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Abstract 

This article examines the use of Hidden Markov Models and probability distributions to study 

agricultural import dynamics, with a focus on revealing hidden patterns in the data. The idea behind 

the study is to enhance our understanding of how transitions between different agricultural import 

states occur and to explore the most suitable probability distributions for modeling these hidden 

states. The purpose of the study is to identify the optimal distributional fit for hidden states by 

evaluating the Transition Probability Matrix, Emission Probability Matrix, and Initial Probability 

Vector (π) for each state. The research implements the Akaike Information Criterion and the Bayesian 

Information Criterion to select the best-fitting distribution for each scenario. Furthermore, the paper 

focuses on the practical implications of these discoveries, such as determining the most likely state 

sequence using the Viterbi path, which can help influence decision-making and forecasting. The 

analysis is carried out using R software, which provides information about the associations between 

probability distributions, stationarity tests, and the role of model selection criteria such as AIC and 

BIC. Graphical representations of AIC and BIC values over several probability distributions, and 

additionally a correlation matrix between selected distributions, help to highlight the findings. 

Overall, the paper enhances our understanding of probability distributions through HMM 

frameworks for agricultural import dynamics, providing recommendations for optimal model 

selection in various applications. 

Keywords: Probability Distributions, Hidden Markov Model, Lomax Distribution, 

Viterbi Path, Correlation Matrix.  

I. Introduction

Throughout the world, agriculture significantly impacts how countries develop in terms of their 

economies, societies, and environments. Indicators of a nation's reliance on foreign agricultural 

products and its ability to produce agricultural goods domestically include the percentage of 

agricultural imports to total national imports. Over the last few years, the agricultural industry has 

been using more sophisticated statistical techniques, such as HMM, to understand the complex 

dynamics present in agricultural systems and numerous variables that affect these systems, 

including market swings, weather conditions, and crop yields, cause them to analyze using 

conventional methods. 

Hidden Markov Models and probability distributions are critical tools for studying and 

modelling agricultural import dynamics, providing advanced approaches for identifying 
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underlying trends and behaviours in import data. HMMs provide a strong foundation for capturing 

these dynamics by presenting import data as a series of hidden states and visible emissions. Hidden 

states in agricultural import contexts may represent specific import patterns or market conditions, 

whereas emissions relate to observed variables such as import amounts and prices. HMMs help to 

explain import dynamics, identify dominant patterns, and anticipate future import trends by 

estimating transition and emission probabilities. Finally, the investigation of probability 

distributions within the framework of Hidden Markov Models provides a reliable method for 

assessing agricultural import dynamics. This study improves our understanding of model selection 

and sheds light on optimal distribution choices by evaluating the suitability of various distributions 

using rigorous criteria such as AIC and BIC, thereby contributing to improved forecasting accuracy 

and decision-making in the agricultural sector. Forecast accuracy is greatly increased when 

agricultural import data is analyzed using Hidden Markov Models. By detecting underlying hidden 

states, HMMs can efficiently capture the dynamic elements that affect these imports, including 

market swings and seasonal variations. HMMs offer vital insights into the uncertainties that define 

agricultural markets by predicting the probability distributions connected to these states. This 

method provides a foundation for comparison with conventional forecasting techniques and enables 

in-depth analyses of changing import trends.  This research paper was carried out using R software, 

which has robust statistical libraries and HMM programs. While R has several advantages, we ran 

into some computational issues during the investigation. Large datasets, in particular, increased 

calculation time, and memory management became an issue as the Baum-Welch algorithm was 

iterated several times. To address these issues, we used efficient coding techniques and R tools like 

depmixS4 and HMM to streamline calculations. We recommend that future users use parallel 

computing or data optimization approaches to improve the performance of their analysis, 

particularly with larger datasets or more sophisticated models.  

Sebastian George and Ambily Jose [13] presented a Generalised Poisson Distribution (GPD) as 

a statistical tool for describing serial dependency in time series count data. The GP-HMM, paired 

with HMM, demonstrates good convergence properties in both simulated and actual data, 

indicating its superiority over the P-HMM. Joshni George and Seemon Thomas [5] presented a 

negative binomial hidden Markov model for Kerala AES situations, estimating parameters with the 

EM technique, getting hidden state sequences, and transition probabilities. Hao Zhang, Weidong 

Zhang, Ahmet Palazoglu, and Wei Sun [3] proposed HMM-Gamma model uses a Gamma 

distribution, pre-labeled monitoring days, and improved Expectation-Maximization approaches to 

forecast ozone exceedances in the Livermore Valley and Houston Metropolitan Area. Hui Zhang, 

Qing Ming Jonathan Wu, and Thanh Minh Nguyen [4] proposed a novel Student's t hidden Markov 

model (SHMM) that takes into account Markov states, latent components, and observations. 

Existing literature emphasizes the need to use proper probability distributions to improve model 

accuracy and forecasting capabilities. Several studies have shown that various HMM formulations 

and parameter estimation strategies are successful in capturing complicated patterns in dynamic 

datasets. The unique feature of this study is that it compares five different probability distributions 

in detail using Hidden Markov Models. The study aims to determine the best method for modeling 

sequential data by examining the effectiveness and suitability of each distribution. This paper also 

presents the creation of a Lomax HMM, which improves the modeling capabilities of conventional 

HMMs by incorporating the special characteristics of the Lomax distribution. 

