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Abstract

This manuscript is devoted to analysing the solvability and optimal control of a con-
formable fractional stochastic differential inclusion with Clarke subdifferential and
deviated argument. The proposed conformable fractional impulsive inclusion sys-
tem’s solvability in Hilbert space is established by employing fractional calculus,
multivalued analysis, stochastic analysis, semigroup theory and a multivalued fixed
point theorem. Furthermore, under some suitable assumptions, the existence of optimal
control is derived by employing Balder’s theorem. Lastly, an application is provided
to validate the developed theoretical results.
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1 Introduction

Fractional calculus has the advantage of modelling natural events because of the nonlo-
cal quality of the fractional operator, which makes it deserving of proving long memory
or nonlocal effects to more accurately validate the physical phenomena. Fractional
differential equations (FDEs) arise in problems in electrical circuits, input enhancers,
electro expository science, fragmentary multi-poles, and neuron demonstrating dis-
tinctive branches of material science and organic sciences [ 1-4]. Nowadays, there are
many fractional derivatives in the literature, for instance, Riemann—Liouville, Caputo,
Hilfer, Griinwald-Letnikov, Hadamard, Coimbra, Atangana—Baleanu, and Caputo—
Hadamard derivative. The best fractional derivative relies on the experimental data that
best suit the theoretical model. Khalil et al. [S] addressed these issues with outdated def-
initions of fractional-order derivatives by proposing a new fractional derivative known
as the conformable fractional derivative (CFD). The conventional limit representation
concept of the ordinary derivative is expanded upon by this fractional derivative. The
derivative of the exponential functions, the quotient rule, the chain rule, and the prod-
uct rule are all satisfied by the CFD. Moreover, the theory and results on the CFD are
rapidly developed by the researchers and also give their notable contributions [6—11].

Stochastic is one of the essential properties of the real world. Environmental noise
and uncertainty in the real world has been a hot issue for many researchers. Stochastic
differential equations (SDEs) contains the stochastic term composed of noise, which
has the advantage of describing uncertain factors of environmental noise in the real
world, see [12]. It is known that the fractional-order dynamical model is affected
by random noises or stochastic noises. Hence, the stochastic dynamical system also
has long-term memory [13]. The fractional-order stochastic derivative is related to
the entire interval of the dynamical system compared to the integer-order stochastic
derivative. In recent days, the authors initially developed the existence, uniqueness, and
continuous dependence of solutions to conformable stochastic differential equations
(SDEs) using the usual Picard’s iteration method [14]. Ahmed et al. [15] discussed the
conformable fractional stochastic differential equation with nonlinear noise and non-
local condition via Rosenblatt process and Poisson jump is studied. Moreover, many
practical systems (such as sudden price variations (jumps) due to market crashes,
earthquakes, hurricanes, and epidemics) may undergo some jump-type stochastic per-
turbations. The sample paths of such systems are not continuous. Therefore, it is more
appropriate to consider stochastic processes with jumps to describe such models. In
general, these jump models are derived from Poisson random measure. The sample
paths of such systems are right continuous and possess left limits. Recently, many
researchers have been focusing their attention towards the theory and applications of
fractional SDEs with Poisson jumps. From an application viewpoint, there are limits
on Gaussian noise and to deal with more general situations one can exchange Gaus-
sian noise by a Poisson random measure. For example, the model of river pollution is
studied by Hausenblas and Marchis [16], in that the number of deposits on a bounded
region of the river at infinitesimal length is d§, where § is the distance coordinate along
the river which behaves according to the Poisson process. Clarke subdifferential arises
from the applied fields, such as filtration in porous media, thermo-viscoelasticity and
have fascinating applications in non-smooth analysis and optimisation [17].
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On the other hand, it is known that optimal control plays an important role in the
analysis and in the design of control systems and engineering [18, 20-23]. For a dif-
ferent class of fractional optimal control problem, the solvability and optimal control
of semi-linear nonlocal fractional evolution inclusion with Clarke subdifferential are
studied in [24]. The same purpose has been attracted by the authors [25], for an opti-
mal control of Sobolev-type Hilfer fractional non-instantaneous impulsive differential
inclusion driven by Poisson jumps and Clarke subdifferential. Chalishajar [26] stud-
ied the optimal controls for stochastic integrodifferential equation in Hilbert space.
Strongly inspired by the aforementioned works in the literature [9, 27, 28], to the best
of the authors’ knowledge, there is no research regarding the theoretical approach
for solvability and optimal control of conformable fractional stochastic differential
inclusions governed by the Clarke subdifferential with deviated argument and Poisson
jumps in Hilbert space remain open, which serves as a motivation for this present
work.

Remark: Comparisons:

(i) The CFD behaves well in the product rule and chain rule while complicated
formulas appear in case of usual fractional calculus.
(ii)) The CFD of a constant function is zero while it is not the case for Riemann
fractional derivatives.
(iii) Mittag—Leffler functions play an important rule in fractional calculus as a gen-
eralization to exponential functions, while the fractional exponential function

f@ = ea appears in case of conformable fractional calculus.

(iv) Conformable fractional derivatives, conformable chain rule, conformable inte-
gration by parts, conformable Gronwall’s inequality, conformable exponential
function, conformable Laplace transform and so forth, all tend to the corre-
sponding ones in usual calculus.

(v) In case of usual calculus, there some functions that do not have Taylor power
series representations about certain points but in the theory of conformable
fractional they do have.

