that there is a positive constant r
such that (3.3) is satisfied.

Proof. The proof is similar to the proof of Theorem 3.3 above. []
4. Approximate controllability results

In this section, we analyze the approximate controllability of the
stochastic dynamical control system (1.1) by utilizing approximation
techniques and a diagonal argument.

Theorem 4.1. Suppose that (H1)-(H3) are satisfied, then the stochastic
control systems with nonlocal initial conditions (1.1) have at least one mild
solution in M(J, L*(2, H)), provided that there exists a positive constant r
such that (3.3) is satisfied.
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Proof. Let us consider {y, : n € N} to be a decreasing sequence in
(0, ¢) with lim,,_, o, 7, = 0. For any n, by Lemma 3.4, we assume that the
following system

I(o) = Ad(o) + /6 (o — 5)8(s)ds + f,, (6,9(0)) + 8, (0,9(c))dW(5)
+Cut (o, (.?\/'yn 9)(0)),
90) = /OU &, (5, 8(s))ds,
4.1)

admits at least one mild solution 9, € B, for the constant r satisfying
(3.3), which is defined by

9,(0) :ER(G)/ Cy”(s, I(s))ds + / R(oc —5) [fh (s,9,(s)
0 0
+ (s, N, 9,(0)|ds
+ / R(o — s)(gyn (s,9,(5))dW(s), o € [0,c].
0

Let us suppose the following:

{Mm,o € 10,7,
x,(0) =
9,(0),6 € [y, cl,

(4.2)

then x, € B,. We may deduce that given the characteristics of f, . g,
and [
9,(0) = 91(6)/ C(Saxn)d5+/ R —s) [f(s’xn(s))
0 0

+ Cut(s, x,,(s)) ] ds
+ fon R(o — 5)(g(s, x,())dW(s), o € [0, c].

(4.3)

We shall then demonstrate that the set {9, : n € N} is precompact in
M(J, L*(Q,H)). In light of this, we provide the following notations:

9,() = R(0) / " {5, 9,(s)ds. o € [0.cl,
0
v, (0) = / R(o = 5)[ £, 8,(9) + Cu' (5.9, (57| s
0

+ /“ R(o — 5)g(s,9,(s)dW(s), o € [0,c].
0

Consequently, all that is left to do is to demonstrate that the sets {9, :
n €N} and {w, : n € N} are precompact in the space M(J, L?(£2, H)).
To do so, we go through the following steps:

Step 4.1.1. First, we can see that x,, € B, from the definition of x,(c). So,
the hypotheses (H1)-(H3) are satisfied for functions f(s,x,), g(s,x,(s))
and h(s,x,(s)). Furthermore, the control function u*(s,x,) satisfies the
properties (i) and (ii) of Lemma 3.2. So, we easily prove that the set
{w, : n € N} is precompact in M(J, L>(2, H)) by using the same arguments
as in Theorem 3.3.

Step 4.1.2. Secondly, we will show that the set {9, :
in M(J, L*(2,H)).
It turns out that all we need to show is that the set

n € N} is precompact

{/ £(s,x,(s))ds : n e N}
0

is precompact in H.
Let {u, n € N} be a decreasing sequence in (0,c) such that

liInn—»oo Hp = 0.

» For all n € N and o € [y, c], define the function z,, : [u;,c] — H by
z,(c) = 9,(c). From the fact that x, € B,, the set

{/6 {(s,x,(s))ds : n e N}
0

is bounded.
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Meanwhile, from the fact that the resolvent operator R(c) is compact,
and hence norm continuous (see, Lemma 2.8) for ¢ > 0, which implies
that the set

{ER(U)/U C(s,x,(s))ds : n € N}
0

is precompact in H for any ¢ € [u,,c] and {ER(~)/ £(s,x,(s))ds :
n € N} is equicontinuous. 0
Consequently, we conclude based on Arzela-Ascoli’s Theorem, that

{R(o) /“ {(s,x,(s))ds : n e N}
0

is precompact in M([u;,c], L>(€2,H)). Combining this with the pre-
compact nature of {y, : n € N} in M(J, L*(2,H)), we obtain that
{z, : n € N} is precompact in M([y,,c], L*(2,H)). Thus, we can
find a sub-sequence {19,11 :neN} c {9, : ne N} which is a Cauchy
sequence in M([u,, c], L*(2,H)).