II. Methods

A Hidden Markov Model is a probabilistic model that is commonly used to represent time series 

data or observation sequences. It is made up of two major components: hidden states and observable 

states. Hidden States are unobservable or latent variables that represent the underlying states of the 
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system under consideration. Hidden states can change over time using a Markov process, which 

means that the likelihood of transitioning from one state to another is determined only by the present 

state and not by the previous states. Observable states are the data points or observations that can 

be directly observed and linked to each hidden state. The observations are derived from probability 

distributions that are conditional on the present concealed state. The type of probability distribution 

used depends on the nature of the data being modelled. The transition between concealed states and 

the creation of observations are probabilistic processes that are controlled by transition probabilities 

and emission probabilities, respectively. The parameters of these probability distributions are 

usually calculated from observed data using techniques like maximum likelihood estimation (MLE) 

or the Expectation-Maximization (EM) algorithm. The following are the distributions used for 

representing the observable outcomes. 

An HMM is designed to model a system as it changes over discrete time steps. At each time 

step, the system is in one of a finite number of hidden states, and it emits an observable symbol based 

on the probability distribution associated with the state. Transition probabilities stimulate hidden 

state transitions, while emission probabilities govern observable symbol emission. An HMM is 

defined formally by: 

 A set of hidden states S = {𝑠1, 𝑠2, … , 𝑠𝑣}

 A set of observable symbols O = {𝑜1, 𝑜2, … , 𝑜𝑢}

 A transition probability matrix A = [𝑎𝑘𝑙], where 𝑎𝑘𝑙 represents the probability of

transitioning from state 𝑎𝑘 to 𝑎𝑙.

 An emission probability matrix B = [𝑏𝑚𝑛], where  𝑏𝑚𝑛 represents the probability of

emitting a symbol 𝑠𝑛  when in state 𝑠𝑚.

 An initial probability distribution π = [𝜋𝑘] represents the probability of starting in

the state𝑠𝑘.

In a HMM, the system under consideration is considered a Markov process with unobservable 

(hidden) states. The set S includes all conceivable hidden states the system can be in at any one time. 

Each state 𝑠𝑖  (where i ranges from 1 to 𝑣) has attributes that may influence the system's behavior. 

The hidden states are not immediately observable, but they impact the observable outputs (symbols), 

allowing the states to be inferred indirectly from the observation sequence. All of the observable 

outputs or symbols that the system is capable of producing are contained in the set O. Although we 

are unable to directly witness the concealed states, we can observe the symbols that they produce. 

We deduce the hidden states from the succession of these observable symbols. One important part 

of the HMM is matrix A, which shows the chances of changing from one hidden state to another. In 

particular, the chance of changing from state 𝑠𝑘  to state 𝑠𝑙 is represented by 𝑎𝑘𝑙. The transition 

probability matrix is of size v × v, where v is the number of hidden states. To guarantee the total 

probability of changing from a particular state to any other state, all of the entries in each row of this 

matrix must add up to 1.  

The Markov property, which postulates that the probability of changing to the next state 

depends only on the present state and not on any previous states, is contained in this matrix. The 

emission probability matrix B represents the correspondence between the observable symbols and 

the hidden states. The probability of observing the symbol 𝑜𝑛  is represented by the entry 𝑏𝑚𝑛, 

assuming that the system is in the hidden state 𝑠𝑚. The size of this matrix is v×u, where u is the 

number of observable symbols and v is the number of concealed states. The entries in every row of 

the emission probability matrix must add up to 1, just like in the transition probability matrix. The 

model can provide a series of observations based on the underlying hidden state sequence because 

the emission matrix essentially transfers the hidden states to the observable symbols. The initial 

probability distribution 𝜋 defines the probability of the system starting in each hidden state. The 
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vector 𝜋 = [ 𝜋1, 𝜋2, . . . , 𝜋𝑣] is of length v, where 𝜋𝑘 indicates the chance that the system starts in the 

state 𝑠𝑘.This distribution is crucial in determining the likelihood of different sequences of concealed 

states. It serves as the starting point for generating sequences in the HMM, and like other probability 

distributions, the entries must add to one. 

The model parameters in the HMM must be constantly updated and improved in real-world 

applications, especially in scenarios involving temporal data, such agricultural imports over time. 

This is necessary to describe specific time points adequately. This is especially crucial when using 

the model to forecast or examine long-term patterns in agricultural data. Estimating the parameters 

governing the state transitions and the emission of visible symbols is a major difficulty in this 

context. 

One popular method for estimating an HMM's parameters is the Baum-Welch algorithm, a 

variation of the Expectation-Maximization (EM) algorithm. The program looks for the values of A, 

B, and π in the model that maximize the probability of the observed sequence of symbols. Improved 

estimates are produced by iteratively adjusting the model parameters in light of the observed data. 

A continuous process [8] of developing model parameters in the transition state to explain the 

specific time point in importing agricultural data. A HMM is typically denoted by, 𝜇 = (𝐴, B, 𝜋). This 

model provides us with the state transition probability, the observational probability, and the 

probability of starting in a specific state. The Baum-Welch algorithm, commonly known as the EM 

algorithm, focuses on parameter estimation via direct numerical maximum likelihood estimation. 