The main contributions are listed as follows:

o First, we model the stochastic optimal control model with Poisson jumps of Clarke
subdifferential type with conformable fractional derivative, which is the general-
ized fractional derivative.

e The presence of a Clarke subdifferential, conformable fractional derivative, devi-
ated argument and Poisson jumps play the role of a novel conformable fractional
stochastic inclusion model in the Hilbert space.

e The solvability of the proposed system is studied by employing stochastic anal-
ysis, properties of Clarke subdifferential and a multivalued fixed point theorem.
The optimal control result is addressed for the considered system in the Hilbert
space by employing Balder’s theorem. The results obtained in this manuscript will
generalize existing results with multivalued fractional SDEs involving Caputo and
R-L derivatives [9, 27-29].
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Now, we study the existence of a mild solution and optimal control for the following
Clarke subdifferential-type conformable fractional stochastic differential inclusions
with deviated argument and Poisson jumps:

D) € AV() + B () + 0T (£, 9 (1))
+o (t, 0 (1), U (e(T (1), 1))

+ / A (L, 9 (1), §) N(dt, ds),
zZ

m
te|J@,bilc g :==0,T
i=0
ap:=0, byt =T, T>0,
ﬁ(t) = hl (taﬁ(bl_))? te (blaal]a i = 152735 ceem,
D(0) =9y, g€ I, (1.1)

where ¢ is the CFD of order « with % <a<land 7 :=[0,T, T > 0.9() € 7
is the state variable in the Hilbert space . with the inner product (-, -) provided
with the norm || - ||. Let A : Z(A) C H — S is the infinitesimal generator of
an analytic semigroup of bounded linear operator T(t), t > 0 on 7. The deviating
argument e(t, -) is the mapping from J# x #Z+ — %™. The notation 3 represents
the Clarke subdifferential of a locally Lipschitz function Y(t,:) : 57 — Z%. q;
and b; represent the fixed points that satisfy ap < by < a1 < by < -+ < b; <
a; < bjy1, i =0,1,--- ,m. Also, b; : (b;, a;] x & — H and ﬁ(b;) represent
the left limit of o at b;. Let (2, I, &?) be the complete probability space with the
probability measure & on €2 and the normal filtration {J¢, t > 0}. Let N(dt, d§) be the
Poisson counting process in the measurable space (2, B(Z)) defined on (L2, ¥, &).
N(dt, dd) = N(dt, dé) —h(d§)dtis the compensated martingale measure with a sigma-
finite intensity measure h(d§). The nonlinear functions A : J x J¢ x Z\ {0} -
ando : J x I x A — F¢ are continuous. 4 is the linear operator from a separable
reflexive Banach space % onto .7#. The control variable @ (-) takes values in a set of
all admissible controls #,,.

This paper is organized as follows: Section2 provides some basic definitions and
preliminary results. In Sect. 3, the proposed systems solvability is obtained by employ-
ing a multivalued fixed point theorem. Section4 presents optimal control results for
the considered conformable fractional stochastic differential inclusions with devi-
ated argument and Poisson jumps of the system (1.1) in the mean-square moment by
employing Balder’s theorem. The results are illustrated with an example in Sect. 5.

2 Preliminaries

In this section, we provide some basic essential definitions and Lemmas, which are
needed to examine the main results.
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Definition 2.1 [5] Let 0 < « < 1. The CFD of order « of a function f(-) for t > 0 is
defined as follows:

d*fH) _ | fE o) —
= l1m .
dt> v—>0 v

For t = 0, we adopt the following definition:

0 _ s
—_ = 1umm ——-.
dto t—0+ dt¥

The fractional integral 1*(-) associated with the CFD is defined by:

¢
I“(H (o) =/0 5" 1f(s)ds.

Throughout the article, £2(3, /) = L*(Q, 3¢, P, #) (t > 0) represents the
Hilbert space of all square integrable, strongly J¢—measurable .7 —valued ran-
dom variable with E[|¢||> < oo. Let ¢ (j, L33, %”)) be the Banach space of
all continuous maps from J into L2(3, ) furnished with the supremum norm.
Denote £2(3, #7), the Hilbert space of all stochastic processes J¢-adapted measur-
able function defined on 7 with the values in J# and its norm, ||¢|| LT =

1/2
[ Bl OIPdt] ™ < oo, Let PC(7, £33, 7)) = {# + T — A such that
T € € (T, L2, 7)), T == (bi,biy1], i = 0,1,2,---,m and #(b;") and
¥ (b; ") exists foreachi = 1,2, --- ,m}.
Now, X = PC (j LA, )) is a Banach space furnished with the PC-norm

1/2
19 1lpc = [sup Enﬁ(onﬂ :

teJ

Loo(T, LW , 7)) denote the space of operator-valued functions, which are measur-
able in the strong operator topology and uniformly bounded in 7. Let E% (T, W) be
the closed subspace of % consisting of all measurable and J¢—adapted, # —valued
stochastic processes satisfying £ fot |z (t) ||2Wdt < oo and furnished with

T 1/2
||w'||[;%\(‘7’//) = [/() EHZD‘(’L)HZdt] < 0.

Let W be a nonempty closed bounded convex subset of #. Define #,; = {w(~) S
E% T W) o) €¢ Wae.teTJ } be the set of all admissible controls where the
control variables take its values.

For the sake of convenience, the following notations are defined: Denote the Banach
spaces as 2 and ¢. Consider P(Z") is the set of all nonempty subsets of 2 .
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Perpa(Z) = {A € P(Z) : Ais closed and bounded }, P, (27) = {A € P(Z) : A
is compact }, Peg(2) = {A € P(2)) : A is compact and acyclic } P, (27) = {A €
P(Z) : Ais convex }.

Definition 2.2 [10] Let 2™ be the dual of the Banach space 2 . The Clarke’s gener-
alized directional derivative of a locally Lipschitz function Y : 2~ — Z at ¢ in the
direction v, denoted by Y9(#%; v), is represented by:

T A) =71
To(ﬁ; v) = lim sup y +4v) (y).
Y= 0 40+ A

The generalized Clarke subdifferential of Y at ¢, denoted by 97, is a subset of 2*
given by 0T (®) = {9* € 27 : YO(¥;v) = (9*,v), Vv € 27}.

Lemma 2.1 [10] Let the two Banach spaces be " and %' . If F : X — Pcp(¥) is
a closed compact multivalued function, then % is upper semicontinuous (u.s.c).

Lemma 2.2 ((Bochner’s Theorem)/32] A measurable function 8 : J — % is
Bochner integrable if || B|| is Lebesgue integrable.

Theorem 2.1 [30, 31] Let % be an open subset of a Banach space 2. Let Wy : U —
X (U denotes the closure of % in ) be single-valued and Vo : U — Pep cv (L)
be a multivalued operator with V; (@) + \I—’z(@) is bounded. Suppose

(i) V1 is a contraction with a contraction constant k and
(ii) V> is upper semicontinuous (u.s.c) and compact.

