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Abstract

This article examines the use of Hidden Markov Models and probability distributions to study
agricultural import dynamics, with a focus on revealing hidden patterns in the data. The idea behind
the study is to enhance our understanding of how transitions between different agricultural import
states occur and to explore the most suitable probability distributions for modeling these hidden
states. The purpose of the study is to identify the optimal distributional fit for hidden states by
evaluating the Transition Probability Matrix, Emission Probability Matrix, and Initial Probability
Vector (1) for each state. The research implements the Akaike Information Criterion and the Bayesian
Information Criterion to select the best-fitting distribution for each scenario. Furthermore, the paper
focuses on the practical implications of these discoveries, such as determining the most likely state
sequence using the Viterbi path, which can help influence decision-making and forecasting. The
analysis is carried out using R software, which provides information about the associations between
probability distributions, stationarity tests, and the role of model selection criteria such as AIC and
BIC. Graphical representations of AIC and BIC wvalues over several probability distributions, and
additionally a correlation matrix between selected distributions, help to highlight the findings.
Overall, the paper enhances our understanding of probability distributions through HMM
frameworks for agricultural import dynamics, providing recommendations for optimal model
selection in various applications.

Keywords: Probability Distributions, Hidden Markov Model, Lomax Distribution,
Viterbi Path, Correlation Matrix.

I. Introduction

Throughout the world, agriculture significantly impacts how countries develop in terms of their
economies, societies, and environments. Indicators of a nation's reliance on foreign agricultural
products and its ability to produce agricultural goods domestically include the percentage of
agricultural imports to total national imports. Over the last few years, the agricultural industry has
been using more sophisticated statistical techniques, such as HMM, to understand the complex
dynamics present in agricultural systems and numerous variables that affect these systems,
including market swings, weather conditions, and crop yields, cause them to analyze using
conventional methods.

Hidden Markov Models and probability distributions are critical tools for studying and
modelling agricultural import dynamics, providing advanced approaches for identifying
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underlying trends and behaviours in import data. HMMs provide a strong foundation for capturing
these dynamics by presenting import data as a series of hidden states and visible emissions. Hidden
states in agricultural import contexts may represent specific import patterns or market conditions,
whereas emissions relate to observed variables such as import amounts and prices. HMMs help to
explain import dynamics, identify dominant patterns, and anticipate future import trends by
estimating transition and emission probabilities. Finally, the investigation of probability
distributions within the framework of Hidden Markov Models provides a reliable method for
assessing agricultural import dynamics. This study improves our understanding of model selection
and sheds light on optimal distribution choices by evaluating the suitability of various distributions
using rigorous criteria such as AIC and BIC, thereby contributing to improved forecasting accuracy
and decision-making in the agricultural sector. Forecast accuracy is greatly increased when
agricultural import data is analyzed using Hidden Markov Models. By detecting underlying hidden
states, HMMs can efficiently capture the dynamic elements that affect these imports, including
market swings and seasonal variations. HMMs offer vital insights into the uncertainties that define
agricultural markets by predicting the probability distributions connected to these states. This
method provides a foundation for comparison with conventional forecasting techniques and enables
in-depth analyses of changing import trends. This research paper was carried out using R software,
which has robust statistical libraries and HMM programs. While R has several advantages, we ran
into some computational issues during the investigation. Large datasets, in particular, increased
calculation time, and memory management became an issue as the Baum-Welch algorithm was
iterated several times. To address these issues, we used efficient coding techniques and R tools like
depmixS4 and HMM to streamline calculations. We recommend that future users use parallel
computing or data optimization approaches to improve the performance of their analysis,
particularly with larger datasets or more sophisticated models.

