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Abstract: The highly contagious respiratory virus COVID-19 has profoundly influenced the global 

economy and public health. It has been discovered that the RNA-dependent RNA polymerase catalyzes 

the synthesis of viral RNA and plays an important role in the replication cycle of the COVID-19 virus. 

The current study focused on the virtual screening of selected isoflavones, flavonols, and chalcones, 

which inhibit the enzyme RNA-dependent RNA polymerase. Ligand molecules were evaluated for 

ADMET activity using SwissADME. Docking studies were performed using AutoDock Vina. The 

optimized structures and molecular electrostatic potential surfaces were predicted by DFT analysis 

using B3LYP. The docking scores ranged from −7.0 to -8.7 kcal/mol. Malonyldaidzin had the highest 

binding affinity (−8.7 kcal/mol) compared to the control Remdisivir (−7.0 kcal/mol). DFT analysis 

showed that the band energy gaps and ionization potentials of the chosen flavonoids ranged from 0.14 

to 0.16 eV and 0.20 to 0.21 eV, respectively, compared to remdesivir, which exhibited an energy gap 

of 0.17 eV and ionization potential of 0.22 eV, indicating better reactivity of the molecules. The results 

show that the chosen flavonoids may inhibit or block other protein pathways in SARS-CoV-2 and could 

capitalize on improved targeted delivery approaches. 

Keywords: COVID-19; RNA-dependent RNA polymerase; molecular docking; virtual screening; 

DFT; flavonoids. 
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1. Introduction 

The COVID-19 pandemic was caused by the outbreak of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), which is genetically related to severe acute 

respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome 

coronavirus (MERS-CoV). Amazingly, the epidemiology of COVID-19 is also similar to that 

of SARS-CoV [1]. Studies have suggested that the natural hosts for SARS-CoV maybe bats 

and civets as intermediate hosts. Bats may be the main route of human transmission of the virus 

[2]. The signs and symptoms of this infection range from asymptomatic to acute respiratory. 

Like the Nipah virus, the incubation period ranged from 4 to 14 days [3]. The symptoms of this 

disease are high fever, dry cough, chest pain, headache, dizziness, shortness of breath, nausea, 
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vomiting, and diarrhea in humans [4]. COVID-19 can be detected using RT‒PCR, a qualitative 

test [5]. 

RNA-dependent RNA polymerase (RdRp) is an important drug target for SARS-CoV-

2 because it is vital for the virus's replication cycle by generating multiple copies of viral RNA 

[6]. However, no sequence or structural homolog of coronavirus RdRp has been found in 

humans; therefore, developing potent inhibitors of coronavirus RdRp could be a potential 

therapeutic strategy without the risk of affecting human polymerases [7]. 

Several antiviral drugs have been developed to target human immunodeficiency virus 

(HIV), Ebola virus, hepatitis C virus (HCV), and Marburg virus, and they also target SARS-

CoV-2 RdRp [8]. Recent studies have suggested that two known antiviral drugs, remdesivir 

and favipiravir, are effective alternatives for treating COVID-19, but their safety and effects 

are yet to be understood [9,10]. 

Plant bioactive compounds such as isoflavones, flavonols, and chalcones, which are 

prevalent in plant tissues and have antioxidant and antiviral effects, can potentially inhibit the 

replication of viruses. Flavonoids and their derivatives may be prospective chemicals for 

subsequent clinical investigations to improve treatment efficacy against coronavirus infection 

because of their pleiotropic properties and lack of systemic toxicity [11]. 

In structure-based drug design, molecular docking has become an important tool and is 

most frequently used to predict the binding conformation of small ligands to desired target 

molecules [12,13]. The present study discusses the molecular interactions between flavonoid-

derived compounds [14] and the RdRp of coronavirus, providing better insights into drug 

mechanisms and disease pathology. 

