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of the g-Hilfer fractional generalized pantograph differential equations with a nonlocal
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1. Introduction

Fractional calculus and its potential applications have gained increasing importance
because fractional calculus has become a powerful tool with highly accurate and suc-
cessful results in modeling many complex phenomena in several seemingly diverse and
widespread fields of science and engineering. Many areas, such as aerodynamics, control
systems, signal processing, bioengineering, and biomedical sciences, benefit from the appli-
cation of fractional differential equations and dynamical systems. In recent years, these
mathematical tools have proven to be highly effective in modeling various phenomena
across engineering, physics, and economics. They have found significant applications
in fields such as viscoelasticity, heat conduction in materials with memory, and fluid dy-
namic traffic models. For more details, refer to [1-4]. Two well-known definitions that
have attracted significant attention in the study of differential equations are the Caputo
fractional derivative and the Riemann-Liouville (R-L) fractional derivative. Buliding on
these, Hilfer [5] later formulated a more general definition of the fractional derivative by
interpolating between these two operators.

The study of calculus without the concept of limits is commonly called quantum cal-
culus or g-calculus. The so-called g-integral and g-derivative were initially established by
Jackson [6]. There are many applications of quantum calculus, such as in physics, number
theory, integer partitions, vertical polynomials, and hypergeometric functions, see [7,8]. Al-
Salam [9] and Agarwal [10] have also generalized g-derivative and g-integrals into orders
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other than integers, which is utilized in the construction of the g-difference calculus. For de-
tails on g-fractional calculus and equations, see the monograph of [11]. g-calculus on finite
intervals was also introduced by Tariboon and Ntouyas [12]. Furthermore, the definition
of the g-derivative and g-integral was examined and gradually developed by numerous
researchers in [13-15]. The definition of g-derivative and g-integral have been developed,
which are based on the fractional integral in the sense of R-L. Hilfer [5] suggested a general
operator for fractional q-derivative, called the g-Hilfer fractional derivative (q-HFD), which
is a composite of the Caputo and R-L fractional g-derivatives [16].

Pantograph differential equations are a special type of delay differential equations.
This type allows the delay term to be introduced after the initial value but before the
computation of the desired approximations; see [17,18]. Among deterministic problems,
there is a very special type of delayed differential equation called the pantograph equation.
Historically, it was used by Ockendon and Taylor to study how electricity is collected by
the pantograph of an electric locomotive, from which it gets its name. In fact, a device
that rejects scaling and drawing from another device is called a pantograph. Moreover,
this device has been modified by scientists, and recently they have been using it in laser
modeling, especially quantum dot lasers, the modeling of objects, electric trains, etc. [19].
The pantograph was originally developed to aid in drawing and scaling tasks. As the tech-
nology evolved, the device was refined and found broader applications. Today, pantograph
mechanisms are employed in various fields, including electric trains, material modeling,
and the simulation of lasers, especially quantum dot lasers. Pantograph-type equations
are gaining increasing attention due to their relevance in various areas of mathematics
and physics, such as quantum mechanics, number theory, probability, electrodynamics,
and control systems. Recognizing their importance, many researchers have extended these
equations into generalized forms and explored their solvability using both theoretical and
numerical approaches; see [20-26]. In contrast, very few works have been proposed on
pantograph fractional differential equations. Balachandran et al. [20] initiated an overview
of the various types of pantograph equations and their existence. In [27], the authors
studied the attractivity of solutions for Hilfer-Hadamard delay differential equations with
a nonlocal condition. Lacchouri et al. [28] investigated fractional pantograph g-difference
equations with nonlocal conditions. The authors in [29] established the existence and
stability of the solution to the Hilfer type fractional implicit q-differential equations with
nonlocal conditions. In [30], the authors studied the existence and uniqueness theorem of
the nonlocal problem for Hilfer fractional g-difference equations. In the existing literature,
there are no results on the generalized pantograph g-derivative of Hilfer type with a non-
local condition. Motivated by the above, here we discuss efficient results on the g-Hilfer
generalized pantograph system with a nonlocal condition.