Sebastian George and Ambily Jose [13] presented a Generalised Poisson Distribution (GPD) as
a statistical tool for describing serial dependency in time series count data. The GP-HMM, paired
with HMM, demonstrates good convergence properties in both simulated and actual data,
indicating its superiority over the P-HMM. Joshni George and Seemon Thomas [5] presented a
negative binomial hidden Markov model for Kerala AES situations, estimating parameters with the
EM technique, getting hidden state sequences, and transition probabilities. Hao Zhang, Weidong
Zhang, Ahmet Palazoglu, and Wei Sun [3] proposed HMM-Gamma model uses a Gamma
distribution, pre-labeled monitoring days, and improved Expectation-Maximization approaches to
forecast ozone exceedances in the Livermore Valley and Houston Metropolitan Area. Hui Zhang,
Qing Ming Jonathan Wu, and Thanh Minh Nguyen [4] proposed a novel Student's t hidden Markov
model (SHMM) that takes into account Markov states, latent components, and observations.
Existing literature emphasizes the need to use proper probability distributions to improve model
accuracy and forecasting capabilities. Several studies have shown that various HMM formulations
and parameter estimation strategies are successful in capturing complicated patterns in dynamic
datasets. The unique feature of this study is that it compares five different probability distributions
in detail using Hidden Markov Models. The study aims to determine the best method for modeling
sequential data by examining the effectiveness and suitability of each distribution. This paper also
presents the creation of a Lomax HMM, which improves the modeling capabilities of conventional
HMMs by incorporating the special characteristics of the Lomax distribution.

II. Methods

A Hidden Markov Model is a probabilistic model that is commonly used to represent time series
data or observation sequences. It is made up of two major components: hidden states and observable
states. Hidden States are unobservable or latent variables that represent the underlying states of the
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system under consideration. Hidden states can change over time using a Markov process, which
means that the likelihood of transitioning from one state to another is determined only by the present
state and not by the previous states. Observable states are the data points or observations that can
be directly observed and linked to each hidden state. The observations are derived from probability
distributions that are conditional on the present concealed state. The type of probability distribution
used depends on the nature of the data being modelled. The transition between concealed states and
the creation of observations are probabilistic processes that are controlled by transition probabilities
and emission probabilities, respectively. The parameters of these probability distributions are
usually calculated from observed data using techniques like maximum likelihood estimation (MLE)
or the Expectation-Maximization (EM) algorithm. The following are the distributions used for
representing the observable outcomes.

An HMM is designed to model a system as it changes over discrete time steps. At each time
step, the system is in one of a finite number of hidden states, and it emits an observable symbol based
on the probability distribution associated with the state. Transition probabilities stimulate hidden
state transitions, while emission probabilities govern observable symbol emission. An HMM is

defined formally by:
° A set of hidden states S = {s;, 55, ..., S, }
° A set of observable symbols O = {0y, 0, ..., 0, }
o A transition probability matrix A = [a,,], where a,; represents the probability of

transitioning from state ay, to a;.

. An emission probability matrix B = [b,,,,], where b,,, represents the probability of
emitting a symbol s,, when in state s,,,.

o An initial probability distribution 7 = [r; ] represents the probability of starting in
the states;.

In a HMM, the system under consideration is considered a Markov process with unobservable
(hidden) states. The set S includes all conceivable hidden states the system can be in at any one time.
Each state s; (where i ranges from 1 to v) has attributes that may influence the system's behavior.
The hidden states are not immediately observable, but they impact the observable outputs (symbols),
allowing the states to be inferred indirectly from the observation sequence. All of the observable
outputs or symbols that the system is capable of producing are contained in the set O. Although we
are unable to directly witness the concealed states, we can observe the symbols that they produce.
We deduce the hidden states from the succession of these observable symbols. One important part
of the HMM is matrix A, which shows the chances of changing from one hidden state to another. In
particular, the chance of changing from state s, to state s; is represented by ay;. The transition
probability matrix is of size v x v, where v is the number of hidden states. To guarantee the total
probability of changing from a particular state to any other state, all of the entries in each row of this
matrix must add up to 1.