Then either
(i) The operator inclusion 9 € W19 4+ Vo0 has a solution for = 1, or
(ii) There is an element a € 9% such that yra € Via + Wa for some ¥ > 1, where
9% is the boundary of % in Z .

3 Existence of Mild Solution

Solvability of (1.1) using the fixed point Theorem 2.1 is discussed in this section.

Definition 3.1 An J¢—adapted stochastic processes 9 (t) € 2 : t € J' is said to be
a mild solution of (1.1), when the following conditions hold:

(i) there exists an J¢—adapted measurable function w € EZ(S, ) such that w(t) €
oY (t, #(t)) foraete J and
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(il) 9 (t) € A has cadlag path on t € 7’ a.s, the following stochastic integral gets
satisfied:

o t o _ o
’]I‘(t )190~|—/ I’H‘(t i )[ﬂw(s)+w(s)+a(s,z9(s),
o 0 o
19(2(19(S) s))]ds
/ / o 1'JI‘<t )A(s,z?(s),S(s))N(ds,d8), te (0, b1],

D) = tﬁ(b )) i=1,2,-
T(f“*é )f), (s, 9(67))

t a_ o
+/ sa—lj['<t - )[@w(s)+w(s)+o(s,0(s),ﬁ(e(z?(s),s)))]ds

t o _ ~
+[ /5“‘1T(t as )A(s,z?(s),8(s))N(ds,d6),te[a,-,bi“].
a; Z
(3.1)

In order to prove our results, the following hypotheses are necessary.

(A1) The linear operator 2 : 2 — J# generates a Cyo-semigroup T(-). Thus, 3
M > 0 being constant such that || T(t)|| < M.
(A2) Let Y : J x # — X satisfies the condition:

(i) YT(., ?) is measurable, for all ¥ € 2.
(i) Y(t,.) is locally Lipschitz continuous with Lipschitz constant M, for a.e
teJ.
(iii) There exist a function t; € £2(7, Z7") and a constant ¢, > 0 such that

E a7 (t, 9 ())[1* = sup{llo(®)]* : ©(t) € 3T (t, ¥ (1)}
<t () + E|®)?% V O € # andaete J.

(A3) The nonlinear function o : J x ¢ x ¢ — ¢ is Lipschitz continuous. For
1,52, y1,y2 € H and M, > 0.

Ello (& 11, y1) = 0 (62, ¥2) 12 = Mo [E ey = w202 + Iy1 = yal?].
E [lo (-, 0.9 (O)II* < 60.

(A4) Lete: s x #T — A7 satisfies the Lipschitz continuous. For all t1, 1y € 5
and M, > 0>

Ele(®1, t) — e(92, )%+ < ME|[9) — 9]
and e(.,0) = 0.
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(AS) A:J x H x Z\ {0} — S is Lipschitz constant M, a.e. t € 7. There exist
a function v, € £2(J, Z*) and a positive constant ¢, >

/Z E A, 8, Hh(A)] < 2(6) + GE[9 |

(A6) () b; : [b;,0;] x S — S such that h; (-, ) is continuous, V ¢ € . and
i=1,2,--- ,m () bh; : [bj,a;] x H — 2,i = 1,2,---m is uniformly
continuous on bounded sets and for t € [b;, a;], h; (¢, -) is a mapping from any
bounded subsets of .77 into relatively compact subsets of 7. Also, there exist
positive constants f; with

E [16;(t, 91) — b (t, 92)1* < FE 91 — 9211%, t € [b;, a;], D1, 92 € H.

(A7) Let w € # be the control function and the operator Z € Lo (T, L(F, K)).
| A| stands for norm of the operator A.

Define the multivalued operator G : C% (T, ) > &P (E% (I, H )) b
&) =[we L3I 2) 10 €T (L 91), aete T}, Vv el 2).

Lemma 3.1 [28] Suppose (Al), (A2) holds. Then, the operator S satisfies the condi-
tion: if 9, — U in E%(J, I), 3n — 3 weakly in E%(], FC) and 3, € G(9y,), then
3 € 60).

Lemma 3.2 [28] If the hypotheses (Al), (A2) get satisfied, for © € E% (J, ), G()
is nonempty, convex and have weakly compact values.

Theorem 3.1 Assuming the hypotheses (Al)—(A6) hold, then for every ¥y € €, the
system (1.1) has a mild solution, if

ZbZOl 2M2b20l
€= max §——1 DRMoIMe + 1)+ Myl, f;, 3M2f; + L [2M, (M + 1) + M; ]
i=1,2,.m | 2a — 1 20— 1

(3.2)

Proof Define the multivalued operator ® : X — 2X as d () = {yeX:y®) =n®}

such that
@ t o g
']T<—>190+/ 5"‘_1'1‘( i )
o 0 o

[F() +0(0) + 0 (5. 0(6). PC(P(). )]s

/ / o« IT( = )k(s,z?(s),8(s))N(ds,d8), te (0,bq],
20 = 10 (LO00). i=t.2..
T(ta_s )sz (S 5 (6] )) /a 5a1T(t‘Y ;s“)
%W(S)+w(S)+o(s B (s), D(e(P(s), 5)))]ds

/ / - 1T(ta a)x(s,ﬁ(s>,8<s>>N<ds,da>,te lar, b1,
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Decompose the operator ® () as © () = &1 () + P2(F), where @1 (3) = {y € X :
y(t) = n1(t)} such that

o t © g
T (—) Yo + / se~ I (T) o (s, 0(s), 9(e((s),s)))ds
0

a—1 t* — ¢ ~
[ [ 1 (5,9, 55) K(ds, d8), L€ (0,011,
0JZ o
m =10 (626)), i=12m,

o _go t 1 ¥ — 5%
=) by (5207 +/ - ’]I‘<T>a(s,l9(s),z?(e(z?(s),s)))ds

a;

t a _ o ~
+f / s“—lﬂr(t—s>A(s,ﬂ(s),am)N(ds,da),te la;, by 411.
a; Z o

=
—~

and @, () = {y € X : y(t) = n2(t)} such that

t o _ o
/5“1'H‘<t as )[%w(s)+a)(s)], te (0, b],
0
m® =10, te@®,al i=1,2,---m,

t o o
fﬁ“‘“ﬂ‘(t as >[%’w(s)+w(s)]ds, te [a;, biyil.