2. Materials and Methods 

2.1. Preparation of the protein. 

The three-dimensional (3D) structure of SARS-CoV-2 RNA-dependent RNA 

polymerase [RdRp] [PDB ID: 7BV2] was retrieved from the Protein Data Bank (http://www. 

rcsb.org) [15]. The protein structure was prepared by removing water molecules and adding 

polar hydrogens and Kollmann charges using AutoDock Tools. The protein was then saved in 

PDBQT format for molecular docking. 

2.2. Preparation of the ligands. 

The structures of the isoflavone, flavonol, and chalcone ligands were retrieved from 

PubChem (www.pubchem.ncbi.nlm.nih.gov) in the Structure Data Format (SDF). The 

sequences were subsequently converted to PDB format with the help of Open Babel software 

[16] and prepared in docking format using AutoDock Tools. 

2.3. ADMET analysis. 

The SMILES notations of the ligand molecules were downloaded from the PubChem 

database and evaluated for their absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) properties and other pharmacokinetic and pharmacodynamic properties of the 

ligands using the online server SwissADME (http://www.swissadme.ch/). 
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2.4. Docking studies using AutoDock Vina. 

Docking was performed using AutoDock Vina through the PyRx program. The RdRp 

of coronavirus was docked against isoflavone, flavonol, and chalcone ligands, and those with 

good docking scores were taken for further analysis. Based on the active site of the target, the 

grid centers were adjusted to 96.06, 93.00, and 93.92 Å for the X, Y, and Z axes, respectively, 

with 0.375 Å spacing. The X, Y, and Z dimensions of the grid were set to 43 × 45 × 44. The 

ligand was docked to the target protein, and the best-docked pose was saved. Discovery Studio 

Visualizer software [17] was used to visualize the docked results, and PyMol was used to 

analyze the protein-ligand interactions. 

2.5. Density-functional theory analysis and reactivity study. 

The phytochemicals' Lowest Unoccupied Molecular Orbital (LUMO) and Highest 

Occupied Molecular Orbital (HOMO) energies were determined using the ORCA 5.0 program, 

and the Becke3-Lee-Yang-Parr (B3LYP) hybrid functional exchange-correlation of DFT was 

used [18]. The molecular electrostatic potential map and energies of the compounds were 

obtained from the optimized geometry. Avogadro version 1.2 was used for visualization. 

3. Results  

3.1. ADMET properties of flavonoid-derived compounds screened against the RdRp of SARS-

CoV-2. 

 In silico toxicity assessment, a compound is analyzed and predicted using 

computational methods. Determination of the toxicity of a ligand is important in drug design. 

Toxicity prediction is necessary to determine the harmful effects of ligands on humans [19]. 

The flavonoid-derived compounds were subjected to ADMET analysis, and the results for 11 

molecules and controls were chosen for further study; the results are given in Table 1. 

3.2. Virtual screening of flavonoid-derived compounds. 

Molecular docking can be an efficient computational tool for understanding the role of 

intermolecular interactions[20]. Molecular docking investigations were carried out using 

AutoDock Vina here to understand the interaction and binding mode of isoflavone, flavonol, 

and chalcone with the active site of the CoV RdRp. Docking scores in Kcal/mole were obtained 

after docking the protein with the ligands. This value represents the affinity of the target protein 

RdRp for the ligands. Negative docking scores indicate stronger interactions within the receptor 

protein. Pi-alkyl interactions, along with conventional hydrogen bonds, were found in almost 

all the derivatives. Table 2 shows the docking scores of 11 molecules and controls for the RdRp 

and amino acids involved in the interactions. 

The docking scores for all the compounds ranged from −7.0 to -8.7 kcal/mol (Table 2). 

Malonyldaidzin had the highest binding affinity (−8.7 kcal/mol), and all the other compounds 

exhibited greater binding affinities than did the control Remdisivir (−7.0 kcal/mol). The 2D 

and 3D representations of the best binding ligands generated using Discovery Studio Visualizer 

(Ver 2011) and PyMol are shown in Figure 1. 
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Table 2. Docking scores of RNA-dependent RNA polymerase with flavonoid-derived compounds. 

Sl. 