To maximize and determine the posterior analysis of the hidden variables.  

I. Transition Probability Estimation

The likelihood of a transition from one state to another, such as from state k to state l, is represented 

by the symbol 𝑎𝑘𝑙. The following formula can be used to estimate it [14], [15], 

𝑎𝑘𝑙 =
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑘 𝑡𝑜 𝑙

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑘
 (1) 

The ratio indicates how frequently the system moves from state 𝑘 to state l throughout the 

observation time. It can be mathematically represented as follows: 

𝑎𝑘𝑙= 
∑ 𝑝𝑡(𝑘,𝑙)𝑇

𝑡=1

∑ 𝛾𝑘(𝑡)𝑇
𝑡=1

 (2) 

where, pt(k, l) represents the likelihood of being in state 𝑘 at time t and moving to state 𝑙 at time 

𝑡+1 and γk(t) represents the chance of being in state k at time t. An alternative expression for 𝑎𝑘𝑙 that 

integrates the forward-backward variables 𝛼 and β, signifying the forward and backward 

probabilities is: 

𝑎𝑘𝑙 =
∑ 𝛼𝑘(𝑡)𝑎𝑘𝑙𝑏𝑘(𝑂𝑡+1)𝛽𝑙(𝑡+1)𝑇

𝑡=1

∑ 𝛼𝑘(𝑡)𝛽𝑘(𝑡)𝑇
𝑡=1

 (3) 

The combined likelihood [16] of being in state k at time t and changing to state l at time t+1 is 

as follows: 

𝑃𝑟(𝑘, 𝑙) = 𝑃𝑟 (𝑆𝑡 = 𝑘, 𝑆𝑡+1 = 𝑙 / 𝑂, µ) 

= 
𝑃𝑟(𝑆𝑡,=𝑘,𝑆𝑡+1=𝑙/𝑂,𝜇

𝑃(𝑂/µ)

RT&A, No 2 (84)
Volume 20, June 2025 

335



Vyshnavi. M, Muthukumar. M 
HMM for Estimating Probability Distribution 

 = 
𝛼𝑘(𝑡)𝑎𝑘𝑙𝑏𝑙(𝑂𝑡+1)𝛽𝑙(𝑡+1)

∑ ∑ 𝛼𝑚(𝑡)𝑣
𝑛=1

𝑣
𝑚=1 𝑎𝑚𝑛𝑏𝑛(𝑂𝑡+1)𝛽𝑛(𝑡+1)

 (4) 

Given the observation sequence O and the model μ, the probability of being in state k at time t 

is represented by the symbol 𝛾𝑘(𝑡) is defined as: 

𝛾𝑘(𝑡) = Pr (𝑆𝑡 = 𝑘/𝑂,µ) = ∑ Pr (𝑆𝑡, = 𝑘, 𝑆𝑡+1 = 𝑙/ 𝑂, µ) 𝑣
𝑙=1

 = ∑ 𝑃𝑟 (𝑘, 𝑙)𝑣
𝑙=1   (5) 

II. Initial State Probability

The initial state probability represents the likelihood of beginning in state k at time t = 1 𝜋𝑘. It can be 

stated as: 

      𝜋𝑘 = 𝛾𝑘(𝑡)            (6) 

III. Emission Probability Estimation

When moving from state k to state l, the probability of determining symbols n is represented by the 

emission probability, 𝑏𝑘𝑙𝑛. 

𝑏𝑘𝑙𝑛 =
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑘 𝑡𝑜 𝑙 𝑤𝑖𝑡ℎ 𝑠𝑦𝑚𝑏𝑜𝑙 𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑘 𝑡𝑜 𝑙
 (7) 

This can be expressed as: 

    𝑏𝑘𝑙𝑛 = 
∑ 𝑃𝑟 (𝑘,𝑙)𝑡:𝑂𝑡=𝑛,1≤𝑡≤𝑣

∑ 𝑃𝑟 (𝑘,𝑙)𝑣
𝑡=1

 (8) 

Given a collection of observations, the Viterbi algorithm is a dynamic programming technique 

determining the most likely order of hidden states in an HMM. The process starts with an 

initialization step in which the first observation's emission probabilities and initial distribution are 

used to compute the likelihood of beginning in each stage. The algorithm iterates through each time 

step in the recursion step, utilizing back pointers for retaining the best path and the transition and 

emission probabilities to determine the most likely transitions between states. After analysing all 

observations, the termination step finds the state with the highest probability at the last time step. 

Ultimately, the algorithm uses the backpointers to trace the series of hidden states in the 

backtracking step, generating the most likely path that explains the observed data. MATLAB 

software is used in this investigation to determine the Viterbi path. 