Step 1: To claim ®; is a contraction mapping.
Define Z = {# € X : E||9|> < [}, for [ > 0. Now for t € (0, b{], 91, 9 € B,
and using (A3)—(A6), we have

E[[(®191)(t) — (@192) ()15

= sup E [(@191)(H) — (D192) (D]
teJ’

¢ a—1 o — s
/ ol ( ) [0 (s, D1(5), D1 (e(1(5), 5))
teJ’ 0 o

—0 (s, 02(s), U2 (e(D2(s), 5)))]1ds

t a—1 o —s”
+/ / s 11‘( )[k(s,ﬂl(s),5(s))
0 JZ o
]
<2 sup [E‘

t o _ Lo
/ s“‘T(t : )[U (s, D1(s), U1 (e(D1(5), $)))
teJ’ 0 o

—0 (5, 01(s), D1 (e(D2(5), 5)))

< sup []E

—A (s, D2(s), 5(s)) 1 N(ds, d8)

2
—0 (s, D2(5), D2 (e(92(5), 5))) + 0 (s, D1(s), U1 (e(D2(s), S)))]ds

t a—1 t — s
//5 T( )[Ms,wsm(s))
0 JZ o

+]
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2i|

t
<2 sup [2b1M2MU( / 2 2R |91 (e(D1(s), 5)) — 01 (e(D2(s), s)) 1> ds
teJ’ 0

— (s, 92(s), 8(s))1N(ds, d5)

t
+ / 212 91 — 0217 X Jle (92(5), s)llzds>
0

t
—i—blMQMA/ 5222 ||z91(s)—z92(s)||2ds:|
0

20,2
<2Mb1‘"
- 2a—1

[2M, (M + 1) +M;]1 sup E[[91(s) — d2(s)].
5€(0,by)

For t € (b;, a;], we have

E[[(@191)(1) — (@192) ()50 = sup E[[(@191)(t) — (®192) ()|
teJ’
< swp B [0: (& 9106,)) = by (&, 926))) |
teJ’

<fi sup E91() — O, i=1,2,---,m.
te(b;,a;]

Forte [a;,b;41],i =1,2,--- ,m.

E (@191 — (@192) ()15
= sup E [(@191)(1) — (D192) (D>
teJ’

o g
< sup EHT( d ) [b: (5. 9167) — bi (5, 92067)) ]
teJ’ o

t o _ O
+/ 5"‘_1T<t o : >[‘7 (s, 91(s), D1 (e(D1(s), 5)))

i

—0 (s, 02(s), D2 (e(D2(5), 5)))]1ds

t 1 toz_sot
+/ /511 T( )[A(s,ﬁl(S),S(S))
a; JZ o

2

—A (s, 92(s), 8(s)) 1 N(ds, d8)

T2ot 2
< 3M%f; + 32 ; [2M, [(2M, + 1)M; ]
a J—
sup  E[91(s) — 92(s)|1% .

se(a;,biyr]
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Therefore, for t € 7,

E (@191t — (2192)(DlPe < € su}) E [91(t) — 9201
teJ’

) 3T2aM2
here €| = ma. 3M“§;
W ! ie{1,2,-?(-,m} |: fi+ 2 — 1
we have & as a contraction.
Step 2: Claim: @, is convex for ¥ € X.

Ifyi, y2 € F2(9), then there exist wy, wy € S(¥) such that 5 t € (0, b;], we have

M, (M, + 1) + M,\)}. Using (3.2),

t o Lo
yl(t)=/ 50‘1']I‘<t as )[%w(s)—}—wl(s,ﬁ(s))]ds
0

t o Lo
yz(t)zf s‘“qr(t as )[%w(s)+w2(s,0(s))]ds.
0

We may consider 0 < x < 1, and then, for t € (0, b;], we have

¥ — ¢

t
ey + (1 —K)y2) () = /0 s“—lﬂr( )[@w(s)
+ (kw1 + (1 — k)wy) (s, 9(s))]ds.

Using Lemma 3.2, we can obtain the convexity of G(¥) and (kw1 + (1 — k)wy) €
G(t) for t € G(t). Hence, (ky; + (1 — k)y2) € &(t) for t € (0, by]. The result holds
for t € (a;, b;+1] also. Thus, ®,(t) is convex. By Lemma 3.2, obviously ®;(t) is
nonempty and has weakly compact values for all ¥ € X.

Step 3: Claim: ®,(¢)(?) maps Z; — P in X.

For 9 € % and t € (0, b;] and by using Holder’s inequality,

t TC 2
E||®2(®)[pe =E Hf 51T ( ) [Bw (s) + w(s)]ds
0 PC
2 %a_l 2 2
=M1 | 12152 7

t
+ / §29 2ty (s) + gw[]ds}
0

200—1

2 1 2012
=My | o — 121 s

(TH)

20{—_1/2 200—1
1 1
+2(x — 1/2” l||[;%(‘7,j+) + o — 1§w:|

21, 2a

<

1 2 2
= 5= (12121212 7, + S

@ Springer



45 Page120f26 Journal of Theoretical Probability (2025) 38:45

20 2a+1/2
M~b)

— It
+ 20— 12 l 1||L§(j,%\+)

5@1.

Forte [a19 bl“rl]’i = 1921"' , m,

t 1 TC
/ 7T < ) [Bw(s) +w(s)]ds
o PC

MZ 2a 2T2a+l/2
2 =1 121 2 g, + ot] + S Il )

2
E[|®2(9)|he = E

=

1]

IA

2.

Hence, E||©2(3)|pc < @3 where €3 = max{él, éz}.