Here, the generalized pantograph g-differential equation is considered as

Ho52u(t) = g(t,u(01(7)), u(o2(7)), -+ u(on(7))), TEI:=[0,T],

¢ Ior tu(0) = Y Aju(t), O=01+0— 0T e[0T,
i=1

1)

where quDg]fz is the g-HFD of order {7 € (0,1) and type {» € [0,1], qfi(l)jﬂ is the g-R-L
fractional integral of order 1 — 9, 0; : § — J, (i = 1,2, -+ ,n) are continuous functions,
g : J x R" — Ris the level-wise continuous function and ¢;(7) < 7 for every 7 € J, and
7(i=1,2,---,m) are prefixed points satisfying0 < 1 <1 < --- <1, < T.

The manuscript is constructed as follows. In Section 2, we give some basic definitions
are summarized for g-fractional calculus. In Section 3, certain essential conditions are
derived for the existence and uniqueness of (1). In Section 4, the Ulam-type stability of
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solution will be studied. An example is given in Section 5 to illustrate our results. A
conclusion is drawn in Section 6.

2. Preliminaries

Let us start this section by introducing certain preliminary notions of g-fractional calculus.
Let ¢ (J,R) be the Banach space of all continuous functions from J into R with the
¢ = max{|u(7)|: T € J}. For 0 < & < 1, we denote the space ¢3(J) as

norm ||u
©p(3) = {u: (0,T] = R|(t - 0)]|u(t) € (3, R)},

where %y (J) is the weighted space of all continuous functions u on the finite interval J.
Obviously, %y (J) is the Banach space with the norm

lellz, = I (z = 0)gu(t)«.

Meanwhile, €7 (3) = {u € €"1(3) : ul” € %,(3)} is the Banach space with the norm

n—1
lullgy = Y- 1[4 )g + [P )g, neN.
k=0

In addition, €3 (J) := 65(3J)-
In order to solve our problem, the subsequent spaces are presented.

T (3) = {u € €1_0(3), HD U € 61_9(3)}
and
G 3(3) = {uec G 9(3),05ucé o3))
It is obvious that
G o(3) € CFR)-

Definition 1 ([15]). Let g € (0,1) and {1 > 0. Then the q-RL fractional integral is defined as

~01 1 /T -1
Tl u T— u(n)dyn,
1Tt (T = g7y Jo (Tt g
where
. n—mg
11—[” mq“rk' n#0, keR,
and

1— (t—-1)
Fq(T) = ((1[2)1—1/ TeR - {0,—1,_2,...}/

where Ty (T + 1) = [1]4T4(T) with
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Definition 2 ([11]). Let n — 1 < {1 < n, the R-L fractional g-derivative of the function u is
defined by

D5 u(t) = D130 u(v),
d n
where @' = ( =L .
1 dgT
Definition 3 ([16]). The Caputo fractional q-derivative of order {1 > 0 of function u is described
as

$o% u(t) = 30 9 DMu(r), ted.

Definition 4 ([30]). The g-HFD of a function u of order 0 < 1 < land type 0 < {p < 1is
defined by

fﬁgi’ézu(ﬂ _ (qjgi(lél)gq(qjéiéz)(lél)u)) (7).

Remark 1 ([30]). The q-HFD can be viewed as a generalization of the g-RL and g-Caputo derivative:

(i) The operator qﬁgkéz also can be rewritten as

Foiu(r) = (‘ﬂgi(l_gl)@q(qjéi_&)(l_a)u)) =)
=320 D8 u(r), 8=0+0 -0k

(ii) Let {1 = 0, the R-L fractional q-derivative, be presented as qDEL = nglr’O.

(iii) Let {p = 0, the Caputo fractional q-derivative, be presented as g@gi = qfi(l)fl@q.

Lemma 1 ([15]). Let (1,0 > 0. Then

: o ooty Lal@2) i
® (%) (@) T(02+ 1) ! '
(i) (@5 ) (1)=0, 0<{ <L

Lemma 2 ([15]). Let {1,{> > 0and u € L1(3), for T € J. The following properties exist:
(7) (qjghqjgiu) (1) = (qjngézu) (7).
(i) (4954954 ) (1) = u(x).