IV. HMM Models with Different Distributions

To determine whether different probability distributions are appropriate for representing the 

dynamics of agricultural imports, they are incorporated into the HMM framework. These 

distributions offer a variety of approaches for simulating the data's underlying patterns and state 

transitions. These are as follows: 

Normal - HMM 

"Normal-HMM" is a Hidden Markov Model (HMM) in which the emission probabilities are 

represented using a normal (Gaussian) distribution. In the case of HMM, each hidden state generates 

observations with a normal distribution. This means the chance of witnessing a specific value given 

a hidden state is determined using normal distribution characteristics, specifically the mean and 

RT&A, No 2 (84)
Volume 20, June 2025 

336



Vyshnavi. M, Muthukumar. M 
HMM for Estimating Probability Distribution 

variance. To examine agricultural import dynamics in India, we built a Hidden Markov Model with 

a normal distribution with μ = 4.575 and σ = 1.53. We used the normal distribution's probability 

density function to model the emission probabilities within the HMM framework. The pdf of the 

Normal-HMM is expressed as follows: 

P (𝑥𝑡/𝑦𝑡 = 𝑘) = 
1

√2𝜋𝜎𝑘
 𝑒

−(
(𝑥𝑡−µ𝑘)

2

2𝜎𝑘
2 )

 (9) 

N (μ, 𝜎2) as the Normal Distribution with mean μ and variance 𝜎2, 𝑥𝑡 as the observed data at 

time t. 𝑦𝑡 as the hidden state at time t. By incorporating this PDF into the HMM framework, we can 

successfully simulate and evaluate patterns and transitions in agricultural import dynamics in India, 

allowing for more informed decision-making and policy development in the agriculture sector. 

Given a sequence of observed import values 𝑥1, 𝑥2, … , 𝑥𝑁 and a sequence of hidden states 𝑦1, 𝑦2, … , 𝑦𝑁, 

the log-likelihood can be calculated as: 

Log-likelihood = ∑ 𝑙𝑜𝑔 (𝑃(𝑥𝑛/𝑦𝑛; µ𝑦𝑛
, 𝜎𝑦𝑛

𝑁
𝑡=1 )) +∑ 𝑙𝑜𝑔 (𝑃(𝑦𝑛/𝑦𝑛−1; 𝐴))𝑁

𝑡=2     (10) 

where, 𝑃(𝑥𝑛/𝑦𝑛; µ𝑦𝑛
, 𝜎𝑦𝑛

) is the probability of observing 𝑥𝑛 given the hidden state 𝑦𝑛. 

𝑃(𝑦𝑛/𝑦𝑛−1; 𝐴) is the transition probability from state 𝑦𝑛−1 to state 𝑦𝑛. 

Gamma – HMM 

In a Gamma-HMM, each hidden state generates observations with a Gamma distribution. The 

Gamma distribution, a continuous probability distribution, is commonly used to model positive-

valued random variables. It's defined by two parameters: shape (α) and scale (β). The shape 

parameter indicates the shape of the distribution, whereas the scale parameter governs its spread. 

When we integrate a Gamma distribution within a Hidden Markov Model (HMM) to interpret 

agricultural import dynamics in India, with parameters α = 8.6192 and β = 1.8836, we use the Gamma 

distribution's probability density function to characterize emission probabilities within the HMM 

framework. The pdf of the Gamma-HMM is expressed as follows: 

P( 𝑥𝑡/𝑦𝑡 = 𝑘) = 
𝛽𝑘

𝛼𝑘

𝛤(𝛼𝑘)
𝑥𝑡

𝛼𝑘−1𝑒−𝛽𝑘𝑥𝑘  (11) 

Γ(.) for the Gamma function. During the training phase of the Gamma HMM, the parameters α 

and β are commonly calculated using approaches such as maximum likelihood estimation (MLE) or 

EM algorithm, which are similar to other HMM versions. These algorithms seek to optimize the 

model parameters to maximize the likelihood of the observed data within the model. Overall, the 

Gamma HMM is a versatile framework for modelling sequential data with positive values, with 

emissions expected to follow a Gamma distribution. The forward algorithm, which is typically used 

to calculate the likelihood in HMMs, must be changed accordingly. Given a sequence of observations 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁 } and a Gamma HMM with parameters ʎ = (A, B, π, α, β). The steps listed below 

are used to determine the log-likelihood [3]: 

 Initialization

 𝛼1(𝑘) =  𝜋𝑘𝑃(𝑥1/𝑦1=𝑘)  (12) 

𝛼1(𝑘) = 𝜋𝑘  ×  
𝛽𝑘

𝛼𝑘

𝛤(𝛼𝑘)
𝑥1

𝛼𝑘−1𝑒−𝛽𝑘𝑥1  (13) 

 Recursion
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 𝛼𝑡+1(𝑙) = (∑ 𝛼𝑡(𝑘)  𝐴𝑘𝑙) 𝑁
𝑘=1 𝑃( 𝑥𝑡+1/𝑦𝑡+1=𝑙)  (14) 

 𝛼𝑡+1(𝑙) = ( ∑ 𝛼𝑡(𝑘)  𝐴𝑘𝑙) 𝑁
𝑘=1

𝛽𝑙
𝛼𝑙

𝛤(𝛼𝑙)
𝑥𝑡+1

𝛼𝑙−1𝑒−𝛽𝑙𝑥𝑘+1 

 Termination

log P (x / ʎ) =log( ∑ 𝛼𝑇(𝑘))𝑁
𝑘=1   (15) 

Weibull – HMM 

A Weibull Hidden Markov Model (Weibull HMM) is a variation of the classic Hidden Markov Model 

in which the emission distribution for each hidden state follows a Weibull distribution. Using a 

Weibull distribution with parameters α = 3.257 and β= 5.113. The emission probability for state k 

emitting observation 𝑥𝑡 is given by the probability density function of the Weibull distribution: 

 P (𝑥𝑡 / 𝑦𝑡 = 𝑘) = 
𝛼𝑘

𝛽𝑘
(

𝑥𝑡

𝛽𝑘
)𝛼𝑘−1𝑒

−(
𝑥𝑡
𝛽𝑘

)𝛼𝑘

 (16) 

where 𝑥𝑡 is the observed value at time step t, 𝛼𝑘 is the shape parameter and 𝛽𝑘  is the scale 

parameter. We must modify the computation to take into account the emission probabilities 

modelled by Weibull distributions to determine the log-likelihood of a series of observations given 

Weibull HMM. We will apply the forward algorithm, which is comparable to the normal HMM log-

likelihood computation, but using the probability density function for the Weibull distribution. 