Step 4: Claim: {®;(¥) : ¥ € %} is equicontinuous.
Forevery 0 € #yand t € (0, b;], whent; = 0,0 < t; < €p and €q being sufficiently
small, it follows that

2

E[[(®28) (t2)— (@209 (t1) |50 < H / “ 171‘( )[%w(s>+w(s)]ds

t% éoﬂr]/z
<2M*—2—|I1ZI* =%, + ol +2M2—||t1||5g P
2 LT 1/2 T Z)

2w (2at1/2

€0
<m0 [n%’n 19133 g+ Sol] + 20— ez

— 0 as 60—>0 for ¥ € 4.
In a similar manner,

E[[(@29) () — (®29) (t)pe — 0 as ¢ — 0 for t € [a;, byl i =
1,2,---,m. Likewise, for t € %;. Let 0 < t; < tp < by, there exist o € &)
and for all ¥ € (0, bq].

E[[(®20) (t2) — (P29) (t) I3
t | tgl — ¥
= IEH/ 4 T( S ) [Bo(s) + w(s)]ds
0

4 @ o 2
—f s“‘Wl‘( 1 )L@w(s)+w(s)]ds
0 o
t1—e a o a _ .o
/1 ol [T(tz a )—T(tl S )][@w(s)+w(s)]ds
0 (0% o
t o _ o o o
+/l 5o |:’H‘<t2 5 )—T(tl i )]L@w(s)—i—w(s)]ds
t1—e o o
4 a _ o o
+/ 5o [T(tz 5 )—T(tl i >][%w(s)+a)(s)]ds
19 o o
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(t — 6)201 ) ) (t — 6)204—&-1/2
= 6|:<W I:”%” ||w||£%(J,7//) + §w[] + T”tl ||L§(j,g+)

¢ — ¢ o — s\ ||I?
() ()
s€(0,b1] a o

2o ) ) e2a+1/2
20— 1 I:”%” ||w||£%(k7’¢//) + §w[] + m”tl ”L%(j,&?ﬂ)

ta_sa tOl_SOl
o 2 (E) 5 (57)
s€(0,b1] o o

(t — t)™
20 — 1
(Gl VTR
Qo — 1/2 1 ﬁ%(J,%*’) :

+

2

M (1B s 7 ) + ol

In a similar way, for t € [a;, bj+1],i = 1,2, --- , m there exist w € &(¥}),

E ||(CI)219) (fg) — (cpzﬂ) (tl)”%)C
() —e— ql-)zﬂl 5 5
) 6[<T [”%” @2 7oy + §w[]

(t — e —a)> 12 el
Tl g2 (7.%+)
20— 1 R

o _ o o g
an wjr(555) -7 (57)
5€(0,b1] (o4 o

620{-{-1/2
+Soll + o — 1 ||t1||£§(j’<a,z+)>
x sup E

(5 ()
5€(0,b1] o o

(t — t1)2a 2 2 2
—ZTTMU%Mm%m%+%q

(th — tl)2a_1/2M2
2o — 1/2 ||t1||£§(‘7’%+) .

: 2 2 2
4EWJU%WW@U%

2

For t € (0,b1] and t € [a;, b;+1] are independent of ¥ and approaches zero as
t) — tjande — 0. Thus, E [|[($29) (t2) — (®20) (t))]> — Oase — 0 independent
of ¥ € % which follows {®, (), ¥ € i} is equicontinuous.

Step 5: Claim: ®;(¢) is completely continuous.
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Let & be areal number and t € 7 be fixed with 0 < & < t. The set 7 (t) = {D2(V)}
is relatively compact. We may define,

t—¢& a
/ 50HT(t as )[%W(S)er(s,z?g(s))]ds, te[0,b1],
0
(@59)(H) = {0, te.al, i=12-.m,

t—£& o _ g
/ s“‘T( - >[93w(s)+w(s,z9¥(s))]ds, te (ai, b1

Since T(-) is compact, the set 7¢(t) = {5 (1)} is relatively compact. Now, for each
0<é&é<tandte (a;,bi41],i =1,2,---, we obtain

t T
/ sa_1T< )%’w(s)ds
t—§ o

t . TR
f 57T ( > [0(s) — w(s, 95 (s)] ds
t—& o

2

E|ox -S| <28

2

+2E ‘

Thus, when & — 0, the above inequality tends to zero. Thus, the set 7 (t) is relatively
compact. Thus, from Step 4 and Arzela Ascoli theorem, @ is completely continuous.
Step 6: Claim: ®,(¢) has a closed graph.
Let 3, — 5* in Z and y, — ¥, in X. Our aim is to show that y, € @2(5*). Let
Y € ®2(5,) then Jw (s, D,) € &(9,) with

t o _ o
() = / 51T (t - 5 ) (B (s) + w(s)] ds (3.3)
0
By the use of (A2)(iii),
{(@(s, 9u())}n=1 S L3(T, ) is bounded. (3.4)

Let us consider the subsequence, w (s, ¥,(s)) — w(s, Ux(s)) weakly in £% (I, ).
By the condition of compactness of T (1), using (A2) and equating (3.3) and (3.4),

N t o 5o 5
3.t — / 5“_1’]1‘( )[,@w(s) Fols. ﬁ*(s))]ds (3.5)
0

o

We may note that ¥, — ¥ in X and w (s, 9,) € &(J,). By lemma 3.2 and (3.5) gives
w(s, 19*) € 6([9*). Hence, f}* € CI>2(19*). Thus &, (¥) has a closed graph. In the view
of Proposition 3.3 12(2) in [33], ®, is upper semicontinuous.

Thus, ®; () has a closed graph.