The Markov property, which postulates that the probability of changing to the next state
depends only on the present state and not on any previous states, is contained in this matrix. The
emission probability matrix B represents the correspondence between the observable symbols and
the hidden states. The probability of observing the symbol o, is represented by the entry b,,,,
assuming that the system is in the hidden state s,,. The size of this matrix is vxu, where u is the
number of observable symbols and v is the number of concealed states. The entries in every row of
the emission probability matrix must add up to 1, just like in the transition probability matrix. The
model can provide a series of observations based on the underlying hidden state sequence because
the emission matrix essentially transfers the hidden states to the observable symbols. The initial
probability distribution 7 defines the probability of the system starting in each hidden state. The
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vector m = [ my,my,...,m,] is of length v, where m;, indicates the chance that the system starts in the
state s,.This distribution is crucial in determining the likelihood of different sequences of concealed
states. It serves as the starting point for generating sequences in the HMM, and like other probability
distributions, the entries must add to one.

The model parameters in the HMM must be constantly updated and improved in real-world
applications, especially in scenarios involving temporal data, such agricultural imports over time.
This is necessary to describe specific time points adequately. This is especially crucial when using
the model to forecast or examine long-term patterns in agricultural data. Estimating the parameters
governing the state transitions and the emission of visible symbols is a major difficulty in this
context.

One popular method for estimating an HMM's parameters is the Baum-Welch algorithm, a
variation of the Expectation-Maximization (EM) algorithm. The program looks for the values of A,
B, and m in the model that maximize the probability of the observed sequence of symbols. Improved
estimates are produced by iteratively adjusting the model parameters in light of the observed data.
A continuous process [8] of developing model parameters in the transition state to explain the
specific time point in importing agricultural data. A HMM is typically denoted by, u = (4, B, ). This
model provides us with the state transition probability, the observational probability, and the
probability of starting in a specific state. The Baum-Welch algorithm, commonly known as the EM
algorithm, focuses on parameter estimation via direct numerical maximum likelihood estimation.
To maximize and determine the posterior analysis of the hidden variables.

L. Transition Probability Estimation

The likelihood of a transition from one state to another, such as from state k to state 1, is represented
by the symbol ay;. The following formula can be used to estimate it [14], [15],

Expected number of transitions from state k to l

@™

Q1 = Expected number of transitions from state k
The ratio indicates how frequently the system moves from state k to state 1 throughout the
observation time. It can be mathematically represented as follows:

_Zioape(k)

Ian® @)
where, p,(k, 1) represents the likelihood of being in state k at time t and moving to state [ at time

t+1 and yy (t) represents the chance of being in state k at time t. An alternative expression for a,; that

integrates the forward-backward variables @ and (, signifying the forward and backward

probabilities is:

2Ty () akbi (Oe+ ) Bi(t+1)
a,; = 3
kl T () Br(®) ®)

The combined likelihood [16] of being in state k at time t and changing to state 1 at time t+1 is
as follows:

Pr(k,l) = Pr(S; =k,S;p1=1/0,n)

__Pr(St,=k,St+1=l/0,u
P(O/W)
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— ak(t)aklbl(0t+1)ﬁl(t+1) (4)
Shh=12n=12m)@mnbn(0¢+1)Bn(t+1)

Given the observation sequence O and the model i, the probability of being in state k at time t
is represented by the symbol y, (t) is defined as:

Vie(®) = Pr(S, = k/O,p) = X_1 Pr(S, =k, S =1/ 0, 1)
=X Pr(k, D) ©)
II. Initial State Probability

The initial state probability represents the likelihood of beginning in state k at time t =1 ;. It can be
stated as:

e =¥ (1) (6)
III. Emission Probability Estimation

When moving from state k to state 1, the probability of determining symbols n is represented by the
emission probability, by,.

__ Expected number of transitions from k to l with symbol n observed

bkln - (7)

Expected number of transitions from k tol

This can be expressed as:
_ Zrop=nasesvPr(kD)

ben = =g prien ®
Given a collection of observations, the Viterbi algorithm is a dynamic programming technique
determining the most likely order of hidden states in an HMM. The process starts with an
initialization step in which the first observation's emission probabilities and initial distribution are
used to compute the likelihood of beginning in each stage. The algorithm iterates through each time
step in the recursion step, utilizing back pointers for retaining the best path and the transition and
emission probabilities to determine the most likely transitions between states. After analysing all
observations, the termination step finds the state with the highest probability at the last time step.
Ultimately, the algorithm uses the backpointers to trace the series of hidden states in the
backtracking step, generating the most likely path that explains the observed data. MATLAB
software is used in this investigation to determine the Viterbi path.