 Initialization:  𝛼1(𝑘) = 𝜋𝑘
𝛼𝑘

𝛽𝑘
(

𝑥𝑡

𝛽𝑘
)𝛼𝑘−1𝑒

−(
𝑥𝑡
𝛽𝑘

)𝛼𝑘

  (17) 

 Recursion: 𝛼𝑡+1(𝑙) = ( ∑ 𝛼𝑡(𝑘)  𝐴𝑘𝑙) 𝑁
𝑘=1

𝛼𝑘

𝛽𝑘
(

𝑥𝑡

𝛽𝑘
)𝛼𝑘−1𝑒

−(
𝑥𝑡
𝛽𝑘

)𝛼𝑘

    (18) 

 Termination: log P (x / ʎ) =log( ∑ 𝛼𝑇(𝑘))𝑁
𝑘=1     (19) 

 Lomax – HMM 

A continuous probability distribution with two parameters, shape (α) and scale (λ), is the Lomax 

distribution. Using parameters α = 0.3520 and ʎ = 0.0792, we utilize the probability density function 

of the Lomax distribution to model the emission probabilities within the HMM to peruse agricultural 

import dynamics in India. The Lomax HMM can be examined by, 

P (𝑥𝑡 / 𝑦𝑡 = 𝑘)  = 
𝛼𝑘

ʎ𝑘
(1 +

𝑥𝑡

ʎ𝑘
)−(𝛼𝑘+1)     (20) 

The Lomax distribution, also known as the Pareto Type II distribution or the generalized Pareto 

distribution, is a probability distribution commonly used to simulate extreme value events. A 

Lomax-HMM is thus an HMM in which the emission distributions for each hidden state follow the 

Lomax distribution. This means that at each time step in the sequence, the observable data is created 

by a Lomax distribution whose parameters may differ based on the underlying hidden state. The 

log-likelihood can be calculated using the following modified algorithm: 

 Initialization:  𝛼1(𝑘) = 𝜋𝑘  
𝛼𝑘

ʎ𝑘
(1 +

𝑥𝑡

ʎ𝑘
)−(𝛼𝑘+1)  (21) 

 Recursion: 𝛼𝑡+1(𝑙) = ( ∑ 𝛼𝑡(𝑘)  𝐴𝑘𝑙) 𝑁
𝑘=1

𝛼𝑘

ʎ𝑘
(1 +

𝑥𝑡

ʎ𝑘
)−(𝛼𝑘+1)          (22)
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 Termination: log P (x / ʎ) =log( ∑ 𝛼𝑇(𝑘))𝑁
𝑘=1   (23) 

log P(x/λ) calculates the log-likelihood of the observed sequence based on Lomax HMM 

parameters. During the model's training or parameter estimation phase, it is typical to aim to 

maximize this log-likelihood about the model parameters. 

Log-Normal – HMM 

A Lognormal-HMM is a probabilistic model that is widely employed in time-series research, 

particularly when working with data with a log-normal distribution. HMMs are a sort of 

probabilistic graphical model that is used to represent sequences of observations. They are made up 

of a series of hidden states that are not directly observable, as well as a series of seen emissions that 

are affected by the hidden states. With parameters mean of the logarithm (mean log) = 1.4616 and 

standard deviation of the logarithm (standard deviation log) = 0.3503. The following is the pdf, 

 P (𝑥𝑡 / 𝑦𝑡 = 𝑘)  = 
1

𝑥𝑘𝜎𝑘√2𝜋
𝑒

−
(𝑙𝑛 𝑥𝑡−µ𝑘)²

2𝜎𝑘²  (24) 

Log-normal HMM training involves estimating parameters µ𝑘 and 𝜎𝑘
2 using approaches such

as MLE, EM, or Baum-Welch algorithm, as with other HMM versions. These algorithms seek to 

optimize the model parameters to maximize the likelihood of the training data given the model. To 

determine the log-likelihood of a sequence of observations in a Log-Normal Hidden Markov Model, 

we must modify the method to account for the emission probabilities represented by Log-Normal 

distributions. We will compute the likelihood using the forward technique: 

 Initialization:  𝛼1(𝑘) = 𝜋𝑘
1

𝑥𝑘𝜎𝑘√2𝜋
 𝑒

−
(ln 𝑥𝑡−µ𝑘)²

2𝜎𝑘²  (25) 

 Recursion: 𝛼𝑡+1(𝑙) = ( ∑ 𝛼𝑡(𝑘)  𝐴𝑘𝑙) 𝑁
𝑘=1

1

𝑥𝑘𝜎𝑘√2𝜋
 𝑒

−
(ln 𝑥𝑡−µ𝑘)²

2𝜎𝑘²        (26) 