Lemma 3 ([11]). Let 0 < {3 < 1, and 0 < 9 < 1. Ifu € G3(3,R) and ;3 "'u € €} (3, R),
then

~1-C
% ul0) 4y

T4(21) ’

Lemma 4 ([11]). For0 < & < land u € 63(3J,R),

(395 4@5 1) (7) = () TED.
(4351 1) (0) = ligbqjggu(r) =0, 0<O<(.
Lemma 5 ([11]). Let {1,82 > 0and 8 = {1+ {p — (182 If u € €7 4(3,R), then

P S B R 4 0 A0, o(1-01)
gI0+ g Dot = q30+q©01+ 24, q®0+qJO}ru =49 Yu(T).
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Lemma 6 ([30]). Let u € £ (3) and qCDgi(l_gl)u € ZY(3). Then
, 1- 1—
é—lgghéijgiu _ qjg’i( él)q@gi( &y

3. Main Results
To obtain our findings, we want the following hypotheses.

(H1)Let g : J x R" — R be a level-wise continuous function such that ¢ € %fi (l,}fgl) (3, R)
forany u € %”1@_19(3, R), and there is a constant L; > 0 such that

|g(T1/ulru2/' t /”n) _g(TZIUl/Z)Z/' t /Un)|

< Li{lt — o+ |u1 —o1| + Jug —va| + - - + [un — val},

forty, n € (0,T)and all u;,v; € R, (i =1,2,--- ,n).
(H2)There is an increasing function ¢ € ¢ _¢(J,R), and there is y1, > 0 such that for any
TEY,

35 9(T) < ppo(1).

Lemma 7 ([29], Lemma 3.6). Let g : J x R — R be a function such that ¢ € ¢ _4(J,R) for any
u € 61-9(3,R). A function u € €Y 4(3,R) is a solution of a nonlocal IVP:

Fofu(r) = g(t,u(r)), Tey,

035 0u(0) =ug, 0=01+0— 01l
if and only if u satisfies the following integral equation:

upr?l

“O =T @ TR

[ e = ame gt ) dgn.

Lemma 8. Let g : J x R" — R be a level-wise continuous function such that g € ¢1_4(3J,R) for
any u € 61_¢(3,R). A function u € €_4(3,R) is a solution to the problem (1) if and only if u
satisfies the following integral equation:

Qb1 m T -
u(t) = Fq(%) E):/O (ti —qn)s g, ulor(n)), u(oz2 (1)), - -+, ulon(n)))dgn o
- 51—1 PR
+Fq(§1) Jy (T — g g(n, u(y, u(or(n)), u(oa(n)), -+ u(oa(n)))den,
where
= ! 1 ) (-1
RO TPV L AR e POl ®)
Proof. Indeed, from Lemma 7, a solution to the problem (1) can be expressed by
- M 6—1 1 T -

x gl u(or(n)),uloa(n)), -+, ulon(n)))den.
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Substituting T = 7; and multiplying both sides by A; in Equation (4) gives
3 7%u(0) A T
() = Tor PN ye-1 A / T — )1

xg(n,u(o1(n)),u(o2(n)), -, ulon(n)))dqn.

Aiu(7), and in view of Equation (5),

‘MS

From the nonlocal initial condition, qj(lﬁ %1(0) =
1

we obtain

~1-9 " A

307 u(
~1-0 _1q o+ )1 4
307 u(0) = ZAZ 7)

& g Jy o
><g(77/ u(or(n)), u(o2(n)), - -+, ulon(n)))dqn,

o

which gives

2k u0) = A0 T o, [ = a0 st n () alen ), ) g (@

Inserting Equation (6) in Equation (4), we obtain

Q-1 m 7 -
x g(,u(o1(n)),u(o2(y)), -+, uleu(y)))dgn
+ rq(lgl) ./OT(T — qq)gl—lg(ﬂ, u(n, u(or(n)),u(o2(n)),- - - r”(an(ﬂ)))dqﬁ.