IV. HMM Models with Different Distributions

To determine whether different probability distributions are appropriate for representing the
dynamics of agricultural imports, they are incorporated into the HMM framework. These
distributions offer a variety of approaches for simulating the data's underlying patterns and state
transitions. These are as follows:

Normal - HMM

"Normal-HMM" is a Hidden Markov Model (HMM) in which the emission probabilities are
represented using anormal (Gaussian) distribution. In the case of HMM, each hidden state generates
observations with a normal distribution. This means the chance of witnessing a specific value given
a hidden state is determined using normal distribution characteristics, specifically the mean and
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variance. To examine agricultural import dynamics in India, we built a Hidden Markov Model with
a normal distribution with p = 4.575 and o = 1.53. We used the normal distribution's probability
density function to model the emission probabilities within the HMM framework. The pdf of the
Normal-HMM is expressed as follows:

R 7T

P )y =k) = Vamox e 2 )

N (u, 0?) as the Normal Distribution with mean p and variance 02, x, as the observed data at
time t. y, as the hidden state at time t. By incorporating this PDF into the HMM framework, we can
successfully simulate and evaluate patterns and transitions in agricultural import dynamics in India,
allowing for more informed decision-making and policy development in the agriculture sector.
Given a sequence of observed import values x4, x,, ..., Xy and a sequence of hidden states y,, y,, ..., ¥n,
the log-likelihood can be calculated as:

LOg'likethOd = Zévzl log(P(xn/yn; uyn' Gyn)) +ZItV:2 lOg (P(yn/yn—l; A)) (10)

where, P(x,/Yn;Wy,, 0y,) is the probability of observing x, given the hidden state y,.
P(¥,/¥Yn_1; A) is the transition probability from state y,,_, to state y,,.

Gamma - HMM

In a Gamma-HMM, each hidden state generates observations with a Gamma distribution. The
Gamma distribution, a continuous probability distribution, is commonly used to model positive-
valued random variables. It's defined by two parameters: shape (a) and scale (). The shape
parameter indicates the shape of the distribution, whereas the scale parameter governs its spread.
When we integrate a Gamma distribution within a Hidden Markov Model (HMM) to interpret
agricultural import dynamics in India, with parameters o =8.6192 and 3 = 1.8836, we use the Gamma
distribution's probability density function to characterize emission probabilities within the HMM
framework. The pdf of the Gamma-HMM is expressed as follows:

Ak
P(x/ye = k) =R x A ehune an

I'(.) for the Gamma function. During the training phase of the Gamma HMM, the parameters o
and  are commonly calculated using approaches such as maximum likelihood estimation (MLE) or
EM algorithm, which are similar to other HMM versions. These algorithms seek to optimize the
model parameters to maximize the likelihood of the observed data within the model. Overall, the
Gamma HMM is a versatile framework for modelling sequential data with positive values, with
emissions expected to follow a Gamma distribution. The forward algorithm, which is typically used
to calculate the likelihood in HMMs, must be changed accordingly. Given a sequence of observations
X = {x1,%,, ..., xy } and a Gamma HMM with parameters £ = (A, B, , a, ). The steps listed below
are used to determine the log-likelihood [3]:

° Initialization
a; (k) = mP(x1/y1-1) (12)
a, (k) =m, X f(ka:) x, % e=Brx (13)
. Recursion
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a (D) = (Zgﬂ ar (k) Ax) P(Xer1/Yer1=1) (14)
a1 (D) = (=g ac (k) Ay F(a )xt+1al le~Pixicr1
. Termination
log P (x / A) =log(Xi=1 ar(k)) (15)

Weibull - HMM

A Weibull Hidden Markov Model (Weibull HMM) is a variation of the classic Hidden Markov Model
in which the emission distribution for each hidden state follows a Weibull distribution. Using a
Weibull distribution with parameters a = 3.257 and 3= 5.113. The emission probability for state k
emitting observation x, is given by the probability density function of the Weibull distribution:

"toc
G,

Pl /ye= k) =ZE G e P (16)
where x, is the observed value at time step t, a; is the shape parameter and £ is the scale
parameter. We must modify the computation to take into account the emission probabilities
modelled by Weibull distributions to determine the log-likelihood of a series of observations given
Weibull HMM. We will apply the forward algorithm, which is comparable to the normal HMM log-
likelihood computation, but using the probability density function for the Weibull distribution.