 Termination: log P (x / ʎ) =log( ∑ 𝛼𝑇(𝑘))𝑁
𝑘=1    (27) 

V. Correlation Matrix

A correlation matrix is a square matrix that shows the correlation coefficients between pairs of 

variables. In statistics, correlation assesses the degree and direction of a linear relationship between 

two variables. The correlation coefficient, abbreviated ρ, varies from -1 to 1. To create a correlation 

matrix with various probability distributions such as Normal, Gamma, Weibull, Lomax, and 

Lognormal, the correlation between pairs of variables must be specified. Because these distributions 

reflect continuous random variables, we can use the correlation coefficient between any two 

variables to determine the strength and direction of their linear link. Here, Statistical R software is 

used to construct the correlation coefficient between variables 𝑋𝑖  and 𝑋𝑗 . The correlation matrix 

serves as a valuable tool for understanding the relationships between different probability 

distributions, offering insights into their interdependencies and guiding the selection of the most 

appropriate distributions for modelling agricultural import dynamics within the HMM framework. 

VI. Algorithm

The algorithm for the study involves several key steps: 
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1. Collecting import data for agricultural products from reliable sources covering specific years.

2. Select five statistically appropriate probability distributions for modelling the data.

3. Using R software to determine the parameters of each selected probability distribution.

4. Reconstructing the import data using the values of the parameters.

5. Determine the correlation matrix among the chosen probability distributions to investigate their

connections.

6. Use the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test to conduct stationarity tests to

determine whether the data is stationary.

7. Use Hidden Markov Models to model the data. Determine the HMM's parameters, such as the

initial probability vector, the emission probability matrix, and the transition probability matrix.

8. When evaluating various models, choose the best-fitting HMM using information metrics such

as the Akaike Information Criterion and the Bayesian Information Criterion.

9. In a Hidden Markov Model, figuring out the Viterbi path provides the best estimate of the

hidden states that produced the observed data.

These steps are crucial for analyzing agricultural import dynamics and selecting the most

appropriate probability distributions within the Hidden Markov Model framework. They provide a 

systematic approach to understanding the relationships between distributions and their suitability 

for modelling complex systems. 

VII. Data Source

The "Economics & Statistics Division within the Ministry of Agriculture & Farmers Welfare" website, 

may be accessed at http://desagri.gov.in. 

III. Results and Discussion

Table 1:  Correlation Coefficient for Different Probability Distributions. 

Distribution Normal Gamma Weibull Lomax Lognormal 

Normal 1.00 -0.5157 0.9975 -0.2504 0.7913 

Gamma -0.5157 1.000 -0.5646 -0.6641 -0.7316

Weibull 0.9975 -0.5646 1.00 -0.2057 0.81337

Lomax -0.25048 -0.6641 -0.2057 1.00 0.1569

Lognormal 0.7913 -0.7316 0.8133 0.1569 1.00

The correlation table shows notable relationships between probability distributions, such as strong 

negative correlations between Normal-Gamma and Gamma-Lomax distributions and a strong 

positive correlation between Weibull and Lognormal distributions, which allows for more informed 

model selection for dependent variables. 

Table 2: Stationarity of KPSS Test Results in Different Distributions 

Test For Test Statistics Lag Parameter P-Value Result 

Normal 0.3096 3 0.1 Stationary 

Gamma 0.1808 3 0.1 Stationary 

Weibull 0.3096 3 0.1 Stationary 

Lomax 0.1075 3 0.1 Stationary 

Lognormal 0.2245 3 0.1 Stationary 
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According to the KPSS test results, all distributions exhibit stationarity at a significance level of 0.1. 

The KPSS test assesses if a time series is stationary around a mean or has a linear trend; in this case, 

all distributions pass the test, implying that they meet the stationarity assumption. As a result, the 

data is appropriate for researching HMM. 

The parameter ranges for 2, 3, and 4 states are shown in the table below for various HMM. Each 

model is specifically designed to capture various data distributions, with parameter ranges reflecting 

import-level characteristics. By comparing these ranges, the table emphasizes the strengths and 

limitations of each HMM in predicting import dynamics, delivering useful insights into enhancing 

forecast accuracy. 

Table 3: Parameter ranges for various hidden Markov models with different distributions and 

numbers of states. 

States Normal-

HMM 

Gamma-HMM Weibull-

HMM 

Lomax-

HMM 

Log-Normal 

HMM 

2 

Low Export 

(S1) 

[0.016, 0.138] [0.000021, 0.013] [0.018, 0.132] [0.008, 0.029] [0.026, 0.153] 

High 

Export ( S2) 

[ 0.138, 0.260] [0.013, 0.027] [0.132, 0.247] [0.029, 0.05] [0.153, 0.280] 

3 

Low Export 

(S1) 

[0.016, 0.097] [0.000021, 0.009] [0.018, 0.085] [0.008, 0.021] [0.026, 0.102] 

Medium 

Export (S2) 

[0.097, 0.179] [0.009, 0.018] [0.085, 0.151] [0.021, 0.035] [0.102, 0.177] 

High 

Export ( S3) 

[0.179, 0.260] [0.018, 0.027] [0.151, 0.247] [0.035, 0.050] [0.177, 0.280] 