In the same manner, we can construct a sub-sequence {19,% :neN}cC
{:9,1, : n € N}, which is a Cauchy sequence in M([uy, c], L>(€2, H)).
We demonstrate that there exists a sub-sequence {87 : n € N} C
(8, : n € N} which is a Cauchy sequence in M([u,,c], L*>(£2,H))
by following the previous steps again while employing a diagonal
argument.

In addition, {9%(c) : n € N} is a Cauchy sequence in H for every
o € (0,c].

Consequently, there exists a continuous function 9* : (0,c] — L3*(Q,R)
such that for any uy,

lim max]IEH&:(a) -9 @)|* =0. (4.9)

n—oo c€lv,c

In addition, we demonstrate that {h(9}) : n € N} is a Cauchy sequence
in H. Let y € (0,c¢), thus for any 9,,9, € M(J, L*(2,H)) with 8,(c) =
9,(0),0 € [y, c] we obtain

Y
EllA(9)) — h@)I* = E| /0 [£(s,91(5)) — £ (s, 8,(s)]ds|?

Y
< /0 EIIZ(s. 9,(5) — £(s. 8y(s))|[ds (4.5)

— 0 fory — 0.

Thus, it is easy to see that Ve > 0, there is a positive constant y, < c¢ such
that

EllA(9)) ~ h®)II* < T2

for any 8,,9, € M(J, L*(2,H)) with 9,(c) = 8,(c),6 € [ry,cl. Let us
define the function z(c) by

o) = {19*(70), o € [0,y],

(4.6)

“4.7)
8*(0),0 € 1y, cl.

Obviously, z € M(J, L*(22, H)). By the limit (4.4), we have

lim max E[|9}(c) - z*(o)* = 0.
n—00 6€[y(,c]

From the definition of N,, we can easily see that
. « _
nlgg ||Ny0:9n —2z|ly =0.
By using continuity of h, we can locate a natural integer k, such that

. « 2 €
Jim BIAN,,9) = k@I < <=.n> k.

As a result, we have for any m,n > k,

ElA(9;) = h(O)I* < 4E[IA(S;,) = h(N, 991> + 4B A(N,, 87) — h(2)|*

Yo n 70 m

+AEN AN, 87) = h(2)I| + 4ENA(8}) — (N, 99112

Yo n Yo'n
<e.

The above inequality implies that {h(97) : n € N} is a Cauchy sequence in
the Hilbert space H, namely, {h(3,) : n € N} is precompact in H. Finally,
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we can quickly confirm that using the notation (3.5),
EllA(8,) = h(z,)II* = 0.

which implies that

c
{/ £(s,z,(s))ds : n € N}
0
is precompact in H.

Above, we have established that the set {9, : n € N} is precompact
in M(J, L*(22,H)). Consequently, a subsequence of {8, : n € N} still
denoted by {9, : n € N} exists, and a function 9, € B, such that

. 2
Jim 19, = 91l = 0. (4.8)
According to the definition of x,, we obtain that

llx,, = 9pl13,= max,e, Ellx,(0) = p(o)I*

< max,ep,, 1 N9, () — > + max, e, o El9,(,) - 9y(o)|1?
S 2E|19,(r,) = 8o + 2 max e, 1 El9(7,) = 9p(0)II?
+18, = 8,1,
<319, = 9113, + 2max g, 1 Ellog(,) = 9o(a)lI.
(4.9

By using inequality (4.8) and (4.9) and taking the limit of (4.3) as
n — oo one obtain that

9y(c) = R(o) /0 £(s,80(s))ds + /6 R(o — S (s, 9y(s) + Cu(s,9y)]ds
0 0
+ /lI R(o — 5)(g(s,99(s)dW(s)), o €[0,c]
0

This implies that 9, € M(J, L?(2,H)) is a mild solution of system (1.1).
Finally, the proof of Theorem 4.1 is finished. []

We use the following additional hypotheses in order to prove the
approximate controllability of system (1.1).