( )

o Initialization: a4 (k) = m; Z ( )“k le 17)
. Recursion: @, (1) = (X¥_; a. (k) Ay) % (%)“k‘le (ﬁ " (18)
k k
. Termination: log P (x / A) =log(X.N_, ar(k)) (19)
Lomax - HMM

A continuous probability distribution with two parameters, shape (at) and scale (A), is the Lomax
distribution. Using parameters a = 0.3520 and £ = 0.0792, we utilize the probability density function
of the Lomax distribution to model the emission probabilities within the HMM to peruse agricultural
import dynamics in India. The Lomax HMM can be examined by,

Pl /ye=k) =21+ (20)

The Lomax distribution, also known as the Pareto Type II distribution or the generalized Pareto
distribution, is a probability distribution commonly used to simulate extreme value events. A
Lomax-HMM is thus an HMM in which the emission distributions for each hidden state follow the
Lomax distribution. This means that at each time step in the sequence, the observable data is created
by a Lomax distribution whose parameters may differ based on the underlying hidden state. The
log-likelihood can be calculated using the following modified algorithm:

. Initialization: @, (k) = m, <5(1 +35)~@+D) (21)
k k

. Recursion: @41 (1) = (X3-; a; (k) Akz) (1 + "f) (ar+1) 22)
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. Termination: log P (x / ) =log( X 8-, ar (k)) (23)

log P(x/A) calculates the log-likelihood of the observed sequence based on Lomax HMM
parameters. During the model's training or parameter estimation phase, it is typical to aim to
maximize this log-likelihood about the model parameters.

Log-Normal - HMM

A Lognormal-HMM is a probabilistic model that is widely employed in time-series research,
particularly when working with data with a log-normal distribution. HMMs are a sort of
probabilistic graphical model that is used to represent sequences of observations. They are made up
of a series of hidden states that are not directly observable, as well as a series of seen emissions that
are affected by the hidden states. With parameters mean of the logarithm (mean log) = 1.4616 and
standard deviation of the logarithm (standard deviation log) = 0.3503. The following is the pdf,

) _Qnxe—p)?
P(x,/y,=k) a—— e 29k (24)

Log-normal HMM training involves estimating parameters y, and o7 using approaches such
as MLE, EM, or Baum-Welch algorithm, as with other HMM versions. These algorithms seek to
optimize the model parameters to maximize the likelihood of the training data given the model. To
determine the log-likelihood of a sequence of observations in a Log-Normal Hidden Markov Model,
we must modify the method to account for the emission probabilities represented by Log-Normal
distributions. We will compute the likelihood using the forward technique:

) _(lnxt—ttk)z
. Initialization: a4 (k) = m; P e 2% (25)
. ) _(n xf—tlli)z
o Recursion: ;1 (1) = (X¥_; a. (k) Ay) ppr 14 20 (26)
o Termination: log P (x / ) =log( X¥-; ar (k)) (27)

V. Correlation Matrix

A correlation matrix is a square matrix that shows the correlation coefficients between pairs of
variables. In statistics, correlation assesses the degree and direction of a linear relationship between
two variables. The correlation coefficient, abbreviated g, varies from -1 to 1. To create a correlation
matrix with various probability distributions such as Normal, Gamma, Weibull, Lomax, and
Lognormal, the correlation between pairs of variables must be specified. Because these distributions
reflect continuous random variables, we can use the correlation coefficient between any two
variables to determine the strength and direction of their linear link. Here, Statistical R software is
used to construct the correlation coefficient between variables X; and X;. The correlation matrix
serves as a valuable tool for understanding the relationships between different probability
distributions, offering insights into their interdependencies and guiding the selection of the most
appropriate distributions for modelling agricultural import dynamics within the HMM framework.