Conversely, applying q’J(l)I % to both sides of Equation (2), and by using Lemma’s 1 and 2,
we obtain
m

~1— 10 K a-1
30 0u(r) =30 } )\/ TS

x g1, u (01(17)),”(02(17)),‘-' Ju(on(n)))dqn

+ q3(1)+ ﬂqjgig(r u(oy (1)), u(oo (1)), - -+, u(on(1)))

_ 11
rq(@l X; / q1)
><g(11, (o1(n)),ulo2(n)), -, ulon(n)))den
+ 08 2 g (1 (04 (1)), u (0 (7)), -+, u(ow (7).

Since1 — ¥ < 1—{2(1 —{71), Lemma 4 can be used when taking the limit as T — 0:

Z / ulor(n)),u(oa (), - uou(n)))dgr- (7)

el

Substituting T — 7; in Equation (2), we have

9-1 m T
T —QTQ) Z / (i — ) g (g, u(or (), u(oa(n)), -+, u(on(n)))dgn
1

/()Ti(fi —qn)S (g, u(n,u(or(n)), u(oz(n)), -, u(ou(n)))dgn.
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This implies
L Aw(w) =g g Z / =S g, ulen(n)), u(oa(n)), - ulen(n))dgn
i=1 q\51
A [T
XZArﬁ ! rq(g)/o (T —qm)s
x g, u(rg, uler (7)), u(02(17)), -+ u(on(17)))dgn
1o
) Z;)‘i/o —a)S g, ulen(n), u(oa (), ulen(n)))dgn
X (1+Qi)\i(1—i)l9_l)
i=1
ry(o n T
S T I NCE A R RC e
Therefore,
Y- () = 403, [ (5= sl () el w0 ©)

It follows that Equations (7) and (8) gives

Operating ;9. both sides of Equation (2) and in view of Lemmas 1 and 5 gives

(08 u(t) = q©€2(1 gl)g(T,M((Tl(T))r”((Tz(T))/'"

,u(0n(7)))- )

Since u € %119_19 (3,R) and in view of Definition of ‘Klﬂ_ ¢(J,R), we have

1 §2(

q©§z(1 Cl)g Dag 1)g € ¢1_9(J,R).

For ¢ € %1_9(3J,R), it is well-known that ﬂé;ézu_él)g € 61-9(J, R), so qu G2(1- gl)g
% 4(3,R) satisfies the condition of Lemma 3.

Next, operating ;37

we obtain

"1 200D on both sides of Equation (9) and by using Lemma 3,

D5 2u(1) = gt uler (1)), u(e2(7)), -+, u(ou(7)))
% 20, u(01(0), 1(02(0), - 1(@n(0) p1-g,)
Iq(G2(1=21)) /

where

Thus, it reduces to qi)gl 2y u(t) = g(t,u(o (7)), u(or(7)),- - -

complete.

I g(0,u(01(0)), u(2(0)), -+, u(u(0))) =0.

,u(04(7))). The proof is

Theorem 1. Suppose that g : J x R" — R is level-wise continuous and bounded, and o; : § —

R(i=12,-
¢ 4 R) C

) are continuous. Then the problem (1) has at least one solution in the space
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Proof. Define an operator & : 61_y(J,R) — ¢1_9(J, R) by

QTﬁ 1 m
(2u)(7) = EA / (i —qn)F g (g, u(or (7)), ulo2(n)), -+ ulon(n)))dgn

+%/;( T —qn)F g, uly, u(or (n),u(oa(n)), -+ ulon(n)))dgn.

(10)

It follows that the operator & is well-defined.
Step 1: & is continuous.
Let {u, } be a sequence such that u, — u € 61_y(3J,R). Then, for each T € J,

((Pun) (1) — (2u) (1))

A /OTi(Tl. _ q,ﬂérl{gm, un (o1 (7)), un(o2(n)), -, un(on(n)))

)|d T T Gi-1
= gln (e (), o2 ol + s = an)

< |g(n, un(n, un(o1(n)), un(o2(n)), -+ un(ou(n)))
—g(n,u(or(n)),uloa(n)), -, u(on(n)))|dgy.