(H5) The nonlinear function f : J xH > Hand g : J xH — Lg are
uniformly bounded.

(H6) The linear integrodifferential system (2.4) is approximately con-
trollable on the interval [0, c].

Remark 4.1. In light of [26], the assumption (H6) is equivalent to
uS(u, A7) — 0 as u — 0" in the strong operator topology.

Theorem 4.2. Assume that (H5) and (H6) are satisfied, in addition to
Theorem 4.1 presumptions holding true. So, the nonlocal system (1.1) is
approximately controllable on J.

Proof. Assume that 9# is a mild solution of (1.1) in B,. The stochastic
Fubini theorem makes it simple to establish (at = T)that
I(e) =8, — p(ul + A97HED, — R(c)h(9")]
—/ u(pl +A§)_l¢(5)dW(S)
0
¢ . (4.10)
- / u(pl + A7) R(c = 5)f (s, 9#(5))ds
0

—/ u(pl + Aﬁ)_lm(c = 5)f (s, 9"(s))dW(s).

0

So, from the hypothesis (H5) there is a set B, such that
£ (o, 8*@DII* + llg(o, (N> < M

in [0, ¢] X 2. Thus, there is a sub-sequence { f (o, 9(0)), g(c, 9"(0))}, still
denoted by
{f(0,9"(0)), 8(c,9"(c))}, weakly convergent to, say, {f(0),g(0)} in
Hx LY.
2
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By the notation (4.10), we have
E[[9(c) = v |I* < 6Ellu(ul + 457 [Ev, - R(©)g®")1I1?

+67r0) [ Elluut + 47" #o)yds
2
¢ 2
+ 6(/0 Ellu(ul + Ag)‘lm(c = 9)[f(s,9%(s)) - f(S)]IIdS>
¢ 2
+ 6 [ Blltur + 47" Ree =)0 1as)

#6710 [ Bl uul + 49 MR-
0
X [g(s. 9"() = g(&)] [I* ds
+6710) [ Ellutul + 45 (e = 9P,
0

On the other side, according to Remark 4.1, for all 0 < ¢ < ¢, we have
u(uI + 4971 — 0 strongly as u — 0, along with [|u(ul + 497! < 1.
Given that R(s),6 > 0 is compact and by the Lebesgue dominated
convergence theorem, we have E|[9#(c) -9, ||> — 0 as u — 0. In light of
this, the stochastic control system (1.1) is approximately controllable
onJ.

This ends the proof of this theorem. []

Remark 4.2. The approach employed in this article can be expanded
to the investigation of the approximate controllability of a deterministic
system described by,

9(o) = Ad(o) + / ’ (o — 5)%s)ds + f,(c,8(0)) + Cu(o), 0 € [0,c]
- 0
9(0) = / (s, 9(s))ds,
0

(4.11)

with a right choice of an abstract space C(J, H) endowed with the norm
19l c(s iy = maxses 19(0) I

5. Example

The following stochastic control system is taken into consideration
to highlight the major finding.

2 o 2
9 (o, x) = L0@:0) | / 0( — 52 s
oo 0 0x2

ox?
+7(6.0(0))(x) + g(0. (o, x) 2

3 +u(x,0),0 € [0,c],x € [0, 1] (5.1)
w(c,0) =w(c,1)=0, o €[0,c],

1
w(0,x) = / O(s, w(x, s))ds, x €[0,1],
0

where W(s) denotes the one-dimensional Brownian motion defined on
the filtered probability space (2,F, (F,},»0.P), and O(c,w) € [0,c] X
L2([0,1]). To write the system (5.1) into its abstract form like (1.1), we
consider the space H = X = K = L?([0, 1]) with the norm || - ||. Define
the operator A : D(A) C H - H by Aw = 0", € D(A), with domain

2
DA =qweH]| w, 9o are absolutely continuous, ) € H,
0x ox?

w(0) =w(l) = O}.