No. 
Ligand 

Docking 

score 

Interacting amino acids 

Conventional 

hydrogen bonds 

Carbon 

hydrogen bonds 

Pi-Pi 

Tshaped 
Pi-alkyl 

1 
Remdisivir 

(Control) 
-7 SER318   PRO461 

2 Astragalin -7.4 - - -  

3 Daidzin -8.4 
ARG349, ASN628, 

PRO677 
SER318 PHE396 

PRO323, 

PRO677 

4 Dihydromyricetin -7.6 - - -  

5 Genistin -8.3 
VAL315, ARG349, 

GLU350, ASN628 
SER318 PHE396 

PRO323, 

PRO677 

6 Hyperoside -7.4 
SER501, ASN543, 

VAL560, THR565 
VAL560  VAL557 

7 Isoquercitrin -8.3 
SER318, THR319, 

ARG349, THR394 
  PRO461, 

PRO677 

8 Isosalipurposide -8 ARG457, PRO677   ARG349, 

PRO677 

9 Malonyldaidzin -8.7 

VAL315, SER318, 

ARG349, PRO461, 

ASN628 

THR319 PHE396 
PRO323, 

PRO677 

10 Myricitrin -7.7 
ARG553, LYS621, 

SER795 
TYR619  PRO620, 

LYS798 

11 Puerarin -7.8 ARG249, ARG349   
PRO323, 

ARG349, 

PRO461 

12 Quercitrin -7.8 
ARG553, LYS621, 

SER795 
TYR619  PRO620, 

LYS798 

  

 
Figure 1. 2D representations of the compounds used in the present study (a) Remdisivir (control); (b) 

Astragalin; (c) daidzin; (d) dihydromyricetin; (e) genistin; (f) hyperoside; (g) isoquercitrin; (h) isosalipurposide; 

(i) malonyldaidzin; (j) myricitrin; (k) puerarin; (l) quercitrin. 

Malonyldaidzin formed five hydrogen bonds with amino acids VAL315, SER318, 

ARG349, PRO461, and ASN628 of the target. Two Pi-alkyl interactions with amino acids 

PRO323 and PRO677 and one Pi-Pi T-shaped interaction with amino acid PHE396 were also 

observed, as shown in Figure 2.  
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Figure 2. Docked conformations of the compounds in the active site of RdRp. (a) 3D representation of 

malonyldaidzin; (b) 2D representation of malonyldaidzin; (c) 3D representation of remdesivir; (d) 2D 

representation of remdesivir. 

The recommended drug remdesivir formed only one hydrogen bond with SER318, 

while one unfavorable donor–donor interaction with ASN628 was also observed, which 

accounts for its low binding affinity. 

 
Figure 3. The optimized molecular structures, HOMOs, LUMOs, and molecular electrostatic potential (MEP) 

surfaces of the compounds. 
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3.3. Density-functional theory analysis for optimized structures. 

Based on quantum mechanistic evaluation, the reactivity of the efficiently docked 

compounds was further examined utilizing molecular orbital descriptors, such as LUMO and 

HOMO energies. A DFT study was carried out to evaluate the reactivity parameters of 

malonyldaidzin, daidzin, genistin, isoquercitrin, and the control drug Remdisivir using 

bandgaps of molecular orbital energies. The obtained HOMO and LUMO orbitals for the 

selected compounds are presented in Figure 3, and their energy, EHOMO, and ELUMO values 

are listed in Table 3.  

The following descriptors were calculated based on the energy of the HOMO and 

LUMO: Egap = (ELUMO - EHOMO); ionization potential; (I = - EHOMO); electron affinity; 

(A = - ELUMO); electronegativity; ( = (I + A)/2)); global hardness; ( = (I - A)/2)); and 

softness (S = 1/) [21]. 