Taking into account the fact that g is level-wise continuous, it follows that
|8(1, 1 (01(1)), tn(02(0)), -+ un(n (1)) = (1, u(o1 (1)), u(a(y)), -+, u(@n(n)))| = 0
as u, — u. We obtain from the foregoing inequality the following:

|2u, — Pu|| -0 as u, — u.

Thus, & is continuous.

Step 2: & maps bounded sets into bounded sets in ¢} _y(J, R).

For p > 0, there is a constant K > 0 such that u € B, = {u € €1_4(3J,R) : |lu|| < p}.
Then, for each T € J, we have

|Zullg_, < K.

()| <23 [T g g (e o), uloa(), (e )) gy

_9 T
71)/0 (t—aqn)* g, uly,u(er(n)),u(ea(n)), -, ulou(n)))|dgn

[(2u) (1) 0] = 2y + P, (11)

21 =gl 5 [ ) wlen ) o), ) g,

Tlfﬂ
Py = /O (=& gl uly,u(or(n)), uloa(n)), -, ulon(n)))|dgy-
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This implies
P, = Z)‘ Q1+0+1 |QM*T4(8)
i=1 rq (gl + 19) (12)
o MTAL@)
TR+

where M* = max |g(, u(n, u(o1(17)), u(oa2(n)), - - ,u(ou(17)))|- Inserting the Equation (12)
TEJ
in Equation (11), we get

-9 §1+19+1|Q|M IVC) M*Tgqu(él)

& <L e TGt
M - L0 +0-1 el -

<rq(€1+ﬂ)(|ﬂ|l_zl)\ﬂ'l Fq(ﬁ) +T Fq(Cl)) =K.

Thus, || Zu|¢,_, < K.
Step 3: & maps bounded sets into an equicontinuous set of 61_y(J, R).
For 71, 7 € Jwith 7, < 1y, and u € B, we have

T2 (u)(m) -5 ' P (u) ()|
7

Sm@>

( )/0 (z2 = qn) g (g, u(n, u(or(n)), u(o2(n)), -+ u(ou(n)))dgy

/(;Tl (t1 — qn) g (g, u(n, u(or(n)), u(o2(n)), -+ u(ou(n)))dgy

— (:1 -1 -0 _ Cl—l
<10 gl/O Y=gt = n ()t

x gl u(ig, u(on(n)), u(oa(n)), - -+ ,ulon(n)))dgn

1-8
)

T, @) /:(Tz — g g (g, u(, u(or(n)), u(o2(n)), -+ u(ou(n)))den|,

which tends to zero as 71 — T, independently of u. As a consequence of Step 1 — 3, together

+

with the Arzela—Ascoli theorem, the operator & is completely continuous.

Step 4: A priori bounds.

It will be verified that the set @ = {u € €_¢(J,R) : u = B(PLu),p € [0,1]} is
bounded. Let u € @. Then u = B(Zu). For any T € [0,1], we have

9—1 m
(1) [?Lf@l YA = B ulor (), uloa(n), - u(en(n))dgy

+rq(1§1)/0( T—qn) g (g, u(y, u (‘71(77))1”(‘72(’7))/"',u(an(q)))dw]_
Then

|u(1)T ] < (gl+19 <|QZA LAY 19)+T€1rq(gl)> = K",

which proves that @ is bounded. According to Scheafer’s fixed point theorem, the operator
Z has at least one fixed point. Thus, the nonlocal problem (1) has at least one solution.
The proof is complete. [
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Theorem 2. Suppose that (H1) — (H2) are satisfied. If
nly +9-1 | Té
m 10 (mA) T +T 1, (13)

then the problem (1) has a unique solution.