Step 7: The operator inclusion 79 € &1 () + P,(P¥) has a solution for 7 = 1.
By Theorem 2.1, it is sufficient to claim that there is no ¢ € X that fulfils 7 €
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D () + Do () for m > 1 and there exists w € &(¢) with

o t a _ o
(o e ()
o 0 o
[P (s) + w(s) + o (s,0(s), 0 (e(P(s),s)))]ds
// = 1T( —¢ )x(s,ﬁ(s),@(s))N(ds,ds), te (0,061,
= {0 (L200), i=1,2,---m,

T (t"‘—s ) bi (q, 9 (b7 )) /:s“—lqr (ta ;s“)

t o _ o
[,%’w(s)+a)(s)-l—cr(s,z?(s),t?(e(ﬁ(s),s)))]ds+/ / s“—ljr<t7s>
a; Z

o

A (s, 9(s), 8(s)) N(ds, d3), t € [a;, b 1].
Forte (0,b1],3w € &(¥),
E[9 (615
t
= S[Mzwonz + M2 2%y / %2R || ()| 2ds + by M?
0
t
[ 2 [0+ suB19 @] ds
0

t
+2b;M? / $2272E ||o (s, 9 (), O (e(D(s), 5)))
0
—0 (5,0, (e(¥(0), 0))||*> ds

t
+2[111\\/JI2/ S22 72F ||o (5,0, 9 (e(8(0), 0)|I* ds + by M?
. 0
[ #2 [n0) + wmwoR]a|
0

2 2
5| M2E||9g||> + M? 2 b 2 +2—b‘a o0
- 20 — 1 T 20 — 1

M2b2a+1/2
+—L + |2 —
20— 1/2 Hlc2(7.2+) 20 c2(g.2+)

t
+ b1 M2 [6, + 2M, (M + 1) + 61 /0 52“—2E||ﬁ<s)||2ds}

t
<S +SZ/ 24 2E|19 (s)||°ds.
0

where

hZa bZa
Sy =5[M2]E||290||2+M2<||%’||22 L || +2+ao>
o — N a—1
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Mzbza-‘rl/Z
L ltill 2 £ leall o
2a — 12 LR @20) TIRILL T2

Sy = 561 M? [0 + 2Mo (M + 1) + 631
By generalized Gronwall’s inequality,
E[#©)lpe < S1e®t =01 (3.6)

Forte [a;,bi+1],i =1,2,--- ,m T w € S(¥) such that

EI9OIF < SMETREIR O +5M2—— (1211212, ;) +200]

20— 1
2a4-1/2

+5M2m[llt1 272+ + ||t2||z:§(\7,%+)}

t
+5TM? [¢ + 2My (M + 1) + 2] / S22 2E |19 (s)|°ds.
a;

Thus,
2 2 2 2 2
e e [M —— (12117 1% )+ 200]
5 2004+1/2
+5M 20‘_—1/2|:||t1 ”L%(J,%’Jr) + ||t2||£§(j,gg+):|
t
+5TM? [, + 2M, (M + 1) + 63] / 52“—2E||z9(s)||2ds].
a;
Therefore,
t
El9 ()]0 < S3 + S4 f s 2E||9 (5) )| 2ds.
a;
where
: R Yl T
= ma. w O
3T i m 1 5MPTj; | 2a—1 gy T

, T2H1/2
+5M m[”tlnﬁé(l%ﬂ + ||t2||5%(j,g+):|

Sy = 5TM? [¢ + 2Mo (M + 1) + 1]
Using Gronwall’s inequality,
E[9(t)5e < Szt = s. (3.7)
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By summarizing (3.6) and (3.7),
E||v?(t)||%c < 0 where 0 = max{01, 02}.

The set xo = {9 € X, E||19||%,C < 0 + 1}. Clearly, xp is an open subset of X. From
X0, there is no ¥ € X that satisfies 79 € ®1(9) + () for ¥ > 1. Hence, we
conclude that the operator inclusion ¢ € ®(¢}) has a mild solution in 7. O

4 Optimal Control

The existence of optimal control for the system (1.1) is investigated in this section
using the Balder’s theorem.

The Lagrange optimal control problem can be considered as follows: Considering
0, @) € PC(T, L2(2, #)) x W4 such that

3, w0 < I, w), forall (¥, @) € PC(T, L2(Q, ) X Wad,

where
b
J(w)=E {/ L, 97 1), w(t)dt
0

and 9@ denotes the mild solution of (1.1) corresponding to the control @ € #,,. Let
us presume the following assumptions for the existence of solutions of the problem.

(A9) (i) The functional L : J x 7 x W — 9% U {oco} is Borel measurable.
(ii) L(t, ., .) is sequentially L.s.con 57 x #' VYt e J ae.
(iii) L(t, 9, .) is convex on # for each ¢ € 2 and almost all t € 7.
(iv) There exist constants @ > 0, f > 0 being constant, u being non-negative and
u e LT, #) with

L(t. 9, @) > u() +E 915, +flw=ll}, .
Theorem 4.1 The Lagrange problem permits at least one optimum pair if assumptions

(A1)—~(A8) are true and A is a strongly continuous operator, (i.e.) 3 an admissible
control pair (00, w®) € PC(T, L2(Q, H)) x Waq >

b
3090, w% =E (/ 3, 900, wo(t))dt)
0
<IE7, @), ¥ 07, @) e PC(T, L2(R, ) X Waa-
Proof If inf{J(0”,w) | (07, w) € PC(T, L2, ) x Waa) = 00,
there is nothing to demonstrate. Without loss of generality, one can assume that

inf{JO%,w) | 07, @) € PC(T, L2(2, 7)) X Waa} = p < A+OO'ABy using
(A8), we have p > —o0. A minimizing sequence of feasible pair {(?", @w™)} C Paa
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exists according to the definition of infimum, where P4 = {(19, @) : ¥ is amild solu-
tion of system (1.1) corresponding to @ € %d} E) 3(1?’;’, w’ﬁ) — pasm — +0o0.
Since {w™} € Wyq, m = 1,2, ---w'™ is a bounded subset of the separable reflexive
Banach space LP(J, #'), 3 a subsequence, relabelled as o™ and w0 € L TN
5" > wl weakly in LP (T, #). Since #,4 is closed and convex by Marzur
lemma [34], w° € Waa. Let {w’ﬁ} denotes the sequence of solutions of the system

corresponding to '™, 9 is the mild solution corresponding to @ . 9 90 satisfy
the following integral equations:

(f“) Ry i i
T(— ﬁ0+/ s T<7) [ () + (s, 9" (5))
o 0 o

To (5, 9 (s), 97 (e(8"™ (s), 9))>]ds

// o 1’H‘<t - ) (s,z?’;’(s),(S(s))N(ds,d(S), te (0,bq],

97 () = {n tﬁ(b )) i=1,2,-

’]I‘(t“ )h,- (s 90 (b )) +/u.5a_lT<ta _

+o ,19 (s), 19’”(2(19’”(5) 5)))]ds

o

u ) [ (5) + w(s, 9 (5))