Table 3. The various quantum chemical parameters of the isolated compounds. 
 Malonyldaidzin Daidzin Genistin Isoquercitrin Remdesivir 

EHOMO (eV) -0.2194 -0.212 -0.2055 -0.2227 -0.2285 

ELUMO (eV) -0.0721 -0.0578 -0.0438 -0.0758 -0.0493 

Egap (eV) 0.1473 0.1542 0.1617 0.1469 0.1792 

I (eV) 0.2194 0.212 0.2055 0.2227 0.2285 

A (eV) 0.0721 0.0578 0.0438 0.0758 0.0493 

 (eV) 0.14575 0.1349 0.12465 0.14925 0.1389 

µ (eV) -0.14575 -0.1349 -0.12465 -0.14925 -0.1389 

 (eV) 0.07365 0.0771 0.08085 0.07345 0.0896 

S(eV)-1 13.58 12.97 12.37 13.61 11.16 

4. Discussion 

Despite modest progress in developing antiviral vaccines and widespread population 

immunization campaigns, the number of COVID-19 cases keeps rising due to the introduction 

of new SARS-CoV-2 mutations. The development of medications that can inhibit or halt the 

primary processes of coronavirus SARS-CoV-2 reproduction is critically needed [22]. 

RdRp catalyzes the replication of RNA with RNA as the template in all RNA viruses 

and some eukaryotes, and these RNAs are reported to encode this enzyme [23]. Being obligate 

intracellular parasites, viruses cannot survive independently outside cells, as they require live 

cells to translate mRNAs to produce proteins and replicate. Thus, any intervention in mRNA 

translation would likely inhibit viral replication, thereby spreading and evolving the virus [24]. 

Medicinal plants have been utilized as a source of natural drugs, including antiviral 

agents, for a long time despite the preoccupation with synthetic chemistry. Additionally, 

ethnopharmacological-based studies and traditional medicine serve as templates for the design 

and synthesis of novel substances [25]. 

Flavonoids are a class of safe phytochemicals commonly abundant in several fruits and 

vegetables. They offer a range of pharmacological activities, including antiviral effects, when 

consumed as a diet. These compounds have been demonstrated to target essential stages of the 

viral life cycle, thus inhibiting viral pathogenesis [26]. For this reason, flavonoids have 

attracted much attention in recent years because of their fruitful effects during COVID-19 

infection. Flavonoids and their derivatives exhibit structural diversity that contributes to their 

versatile biological benefits, such as anti-inflammatory, neuroprotective, and antioxidative 

effects, as well as antiviral properties [27]. 
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Several studies have even exploited the structure-activity relationship of natural 

flavonoids against SARS-CoV-2 proteins [28]. These compounds can also exert antiviral 

activity directly, where the virus is directly affected by flavonoids, or indirectly, where 

flavonoids improve host defense mechanisms against viral infections [29, 30]. 

An earlier study revealed that quercetin-3β-O-D-glucoside inhibited the envelope 

proteins of the Ebola virus and its replication [31]. Quercetin inhibited the replicon system of 

the Chikungunya virus by blocking its attachment to host cells [32]. Epigallocatechin gallate 

(EGCG) inhibited the entry of the Zika virus by blocking envelope proteins [33]. Silymarin 

inhibited replication by targeting the viral RNA synthesis process of influenza virus [34]. 

Naringenin inhibited secretion from cells infected with hepatitis C virus [35]. 

Dihydromyricetin targets H1N1 virus by blocking viral surface protein attachment to host cells 

[36]. Epigallocatechin gallate (EGCG) and theaflavin inhibited the main protease of SARS-

CoV-2 [37]. 

The structure of SARS-CoV-2, having an overall arrangement similar to that of SARS-

CoV, the apo RdRp complex, was reported to contain one nsp12, one nsp7, and two nsp8 

proteins [38]. The nsp12 protein also contains an N-terminal β hairpin comprising residues 31 

to 50 and an extended nidovirus RdRp-associated nucleotidyl transferase (NiRAN) domain 

comprising residues 115 to 250 [39]. This protein has seven helices and three β strands [38]. 

The NiRAN domain was observed as an interface domain (residues 251 to 365) with three 

helices and five β strands connecting the RdRp domain (residues 366 to 920). In our study, we 

found that the compound Malonyldaidzin formed hydrogen bonds with the amino acids 

VAL315, SER318, and ARG349 of the interface domain and PRO461 and ASN628 of the 

interface domain of the RdRp target. 