Proof. We will use the Banach contraction principle to prove that &, defined by (10), has a
unique fixed point. Now, we show that & is a contraction mapping. For i1, up € €1 _9(3J,R)
and T € J, we have

[(Zu1) (1) = (Pu2) (1)) 77

<l o [ 0 g o)) -+ )

1-¢

—g(ﬂ/MZ(Ul(Tl))IMZ(‘TZ(’?))/'"IMZ(Un(U)))|dq’7+r:(€1)/OT( T—qn)s!

x |g(n,u1(o1(y)), ur(o2(n)), - - u1(ou(n)))
— 8, u2(01(n)), u2(02(17)), - - u2(ou(1)))|dgn
Q UL _
| | ZA/ (7 — ) 1nL1\u1(17)—uz(n)|dqv7
1 [ T
— gyl _
+Fq(gl)/0 (v =)™~ nLa e () — ) gy
[e] _
St \Mh T el
%Hu —u ||
LG+ e
nlq
_nby G401 ¢ _
e (G e [ R P
This implies that
nlq
| Puy — Puz|l¢,_, < w(|0|(m}t)1‘€1+19 1+T§1)||u1—u2||(g1 N

Then, & is a contraction mapping. From the Banach contraction principle, & has a
unique fixed point. Therefore, the nonlocal problem (1) has a unique solution. The proof
is completed. O

4. Stability Theory

In this section, we study the Ulam-Hyers (U-H), the generalized Ulam-Hyers (G-U-H),
the Ulam-Hyers-Rassias (U-H-R), and the generalized Ulam-Hyers—Rassias (G-U-H-R)
stability of the solution to the problem (1).

Definition 5. Equation (1) is said to be U-H stable if there is a real constant Cg > 0 such that for
all € > 0 and for every solution v € € 4(3,R) of the inequality

q@él L2 o(t) — g(7,0(01(7)),v(02(1)), - -+ ,v(on(7)))| <€, TET, (14)
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there is a solution u € € 4(3,R) to the problem (1) with
lo(t) —u(t)] < Cge, TETJ. (15)

Definition 6. Equation (1) is said to be G-U-H stable if there is x; € %([0,00],[0,00]) and
Xg(0) = 0 such that for every solution v € € (3, R) of (14), there is a solution u € € 4(3J,R)
to the problem (1) such that

[o(T) —u(7)| < xg(e), TET. (16)

Definition 7. Equation (1) is said to be U-H-R stable with respect to ¢ € 61_9(3J, R), if there
is a real constant Cg > 0 such that for each € > 0 and for each solution v € €0 4(3,R) to
the inequality

705 20(7) - g(7,0(01 (1)), 0(02(7)), -, v(0w(7)))| S ep(r), TET,  (17)

there is a solution u € € 4(3,R) to the problem (1) with
|o(1t) —u(7)| < Ceep(T), TEJ. (18)

Definition 8. Equation (1) is said to be G-U-H-R stable with respect to ¢ € €)_4(J, R) if there
is a real constant Cq,g > 0 such that for each solution v € €_4(J,R) of the inequality (17) there
is a solution u € €2 4(3,R) to the problem (1) with

|o(t) —u(1)| < Cgpp(t), TEJ. (19)

Remark 2. A function v € € 4(3,R) is a solution to (1) if and only if there is a function
g1 € ‘51‘9_19(3,]1%) such that

(i) a0l <e T€3

(if) @ 0(T) = g(1,0(01(1)), 0(02(7)), -+, 0(0u (7)) + 81(T), TET.

Lemma 9. Let 0 < {1 < 1,0 < {» < 1. Ifa function v € ‘51‘9_19(3,]1%) is a solution to the
inequality (14), then v is a solution to the following integral inequality:

(1) — Ap — % /OT(T — qq)gl_lg(f],v(ﬂ/v(al (n)),v(o2(n)), -+ ,v(on (U)))dtﬂ]
Q| (mA) T T4
S( LG+ TG 1))6' (20)
where
Q 9—-1 m T -
Ao = Ty L ) (6= a0 gl o) olean) ol

Proof. From Remark 2, it is evident that

D57 20(1) = g(7,0(01(1)),0(02(1)), - -+, 0(0a(T))) +81(7), TET.
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Then