4 

Very low 

Export (S1) 

[0.016, 0.077] [0.00002, 0.006] [0.018, 0.075] [0.008, 0.018] [0.028, 0.090] 

Low Export 

(S2) 

[0.077, 0.138] [0.006, 0.0125] [0.075, 0.132] [0.018, 0.029] [0.090, 0.153] 

High 

Export ( S3) 

[0.138, 0.199] [0.012, 0.020] [0.132, 0.189] [0.029, 0.040] [0.153, 0.217] 

Very High 

Export (S4) 

[0.199, 0.260] [0.020, 0.027] [0.189, 0.247] [0.040, 0.050] [0.217, 0.280] 

This table highlights the delicate impact of distribution and state count variations on export-

level modelling in HMM. From Normal to Log-Normal distributions, and from two to four states, 

each configuration provides unique probabilistic insights on export behaviour, underscoring the 

need for careful model selection in effectively representing export dynamics. 

In a 2-State Hidden Markov Model, the framework is divided into two states: "Low" and "High" 

with observations showing whether import levels are "Decreasing (D)" or "Increasing (I)". This setup 

provides a broad view of trends. The 3-State Model adds a "Moderate" state, allowing for a more 

nuanced analysis where observations can be "Decreasing", "Stable (S)," or "Increasing" capturing a 

range of fluctuations between low and high import levels. The 4-State Model introduces even more 

detail with states like "Very Low", "Low," "High," and "Very High," and observations of "Very 

Decreasing (VD)", "Decreasing", "Increasing", and "Very Increasing (VI)" offering a comprehensive 

look at significant changes and trends in import levels. 
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TPM, EPM, and π for Normal-HMM (2,3 & 4 States) 

 s1  s2  D  I 

TPM = 
s1

s2
  [

0.4 0.6
0.238 0.727

] ,  EPM = 
s𝟏

s𝟐
 [

0.1 0.9
0.59 0.40

] ,    π0 = [ 0.312 , 0.687] 

 s1  s2  s3  𝐷  S      I 

TPM = 

s1

s2

s3

[
0.5 0 0.5

0.076 0.461 0.461
0.071 0.428 0.5

] ,EPM = 

s1

s2

s3

[
0.25 0 0.75
0.15 0.07 0.76
0.2 0.53 0.26

], π0 = [ 0.125, 0.406, 0.468] 

 s1  s2   s3  s4  𝑉𝐷  D  I  VI 

TPM =  

s1

s2

s3

s4

[

0.33 0 0 0.66
0.16 0.33 0.16 0.33
0.11 0.11 0.33 0.44

0 0.15 0.38 0.46

] , EPM = 

s1

s2

s3

s4

 [

0 0 0.33 0.66
0 0 0.66 0.33
0 0.2 0.55 0.22

0.5 0.2 0.28 0

], π0 = [0.09, 0.18, 0.28, 0.43] 

TPM, EPM, and π for Gamma-HMM (2,3 & 4 States) 

 s1  s2  D  I 

TPM = 
s1

s2
  [

0.93 0.03
0.5 0.5

] ,  EPM = 
s𝟏

s𝟐
 [

0.43 0.56
0.5 0.5

] ,    π0 = [ 0.937 , 0.062] 

 s1  s2  s3  𝐷  S  I 

TPM = 

s1

s2

s3

[
0.846 0.115 0.03

1 0 0
0.5 0 0.5

] , EPM = 

s1

s2

s3

[
0.18 0.18 0.62
0.66 0.33 0
0.5 0 0.5

], π0 = [ 0.843, 0.093, 0.062] 

 s1  s2  s3  s4  VD  D  I  VI 

TPM = 

s1

s2

s3

s4

[

0.82 0.09 0.09 0
0.4 0.4 0 0.2
0.5 0.5 0 0
0.5 0 0 0.5

] ,EPM = 

s1

s2

s3

s4

 [

0.17 0.13 0.35 0.35
0.2 0.6 0.2 0
1 0 0 0

0.5 0 0.5 0

], π0 = [0.72, 0.16, 0.63, 0.06] 

TPM, EPM, and π for Weibull-HMM (2,3 & 4 States) 

 𝑠1  𝑠2  D  I 

TPM = 
𝑠1

𝑠2
  [

0.33 0.66
0.16 0.84

] ,  EPM = 
𝑠1

s2
 [

0.16 0.83
0.5 0.5

] ,    𝜋0 = [ 0.187, 0.812] 

 𝑠1  𝑠2  𝑠3  D  S  I 

TPM = 

𝑠1

𝑠2

𝑠3

[
0.33 0 0.66
0.14 0.28 0.57
0.04 0.19 0.76

] , EPM = 

𝑠1

𝑠2

𝑠3

[
0 0.33 0.66
0 0 1

0.41 0.18 0.41
], 𝜋0 = [ 0.09, 0.218, 0.68] 

 s1  s2  s3  s4  VD  D  I  VI 

TPM= 

𝑠1

𝑠2

𝑠3

𝑠4

[

0.5 0 0 0.5
0 0.25 0.25 0.5
0 0.18 0.36 0.45

0.07 0.07 0.35 0.5

] ,EPM = 

𝑠1

𝑠2

𝑠3

𝑠4

 [

0 0.5 0 0.5
0 0 0.75 0.25
0 0.18 0.45 0.36

0.46 0.26 0.26 0

], 𝜋0 = [0.06, 0.13, 0.34, 0.46] 