It is well known that A generates a compact semigroup 7(¢),c > 0 in H,
which is supposed to be compact. This implies that the hypothesis (R1)
is satisfied. Furthermore, A has a discrete spectrum, and its eigenvalues
are —n?,n € N with the corresponding normalized eigenvectors e, (x) =

\/gsin(nx),o <x<mn=12,... Then
[so]

Aw = — Z nz(w, e,)e,, @ € D(A),

n=1
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with the associated semigroup defined by

o
T(o)w = Z e (w,e,)e, weX.

n=1

Let us define the operator 71(c) : D(A) Cc H — H by
II(0)w = 6(c)Aw, for ¢ >0 and w € D(A).

Also, consider the infinite-dimensional space K by

K= {ulu= Zunwn, }with z uﬁ < oo, forall weH.

n=2 n=2
In the space K, the norm is defined by ||u||]12< = Y u?. Now, the
continuous linear operator C : K — H is defined by Cu = 2u,w, +

o0
Zn=2 u,Wwpy.
Moreover, for any ¢ € J, let

9(o)(x) = w(o, x), Cu(c)(x) =u(c,x), foroc €[0,c]and x € [0, 1]

_ od(x,0) 1 9(o, x)
f(o,9(0)(x) = 0+ R0 g(o,9(o))(x) = T+e7 13 900

£(0,9(0))(x) = O(c, 9) = 262 cos (

and

).

I(z,0)
o

So, the system (5.1) can be rewritten into the abstract form as the initial
system (1.1). Consequently, if 6 : R, — R} is C! function such that 6
and ¢’ are bounded and uniformly continuous, we conclude that (R2)
is satisfied.

Furthermore,
1
I(x,0)
9 2 S/ __ovx0o) o
I/ (o, NI A ||2(1+192(x’6)) I
62 1 2
< —/ I(x,0)| dx
4 Jo
<Z o) I
=
So, for all ¢ € [0,c],9 € H,
2_ 02 2
Ellf(e,* < IEH@(U)H .
Further,
1 2
Ellg(e, 9 <E / L)
o II(T+e%) 1+ 9%(x,0))
1 Ix,0) |

2 1
)
0

1
<1 / E[|9(x, o)|Pdx
4 Jo

<|

(I+e%) (1 +9%(x,0))

< iEn&(a)nz,

and
1

E||g(a,19)||25/ E||azsin<M>||2dx
0 (o3

1
<o? / EJI9(x, o)[Pdx
0
< G*E|90)%,

which implies that, the (H1)-(H3) hold good with 77(0) = ”Tz, 7,(0) =
i, 7¢(0) = o2 and ¢7(0) = ¢,(0) = ¢¢(0) = 0. Hence, by Theorem 4.1,
system (5.1) has a mild solution provided that (3.3) holds.

We use the following lemma to establish the approximate control-
lability of (5.1).

Lemma 5.1 ([27]). Consider 6(c) € L'(R*) n C'(R*) with primitive
IlI(c) e L }OC (R*) such that I'(c) is non-positive, non-decreasing and 11(0) =
—1. If the operator A is self-adjoint and positive semi-definite, the resolvent
operator R(c) associated with the system (2.2) is self-adjoint as well.
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From Lemma 5.1 above, the resolvent operator R(c) of (5.1) if
self-adjoint. So it follows,

C*R*(6)9 = R(0)9, for any I € >.

Let C*R*(6)9 = 0, for all ¢ € [0,c], then R(c)9 = 0,Yo € [0,c].
Since R©) = I for | = 0, we get 9 = 0. So from [7](Theorem
4.1.7), it follows that the linear control system corresponding to (5.1)
is approximately controllable on J, which means that Lemma 2.12 is
satisfied. Therefore, by Theorems 4.1 and 4.2, the integrodifferential
Eq. (5.1) is approximately controllable on J.

6. Conclusion

In this article, we discussed the approximate controllability of a
class of nonlinear stochastic integrodifferential equations with nonlocal
initial conditions in a Hilbert space. By dropping the compactness
conditions and the Lipschitz condition on the nonlocal term, we use a
weaker growth condition on the nonlocal term to establish our result.
Furthermore, the study of approximate controllability instead of the
exact one is due to the fact that the resolvent operator related to the
linear part of the main system is compact.

This work can further be extended for a second order (fractional)
system to study the strongest notion of controllability called trajectory
controllability by relaxing the compactness assumption on the resolvent
operators/semigroups in the form of sine and cosine operators.
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