Zandi et al. (2021) [40] evaluated the antiviral effect of the flavonoids baicalin and 

baicalein by targeting RdRp in Vero CCL-81 cells. In silico evaluations of these two 

compounds revealed that they had different interaction sites and exhibited greater affinity for 

RdRp than for remdesivir. In another study, MDCK cells infected with influenza viruses A and 

B were treated with quercetin-7-O-glucoside (Q7G) and oseltamivir as standards and molecular 

docking revealed that Q7G interacts effectively with the PB2 subunit of viral RNA polymerase 

[41]. 

In the present study, virtual screening of isoflavones, flavonols, and chalcones was 

carried out to identify compounds that interfere with the RNA replication of SARS-CoV-2 by 

targeting RdRp and could be used as possible prophylactic agents to prevent SARS-CoV-2 

infection. Initially, flavonoid-derived compounds were retrieved and subjected to ADMET 

analysis, where their toxicity, carcinogenicity, and drug-like properties were analyzed. The 

pharmacokinetic profile determines the therapeutic actions of the drugs. Molecules' 

lipophilicity, hydrophilicity, and bioavailability play critical roles in being considered 

compounds as therapeutics [42]. Among the 11 compounds that passed the ADME, the 

compounds malonyldaidzin, daidzin, genistin, and isoquercitrin were found to interact better 

than the control Remdesivir. DFT analysis was carried out on these molecules to determine 

their reactivity with the protein RdRp. 

The frontier molecular orbital (FMO) concept describes organic reaction processes and 

is especially relevant in investigating interactions between drugs and their receptors [43]. The 

band energy gap (ΔE) was calculated using the LUMO and HOMO energies, which represent 

the reactivity of a molecule. The band energy gaps were calculated with the objective of having 

a direct correlation with compound reactivity because lower band energy gaps indicate stronger 
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reactivity. The chemical reactivity of molecules is also characterized by a descriptor called the 

ionization energy, and lower values of this energy correspond to stronger chemical reactivity 

[44, 45]. The band energy gaps and ionization potentials of the chosen flavonoids ranged from 

0.14 to 0.16 eV and 0.20 to 0.21 eV, respectively, compared to those of the well-known 

antiviral medication Remdisivir, which has an energy gap of 0.17 eV and ionization potential 

of 0.22 eV. These results show that the inhibitors have a considerable affinity for the target 

proteins and contribute to their high reactivity. 

Global softness (S) is the inverse of a molecule's ability to take up electrons, whereas 

global hardness (η) indicates the degree of resistance to distortion of the electron cloud of 

molecules [43]. By definition, soft molecules have a low bandgap and may move electrons 

more readily than hard molecules, increasing their reactivity. A higher softness ranging from 

12.3 to 13.6 (eV)-1 compared to 11.1 (eV)-1 for remdesivir indicates greater reactivity of the 

selected flavonoids. 

5. Conclusions 

With the increasing incidence of disease transmission, ethical and clinical trials are 

posing significant obstacles to COVID-19 treatment. Currently, antiviral drugs are 

recommended for patients to combat COVID-19 despite alternative treatment options being 

investigated. Recent studies have started using various natural compounds and computational 

methods to identify new drug targets. An in silico approach was used as a cost-effective 

approach, and flavonoids and their derivatives were found to target the binding sites of SARS-

CoV viral proteins. Highly conserved domains and structurally significant binding sites within 

RdRp are expected to accomplish this goal. 

Additionally, the DFT results revealed that, compared with remdesivir, selected 

flavonoids have better bioactivity and chemical reactivity and considerable intramolecular 

charge transfer between electron-donor and electron-acceptor groups and might be powerful 

candidates for inhibiting or blocking other protein pathways in SARS-CoV-2. A synergistic 

combination of flavonoids with conventional drugs would also be highly important. However, 

further in vitro and in vivo studies and clinical trials are needed for additional in-depth research. 

Collaborative studies across disciplines examining efficient and effective flavonoid-derived 

compounds could capitalize on improved targeted delivery approaches. 
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