VI. Algorithm

The algorithm for the study involves several key steps:
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Collecting import data for agricultural products from reliable sources covering specific years.
Select five statistically appropriate probability distributions for modelling the data.

Using R software to determine the parameters of each selected probability distribution.
Reconstructing the import data using the values of the parameters.

SAEER

Determine the correlation matrix among the chosen probability distributions to investigate their

connections.

6. Use the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test to conduct stationarity tests to
determine whether the data is stationary.

7. Use Hidden Markov Models to model the data. Determine the HMM's parameters, such as the
initial probability vector, the emission probability matrix, and the transition probability matrix.

8. When evaluating various models, choose the best-fitting HMM using information metrics such
as the Akaike Information Criterion and the Bayesian Information Criterion.

9. In a Hidden Markov Model, figuring out the Viterbi path provides the best estimate of the

hidden states that produced the observed data.

These steps are crucial for analyzing agricultural import dynamics and selecting the most
appropriate probability distributions within the Hidden Markov Model framework. They provide a

systematic approach to understanding the relationships between distributions and their suitability
for modelling complex systems.

VII. Data Source

The "Economics & Statistics Division within the Ministry of Agriculture & Farmers Welfare" website,
may be accessed at http://desagri.gov.in.

III. Results and Discussion

Table 1: Correlation Coefficient for Different Probability Distributions.

Distribution Normal Gamma Weibull Lomax Lognormal
Normal 1.00 -0.5157 0.9975 -0.2504 0.7913
Gamma -0.5157 1.000 -0.5646 -0.6641 -0.7316
Weibull 0.9975 -0.5646 1.00 -0.2057 0.81337
Lomax -0.25048 -0.6641 -0.2057 1.00 0.1569
Lognormal 0.7913 -0.7316 0.8133 0.1569 1.00

The correlation table shows notable relationships between probability distributions, such as strong
negative correlations between Normal-Gamma and Gamma-Lomax distributions and a strong
positive correlation between Weibull and Lognormal distributions, which allows for more informed
model selection for dependent variables.

Table 2: Stationarity of KPSS Test Results in Different Distributions

Test For Test Statistics Lag Parameter P-Value Result

Normal 0.3096 3 0.1 Stationary
Gamma 0.1808 3 0.1 Stationary
Weibull 0.3096 3 0.1 Stationary
Lomax 0.1075 3 0.1 Stationary
Lognormal 0.2245 3 0.1 Stationary
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According to the KPSS test results, all distributions exhibit stationarity at a significance level of 0.1.
The KPSS test assesses if a time series is stationary around a mean or has a linear trend; in this case,
all distributions pass the test, implying that they meet the stationarity assumption. As a result, the
data is appropriate for researching HMM.

The parameter ranges for 2, 3, and 4 states are shown in the table below for various HMM. Each
model is specifically designed to capture various data distributions, with parameter ranges reflecting
import-level characteristics. By comparing these ranges, the table emphasizes the strengths and
limitations of each HMM in predicting import dynamics, delivering useful insights into enhancing
forecast accuracy.

Table 3: Parameter ranges for various hidden Markov models with different distributions and
numbers of states.

States Normal- Gamma-HMM  Weibull- Lomax- Log-Normal
HMM HMM HMM HMM

Low Export [0.016,0.138] [0.000021, 0.013] [0.018, 0.132]  [0.008, 0.029] [0.026, 0.153]
2 (S

High [ 0.138, 0.260] [0.013, 0.027] [0.132,0.247] [0.029, 0.05] [0.153, 0.280]

Export (S;)

Low Export [0.016,0.097] [0.000021, 0.009] [0.018, 0.085] [0.008, 0.021] [0.026, 0.102]

(S1)

Medium [0.097,0.179] [0.009, 0.018] [0.085,0.151] [0.021, 0.035] [0.102, 0.177]
3 Export (S,)

High [0.179, 0.260] [0.018, 0.027] [0.151, 0.247] [0.035, 0.050] [0.177, 0.280]

Export ( S3)

Very low [0.016, 0.077]  [0.00002, 0.006] [0.018, 0.075] [0.008, 0.018] [0.028, 0.090]

Export (S;)