-1 m T
_%T(im ;Ai(/o (7 — )~ g (n, (e (), 0(02(1), - 0 (0w (1)) gy

N /(;‘L'i(Ti _ qﬂ)algl(n)dq;y) + Fq(la) /OT(T _ qn)érl
x g(n,0(n,v(01(n)),0(02(17)), - -+, v(ou(1)))dgn

i Tq(lél) ./oT(T — )" 1 (y)dgr,

which implies

o(T) — Ap — / T —qn) g (n,0(p,0(01(n)), (02 (n)), -+, 0(on(n)))dgn
Tz? 1 m T
(r)q B / — gy~ 1g1('7)dq'7+rq(1€1)/0 (T —am) " g1(n)dyy
9—-1 m T
_l?JTgl Z / — )" g1y ”dq’”rq(lgl)/o (t— g5t g1(n)ldgy
|Qf(mA) T8+ -1 TS
S( TG+ 1) +rq<<;1+1>>

O

Lemma 10. Let 0 < {1 < 1,0 < ¢ < 1. Ifa function v € %1‘9719(3,1@ is a solution to the
inequality (14), then v is a solution to the following integral inequality:

_1
Tq(C1)

< (07‘9’1 (mA) + 1) €nye(T), (21)

o(1) — Ay — /OT(T —qn)stg(n,v(n,0(c1(n)), 0(02(n)), -+, o(ou(n)))dgn

where

do = 2S00 [ g0 0,001 0), o), ol ()
v*rq(gl)i:1 "o i—qn 8\, 1)) 2\1)), ’ n\f q'l-

Proof. The proof of the lemma directly follows from Remark 1 and Lemma 9. [J

Lemma 11 ([4] (Gronwall’s inequality)). Let wq : J — [0, 00) be a real function, let w;(-) be
a non-negative, locally integrable function on J, and assume there are constants b > 0 such that

w1(1) < wa(T b/ o q’%gldﬂ, 0<Z <L

Then there are constants N * = A *({7) such that

w1 (T) < wy(7) +JV*b/()T qun, forall Teg.

We are ready to establish our stability results for problem (1).

Theorem 3. Suppose that (H1), (H2) and (13) are satisfied. Then the problem (1) is U-H stable
and accordingly G-U-H stable.
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Proof. Lete > 0, letv € %1‘9_ ¢(J,R) be the solution to the inequality (14), and let u €
% (3, R) be the unique solution to the problem (1). Using Lemma 8, we have

o(1) = Ay + rq(lgl) /OT(T —qn)s e, v(n,v(e1(n)),v(02(n)), -+, 0(0u(n)))dgn,

where

9-1 m
oI Yo [ )00 (), (et ()

‘7 i=1

Ay =

On the other hand, if u(t;) = v(t;) and qJ0+ %u(0) = qﬁ(l)fv( ), then A, = As.

191m

Au = el 5 s Y [ a7 g uten (1), o), - ()
—8(’7 v(al( ), 0(02(1)), <+, o(euly !dqﬂ
19 1 m

—rq G Z / — ) nLylu(n) — o(y)|dgn
nLi|Q] L1 ,

Srq gl) ZZ‘{/\zq +|” 7) —o(T)]

0.

This implies that

Au - A’U-
Then

T

(1) = Aot g [ )P g (o), woa(), -+ o)y

Thus, |v(7) — u(7)]

<Jote) — Ao = iy [ ) Ol w(en (1) woa ), o)) gy

+ R,(la) /OT(T — ) g (n,0(p, 0(e1(n)), 0(02(n)), -~ v(ou(n)))

—g(n,u(n, u(or(n)), uloa(n)), - ulon(y)))|dgn

S| = Ao rq(lél) /OT(T — ) g, uln,u(or (), u(oa(n)), -~ ulon(y)))dgn
nL T -
’ Tq(Cll) /0 (T =)~ oly) — u(y)|dgn.