TPM, EPM, and π for Lomax-HMM (2,3 & 4 States) 

 𝑠1  𝑠2  D  I 

TPM = 
𝑠1

𝑠2
  [

0.92 0.08
0.37 0.62

] ,  EPM = 
𝑠1

s2
 [

0.45 0.54
0.87 0.13

] ,    𝜋0 = [ 0.75, 0.25] 
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 𝑠1  𝑠2  𝑠3  D  S  I 

TPM = 

𝑠1

𝑠2

𝑠3

[
0.78 0.21 0
0.4 0.5 0.1
0.5 0 0.5

] , EPM = 

𝑠1

𝑠2

𝑠3

[
0.05 0.35 0.1
0.3 0.5 0.2
0.5 0.5 0

], 𝜋0 = [ 0.63, 0.315, 0.062] 

 s1  s2  s3  s4  VD  D  I  VI 

TPM=

𝑠1

𝑠2

𝑠3

𝑠4

[

0.81 0.13 0.06 0
0.43 0.43 0.14 0
0.17 0.17 0.5 0.17

0 0.5 0 0.5

] , EPM = 

𝑠1

𝑠2

𝑠3

𝑠4

 [

0.05 0.35 0.41 0.17
0.14 0.28 0.57 0
0.17 0.66 0.17 0
0.5 0.5 0 0

], 𝜋0 = [0.53, 0.22, 0.18, 0.06] 

TPM, EPM, and π for Lognormal-HMM (2,3 & 4 States) 

 𝑠1  𝑠2  D  I 

TPM = 
𝑠1

𝑠2
  [

0.54 0.45
0.25 0.75

] ,  EPM = 
𝑠1

s2
 [

0.18 0.82
0.52 0.47

] ,    𝜋0 = [ 0.343, 0.656] 

 𝑠1  𝑠2  𝑠3  D  S  I 

TPM = 

𝑠1

𝑠2

𝑠3

[
0.28 0.14 0.57
0.5 0.25 0.25

0.15 0.1 0.75
] , EPM = 

𝑠1

𝑠2

𝑠3

[
0 0.14 0.85

0.25 0 0.75
0.38 0.14 0.47

], 𝜋0 = [ 0.22, 0.12, 0.65] 

 s1  s2  s3  s4  VD  D  I  VI 

TPM=

𝑠1

𝑠2

𝑠3

𝑠4

[

0.33 0.16 0.16 0.33
0.2 0.4 0.2 0.2

0.33 0 0.16 0.5
0.07 0.14 0.14 0.64

] , EPM = 

𝑠1

𝑠2

𝑠3

𝑠4

 [

0 0.16 0.16 0.66
0 0.2 0.2 0.6

0.33 0 0.5 0.16
0.4 0.26 0.33 0

], 𝜋0 = [0.18, 0.15, 0.18, 0.46] 

Table 4: Model Comparison for Various Distributions Based on States and Information Criteria. 

Based on the AIC and BIC values provided, the Lomax distribution appears to be the best fit among 

the distributions listed. This conclusion is based on the consistently lower AIC and BIC values across 

a variety of states when compared to other distributions. 

Distribution States Log-Likelihood AIC BIC 

Normal 2 -21.621 63.243 77.902 

3 -32.522 107.04 137.82 

4 -46.865 165.73 218.49 

Gamma 2 -26.886 73.772 88.429 

3 -43.243 128.48 159.26 

4 -43.828 159.65 212.42 

Weibull 2 -19.714 59.428 74.085 

3 -29.521 101.04 131.82 

4 -45.444 162.88 215.65 

Lomax 2 -19.136 58.272 72.930 

3 -43.226 128.45 159.23 

4 -43.240 158.48 211.24 

Lognormal 2 -20.448 60.896 75.553 

3 -27.879 97.759 128.54 

4 -42.204 156.40 209.17 
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Figure 1: The graphs show the comparative evaluation of CDFs using HMM in different 

distributions. 

RT&A, No 2 (84)
Volume 20, June 2025 

344



Vyshnavi. M, Muthukumar. M 
HMM for Estimating Probability Distribution 

Figure 2: This graph shows the pair plot of different HMM distributions for comparison 

The pair plot is a helpful visualization that shows the relationships between the performance metrics 

of various Hidden Markov Models. The scatter plots reveal how different models are correlated, 

while the diagonal plots indicate the distribution of each model's performance. This enables a 

comparison of trends, correlations, and distribution patterns, assisting in identifying the model that 

performs the best. 

Figure 4: Graphical representation of comparative analysis of AIC and BIC values for different 

probability distributions.  

IV. Conclusion

In conclusion, our findings shed light on the selection of probability distributions for Hidden 

Markov Models. We recognized the Lomax distribution as extremely beneficial, particularly within 
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the HMM's state 2. This conclusion emphasizes the need to consider multiple distributions when 

modelling complex systems. Furthermore, our investigation of the Viterbi path demonstrates the 

practical relevance of our findings in determining the most likely state sequence. The Viterbi path is 

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. Overall, this study helps 

advance our understanding of probability distributions in HMMs. 
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