Low Export  [0.077,0.138]  [0.006,0.0125]  [0.075,0.132]  [0.018,0.029] [0.090, 0.153]
(S2)

4  High [0.138,0.199] [0.012, 0.020] [0.132,0.189] [0.029, 0.040] [0.153, 0.217]
Export ( S3)
Very High ~ [0.199, 0.260]  [0.020, 0.027] [0.189,0.247] [0.040, 0.050] [0.217, 0.280]
Export (S,)

This table highlights the delicate impact of distribution and state count variations on export-
level modelling in HMM. From Normal to Log-Normal distributions, and from two to four states,
each configuration provides unique probabilistic insights on export behaviour, underscoring the
need for careful model selection in effectively representing export dynamics.

In a 2-State Hidden Markov Model, the framework is divided into two states: "Low" and "High"
with observations showing whether import levels are "Decreasing (D)" or "Increasing (I)". This setup
provides a broad view of trends. The 3-State Model adds a "Moderate" state, allowing for a more
nuanced analysis where observations can be "Decreasing", "Stable (S)," or "Increasing” capturing a
range of fluctuations between low and high import levels. The 4-State Model introduces even more
detail with states like "Very Low", "Low," "High," and "Very High," and observations of "Very
Decreasing (VD)", "Decreasing”, "Increasing”, and "Very Increasing (VI)" offering a comprehensive
look at significant changes and trends in import levels.
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TPM, EPM, and 7t for Normal-HMM (2,3 & 4 States)

51 S2 I
TPM 0.6 [ , = [0.312,0.687]
52 0238 0.727)" 0.59 040 0 '
$1 Sz S3 D S I

0.5 0 0.5 511025 0 0.75
TPM=5;(0.076 0.461 0.461| EPM=s2(0.15 0.07 0.76], my = [0.125,0.406,0.468]
S310.071 0.428 0.5 0.2 0.53 0.26

S S  S3 Sy V D I VI
S1[0.33 0 0 0.66 Si[ O 0 033 0.66
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Table 4: Model Comparison for Various Distributions Based on States and Information Criteria.

Distribution States Log-Likelihood AIC BIC
Normal 2 -21.621 63.243 77.902
3 -32.522 107.04 137.82
4 -46.865 165.73 218.49
Gamma 2 -26.886 73.772 88.429
3 -43.243 128.48 159.26
4 -43.828 159.65 212.42
Weibull 2 -19.714 59.428 74.085
3 -29.521 101.04 131.82
4 -45.444 162.88 215.65
Lomax 2 -19.136 58.272 72.930
3 -43.226 128.45 159.23
4 -43.240 158.48 211.24
Lognormal 2 -20.448 60.896 75.553
3 -27.879 97.759 128.54
4 -42.204 156.40 209.17

Based on the AIC and BIC values provided, the Lomax distribution appears to be the best fit among

the distributions listed. This conclusion is based on the consistently lower AIC and BIC values across

a variety of states when compared to other distributions.
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Figure 1: The graphs show the comparative evaluation of CDFs using HMM in different
distributions.
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Figure 2: This graph shows the pair plot of different HMM distributions for comparison

The pair plot is a helpful visualization that shows the relationships between the performance metrics
of various Hidden Markov Models. The scatter plots reveal how different models are correlated,
while the diagonal plots indicate the distribution of each model's performance. This enables a
comparison of trends, correlations, and distribution patterns, assisting in identifying the model that

performs the best.
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Figure 4: Graphical representation of comparative analysis of AIC and BIC values for different
probability distributions.

IV. Conclusion

In conclusion, our findings shed light on the selection of probability distributions for Hidden
Markov Models. We recognized the Lomax distribution as extremely beneficial, particularly within
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the HMM's state 2. This conclusion emphasizes the need to consider multiple distributions when
modelling complex systems. Furthermore, our investigation of the Viterbi path demonstrates the
practical relevance of our findings in determining the most likely state sequence. The Viterbi path is
1,1,222,2,2,222222221,1,1,111,1,2,2,2,2,2,2,2,2, 2, 2. Overall, this study helps
advance our understanding of probability distributions in HMMs.
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