With the help of (20),
B |Q|(mA) T+ -1 TS
[ote) — ol < ( LG+ Fq(§1+1))€

nL T B
’ Fq(Cll) /0 (T =g~ o(y) — u(y)|dgn.
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With the help of Lemma 11,

|Qf(mA)T8+e 1 TS nL T
o) -0 < (PR =+ 5 )¢ e o) )
|Qf(mA) T+ -1 TS N*nly g
o) -l < (e mr) (U Em )

where A4* = _#*((7) is a constant. Hence, we conclude that the problem (1) is U-H stable.
Moreover, setting x(€) = Cge, and x¢(0) = 0, then the problem (1) is G-U-H stable. [J

Theorem 4. Suppose that (H1), (H2), and (13) are satisfied, then the problem (1) is U-H-R stable.

Proof. Lete > 0, let v € € ,(J,R) be the solution to the inequality (17), and let u €
% 4(3,R) be the unique solution to the problem (1). Using Lemma 8, we have

(1) = Ay + rqggl) /OT(T —qn)s g, u(n, u(or(n)), uloa(n)), - ulou(n)))dgn,

where

9—-1 m T
I?J&n YA [ = B, 0(on (), o(oa), - 0ow(n))dgn-

=

Az;:

With the help of Lemma 10,

o(T) — Ay — rq(lgl) /OT(T — ) g(n,0(n,0(01(n)), 0(02(n)), - -+, 0(ou(n)))dgy

< (Qr”‘l (mA) + 1) pp(T).

On the other hand, we have

lo(T) — u(7)]
<|v(t) — Ao — rq(lgl) /OT(T — ) (g, 0(n,0(01(n)), 0(02 (), -, 0(u(n)))dgy
TlLl

L@ /0 (T =) o) — u(n)|dgy.

With the help of the inequality (21),

o)~ ()] < (07 ) + 1 )engp(r) + s (= an) oty )l
This implies that
lo(t) —u(7)| < {(Qrﬁ_l(m)\) +1)(1+ Lle,/l/l*yq,)]/t(p} ep(T),
where A" = 47*(1) is a constant. Then, for any T € J,

|o(t) —u(1)| < Ceeq(T), TET.

Hence, we conclude that the problem (1) is U-H-R stable. [



Fractal Fract. 2025, 9, 302

15 of 17

5. An Example

Taking the following nonlocal problem for the g-Hilfer fractional generalized panto-

graph equation:
31
Ifi)gisu('r) = Lu(t—4) —u(t—6)), T€I:=[01],
S aon 1 3 (22)
%jo_'_ M(O) - gu(i)
Set g(t,u(01(7)), u(02(7))) = a(u(oi(t)) —u(oz(7))), forall =, 01,02 €gJ.
Letaflo,andchooseglfs,@ %19:% qzz/\— T:g,T—m—l
1
Denote 01(-) = —4, 02(+) = —6, g(-, o1 (u(+)), 02 (u ()) 7010 —4) —u(- —6)).
Clearly, the function g is continuous. For each #,v € Rand 0q,0, 7 € J,

8(5,u(01(1)), u(02(7))) — 8(,0(e1 (7)), 202 (1) < gl o,

Hence, the hypothesis (1) holds withn =2, L; = %, and the condition

—_

1
—3

] = ~ =
0831—-1(3)™

_O)ﬁ

~ 0.5318,

—
=
|

N|—

=y
€31

Q=
—~
NI

SO

1/1L1

— 1 (1Q|(mr)Ta-1 4+ T€1> ~ 0.31082 < 1.
e o (0l

Thus, the conditions of Theorems 2 and 3 are satisfied. Therefore, the problem (22) has a
U-H stable solution that is unique.
Furthermore, by taking ¢(7) = 72, for any T € J, we have

13- 9(0) SF:E) /OT(T Sy
Le@
— 137
Thus,
2 ¢(1)

Thus condition (H») is fulfilled with ¢(7) = 72 and py = 757. It follows from Theorem 4
that the problem (22) is U-H-R stable.

6. Conclusions

In this work, we looked at a nonlocal problem for generalized pantograph fractional
g-differential equations involving g-HFD. We have discussed two important outcomes
about the existence and uniqueness of solutions for the problem (1) by using Schaefer’s
fixed point theorem and the Banach fixed point theorem. We have also considered and
studied the Ulam-type stability of the problem (1). Finally, we have provided an example
to illustrate our results.
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