+ /5“ 1T< >A(s,ﬁm(s),S(s))N(ds,dé),te[ai,biH].
a; JZ
4.1)
and
T(i> 190_’_ S0~ IT( & a)[jwo(s)—f—w(s 0 (s))
[07
+o gs,ﬂo(v) z?o(e(ﬂo(v) ) Jds
+/ / 59 ‘T(ta_s ) 5, 99(s) a(s))N(ds d4s), te (0,6]
0 JZ
20t = { ¥, (t, 906, ) i=1,2,---m,
o t o _ g
’H‘(t (s 906 )) s“*‘T<7) [B50(s) + w(s, 90(s))
a; (o4
+a( 99(s), ﬁo(e(ﬁo(s) s)))]ds
+/ 59 1T< ) ( ﬂo(‘c),S(S))N(ds,dS),te[ai,biH].
Z
(4.2)

From the boundedness of {@ m} {w "} and theorem 3.1, it follows that there exist a
positive number § such that E[9" |2 < 8, E||9°||2 < 8. For t € [0, b;],

E|

N 2
97 (8 — 90(t) H < 4G + % + D + D]
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where
b (s . o 2
4% =E /05“ ']T( - )[%wm(s)—%’w (s)]ds
, bt i PN
<M m/() E ‘%’w (s) — Bw (s)H
% =E /Otso‘l']l‘ <ta ;Sa> [a) (s, ﬂ’h(s)) — a)(s, ﬁo(s))] ds
<15 [l 0%0) o (o) o
< MZ;M_IIM / ]EHz?’"(s) ﬁo(s)H ds
¢ =E /O o=l <taa )[ (s,z?m(s),ﬁm(e(ﬁm(s),s)))
o (s, 99(s), 9°(e(®°(s), s)))] ds H2
5 bZa 1 t . 2
<MP 1 [2MJI(M2+1)]/ ]EHﬂm(s)—ﬂO(s)H ds
2o 0
G <E /Ots'* I <ta ;Sa> [x <s, 97 (s), 8(s))
.Y (s, 90(s), a(s))] N(ds, d8) H2
5 bZa 1 t . o 2
=Ml — Mkf IEHz?’"(s)—ﬁ (s)H ds.
0
For t € (b;, a;],

£t - 00| <E o (Lomen) — b (o)
< G |97 s) - z?%)HZ.
For t € [a;, bj11],
E 0@ -9 H2 UG+ G+ G+ Gy + D).

where

4 <E

@ _ o R 2
T ( - ) (i, 97 672) = bi (s, 9°(6; )]
o

< MPRE |9 (5) — )|
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t o _ Lo .
/ s T (t u ) [%wm(s) - %wo(s)] ds
a; o

20

2

ngE‘

< M?
- 200 — 1

/C:so‘l’]' (ta ;Sa) [a) (s, ﬂﬁ’(s)) —w (s, ﬁo(s)>] ds ’

T2a—l t . 2
1Mw/ EH@’"(S)—ﬁO(s)H ds
a;

/tE H%wm(s) . @wo(s)szs
0

g3§E‘

< M?
- 200 —

/C:s"“T (- ;S“> [0 (5. 97(5). 97 (" (5). 7))

o (s, 90(s), 9@ (s), S)))] ds H2

200—1

g4§E‘

T 2
< M? ds

- 200 — 1

/aitsoc—lrf (t"‘ ;sa> [)\ (s, z?ﬁ'(s),s(s))

2. (5. 9°6), 8()) | Reds. ds) H2

t
[2M, (M, + 1)]/ E H 97 (s) — 9°(s)

gst‘

200—1

T
<1MI2

< M2-— M, /:EHﬁ’h(s)—ﬁO(s)szs.

which implies,

. 2 N
0 * 02
97 — (t)H <N B — B 7,

sup E
teJ

Since A is strongly continuous, we have
1 02 -
|Bw™ — B ”L’,,(J,W) — 0 as m — oo.

Thus, we have
. oll2 .
EH??’"—I?H — 0 as m — oo.

This yields 1 5 90 in PC(T, L2(2, 7)) as m — 00. (A8) implies the assump-
tions of Balder [35]. In the light of the above, (¢, w) — E (fob L(t,0(1), w(t))) is

sequentially lower semicontinuous in the weak topology of LP (T, #) C LYT, #)
and strong topology of £!(J, #'). Consequently, J is weakly lower semicontinuous
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on LP(J, #) and with (A8)(iv), J > —oo, J attains its infimum at w” € #q4, (i.c.)

b
o= lim E(f L(z,ﬁ’”(z),wﬁ(t))dt>
0

m—00

b A A~
>E ( / L(t, "™ (1), w’"(r))dr) =30% a% > p
0

5 Illustration

Consider the conformable stochastic differential inclusion with impulses as follows:

32 1
DVt 5) € 50t s) +/ @, nw(n,s)dn
as 0

2+ 9, 5)|? 1 [to(t, )
Y| — |+ =
+ ( 9 s 2
B 24+ 1|0,
+/ [cosls |+( + D) [9(t, )]
=zl 5 5419t 5)|
and s € [0, ],
(sin |s| + ) [9,5(t )|

+9 (t, VT sin g9 (t, s)|/3):|

] N(dt, vdelta), t € (0,0.25]U (0.5, 1]

Dt w) = 3 te (0.25,0.5),
P, 0) =t 7) =0, te(0,1)x[0,n]
90, s) = Do(s) s € [0, 7]. 5.1

Let o = 09, 8 : [0,7] x [0,1] — R is a continuous function. Let 7 =
% = L2(0,7]), wo(s) € # and let A : L2([0,7]), wo(s) € H and let
A L2(0, 7)) — L2([0, 7). Aw = Aw, ® € D), we define D) = {y €
H y,% are absolutely continuous and % e A, y(0O) = y(xr) = 0}. «A
generates a compact semigroup {T(t)}¢>0 is analytic and self-adjoint. Let us take
PBw(t,s) = fol ¢, m)w(n, s)dn where ¢ is continuous. Moreover, 2l has the

discrete spectrum, and there exist eigenvalues —n”, n € 2 with the orthogonal

o0
eigenvectors W, (y) = \/g sin(ny) then 2y = Z —nz(y, U ,. Also, Ty =

n=1

o0
Ze*”zt(y, U, )W,y € 5 andforallt > 0.Inaddition, [T#)|| < 1 = M, {T(t)}>0
n=1

is uniformly bounded compact semigroup, (A1) holds and R(A, A) = (A —2A)"lisa
compact operator, for every A € n(2(). Define the nonlinear functions as follows:

2 2
w(t, (L s)) € 0T DL, 5)) and w(t, D (L, 5)) = w,
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(%,
o (t,0(t, ), 0 (P, 9))),t) = = |: (2 s)

- cos|s8] (P41t 9]~
A _
/Z (t 9 (t. s). 8) N(dt, do) /Z[ T TCRY }N(dt,dé),

+9 (t VT sin g9 (t, s)|/3):|

e (D (L, 5), ©) = VTsint|d(t, 5)|/3,

. 5 o
b (t’ ﬁ(bi_’ S)) _ (sin |s| + t 1)2|l90'25(t’ S)| .

Describe the ball for ¥ > 0, %; = {9 € # : E||9]|* < ). Consider for 91, 9> € %,

7sint | 91(t,s) /Tsint| P (t, )

Ele (91(t,5), ) — ¢ (92(t, ), 1) |* = 3 3

7
< SEIDt ) = oa(t, %

Also, ¢(-, 0) = 0 and hence, the nonlinear function e satisfies (A4) with M, = 7/9.
Now,

Ello (6 91(t 5), 91 (e(D1(t,5)) . ©) — o (£, Da(t, ), D2 (e(Wa(t, ), B

1 [k, , 9 (¢,
—E‘ 169 4 (t,ﬁsmtml(t,s)l/S)—#

<
=75
9, (t, VT sintda(t, )| /3)

2
o (t, T sin |0 (4, s)|/3) — 9 (t, T sin |0 (4, s)|/3) H

< 71—5 [E 191 (6, 5) — Do (t, )2 + E Hm (t, VT sin {92 (¢, s)|/3>

—9, (t, VT sin |9 (t, s)|/3) Hz] .

Hence, the nonlinear function o satisfies (A3) with M, = 71—5 Also,

t2

Ellw(t, 9t s))|I* <E

si [1 LR[OG, s)||2]

and

E [t 91(t, ) — o(t, 92(t, ))|> < E

E+ 1)+ 9] H2
9

2% ,
= a]E ”ﬁl(ts) - 192({’ S)” .
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Hence, w satisfies (A2) with ¢, = 8%

/ E (A (£, 91(t, 5), 8) — A (£, 92(t, 5), 8)||> h(dd)
it

S/ . cos|sd| (2 + 1|9, ) _cos s8] (2 + 1) |0, 5)| 2h(d5)
= 5 54 [9(t, )] 5 54 [9(t, )]
2
siﬂwm@w—wwww.
Hence, A satisfies (AS) with M, = % and
2
cos|s8| (4 1) [9(t, )]
E A (t, 91 (4, 5), 8)|> h(ds 5/1@ h(ds
L I 914,90, 0P o) < [ B T

<2/MHMM%
— 25 )z '

Moreover,
E [ (t. 91067 .5)) — b (&, 0206;.9)) |
_ | Ginlsi+ 2) [958
= 12
. 2 — 2
B (Sln |S| +t ) |1}025(t9 S)|
12

< %IE [91(0.25, 5) — 92(0.25, $)||*,

and

E[h (L2167 9)|* =E

@mm+9nﬁaww2
0.25\»
12

1
< 55 [EQ+ 1749555 9|

<0.1]8)2.

Hence, f; = %, M, = Z M, = % and M, = 7/9. Now substituting the values in
(3.2), we get

2
=025+ 03 [0.2 4 0.08]

=0.25+0.7
=095 <1,
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one can get € < 1. Hence, it satisfies the conditions of Theorem 3.1, and hence, there
is at least one mild solution for the system (5.1).

Next, define the admissible controls set #,; = [zzr ew . ||ZIT||LZ Ty < 1}.

Consider the following cost

b
J(w)=E {/ L, 97 1), w(t))dt}
0
where

1 1 1 1
TJ(t,ﬁ(t),w(t))(w):/ / |9 (t, w)|2dwdt+f f | (t, w)|* dwdt,
0 0 0 0

and it is easy to see that the hypotheses of Theorem 4.1 are satisfied. Therefore, there
exists at least one optimal pair for the problem (5.1).
Remark: Comparisons:

(i) The CFD behaves well in the product rule and chain rule while complicated for-
mulas appear in case of usual fractional calculus.
(ii)) The CFD of a constant function is zero while it is not the case for Riemann
fractional derivatives.
(ii1) Mittag—Leffler functions play an important rule in fractional calculus as a gen-
erahzatlon to exponential functions while the fractional exponential function

f@)=e 'y appears in case of conformable fractional calculus.

(iv) Conformable fractional derivatives, conformable chain rule, conformable inte-
gration by parts, conformable Gronwall’s inequality, conformable exponential
function, conformable Laplace transform and so forth, all tend to the corresponding
ones in usual calculus.

(v) In case of usual calculus, there are some functions that do not have Taylor power
series representations about certain points but in the theory of conformable frac-
tional they do have.

6 Conclusion

This manuscript presents a mild solution for the solvability and optimal control of
a conformable fractional stochastic differential inclusion with Clarke subdifferen-
tial and deviated argument. The proposed conformable fractional impulsive inclusion
systems solvability in Hilbert space is established by employing fractional calculus,
multivalued analysis, stochastic analysis, semigroup theory and a multivalued fixed
point theorem. Furthermore, under some suitable assumptions, the existence of opti-
mal control is derived by employing Balder’s theorem. Results for the well-posedness
of conformable fractional stochastic differential equations with Levy noise and the
averaging principle can be extended to the obtained findings.
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