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1 Introduction

The fundamental concept in the study of infinite-dimensional (/D) analysis and its ap-
plications to differential equations (DEs) is compactness. However, many important op-
erators encountered in functional analysis and DEs are not compact, particularly in ID
Banach spaces (BSs). To address this limitation, the concept of measures of noncompact-
ness (MNC) has been introduced and extensively developed. These measures quantify the
“degree” to which a bounded set fails to be relatively compact, offering a powerful tool for
studying fixed point (FP) theory, operator equations, and various forms of differential and
integral equations.

The relevance of MNC is particularly significant in the study of stochastic DEs, which
model dynamical systems under the influence of randomness. Stochastic DEs are widely
used in fields ranging from physics and biology to finance and engineering. The analysis
of such equations, especially in the ID setting or in the presence of memory effects, im-
pulses, or fractional dynamics, often leads to operator equations that are not compact. In
such cases, traditional FP theorems based on compactness fail to apply, and MNC serve
as a crucial alternative. Igor Podlubny in [1] and Anatoly A. Kilbas et al., in [2] presents
essential ideas that encourage an introductory understanding and real-world use of frac-
tional derivative (FDs) and fractional DEs. Bernt Oksendal, Lawrence C. Evans, and Mao
Xuerong in [3-5] provide core principles that support basic exploration and application
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aspects of stochastic DEs. Lakshmikantham V et al., in [6] offer readers the fundamental
concepts necessary for a foundational study and practical application of impulsive differ-
ential equations. As a result SFIDEs can simulate complicated dynamical systems that are
sensitive to randomness, memory effects, and abrupt changes in state, their research has
recently attracted a lot of attention. These equations are particularly useful in describing
real-world processes in physics, engineering, finance, and biology, where both stochastic
perturbations and impulsive effects play a crucial role [7-11]. For instance, in [12], the
authors investigated a stochastic prey-predator model both numerically and analytically
which provided comparative simulations based on physical scenarios that highlights the
effectiveness of the approach and in [13], the authors analyzed the Sasa-Satsuma equation
using planar dynamical theory and the beta differential operator. They explored chaos and
phase transitions, a periodic term cos(wt) was introduced, and investigated the effect of
the beta differential operator on various solitons (bright, dark, W-shaped, breather).

Furthermore, the inclusion of tempered ¢ (T'¢) Caputo derivative (CD) in modeling DEs
has enhanced the accuracy of systems where memory effects exhibit exponential fading,
making it highly relevant in fields like anomalous diffusion [14], finance [15], and biolog-
ical systems [16]. Unlike the standard CD, the tempered version incorporates an expo-
nential tempering parameter, which allows for better physical interpretation and avoids
the infinite memory drawback inherent in classical fractional operators. Especially, in the
study of SFIDEs with nonlocal conditions, incorporating T¢-CD provides a more realistic
framework to capture systems influenced by both history and abrupt changes, see [17-21].

To rigorously analyze such complex systems, topological degree theory (TDT) offers a
significant advantage. It is particularly effective in dealing with the nonlinear, nonlocal,
and impulsive nature of the problem without imposing stringent regularity or compact-
ness assumptions [22-24]. The theory is well-suited to fractional differential operators,
including tempered ones, as it can handle operators that are non-compact or lack strict
continuity, which often arise in ID fractional spaces. Moreover, it provides a robust frame-
work for proving existence and under certain contractive conditions, uniqueness of solu-
tions, particularly when dealing with systems perturbed by Gaussian noise. A fundamental
challenge in analyzing such equations is the presence of nonlocal conditions, which extend
classical initial conditions to incorporate global information about the system.

The synergy between the T-CD and TDT enables the treatment of a wide class of
fractional stochastic models that would be otherwise intractable using classical methods.
This makes it a powerful approach for establishing the existence and uniqueness (EU) of
solutions in systems characterized by memory, randomness, impulse, and nonlocal de-
pendencies.

In this work, we investigate the EU of solution for a class of SFIDEs involving the
T¢-CD and nonlocal conditions in a BS setting. The presence of Gaussian noise intro-
duces stochastic fluctuations that reflect the inherent uncertainties in practical models.
Our approach is grounded in DT, which provides a powerful framework for establishing
the existence of solutions to nonlinear DEs. In [25], Mahmoud et al. analyze the EU of
an impulsive fractional stochastic DE, based on approximation scheme of Carathéodory
type. Omar et al. in [26] explore the ¢-CD in the stochastic sense. By extending previ-
ous results in impulsive and fractional DEs, this study enhances the present literature on
stochastic fractional dynamics and offers new insights into their mathematical properties

and applications.
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Motivated by the above works, we consider SFIDEs with nonlocal conditions:

SEDE @) = h(GE@) + It (), € Sl{ty, b, 13, ..., b},
AL(t) =L(¢@)), i=1,23,...,m, 1
) +nx®)  =Zo,

where % <a<l, u>0,6:=[0,T], Jj: & x YT — T (j=1,2), are measurable and continu-
ous, {y € T, is measurable and n : x — Y is a continuous map (CM), where x = PC(SG, Y).
L:Y — Y isa CM and ¢; satisfies, 0 = ;1 <t; < ---<tiy1 =T. g}cDZ;’t‘) is the fractional
Te-CD and W (¢) is a standard Brownian motion (BM) on the complete probability space,
(Q,S,P).

In our study, we used the FP theorem of the topological degree type and the approach
related to the MNC methodology. Bana and Goebel were the primary initiators of this
approach in 1980. Later, in 1986, Szufla Stanislaw used the MNC to investigate existence
theorems in [27] and then implemented and utilized in numerous studies, see [28, 29]. The
modeling and prediction of financial markets have increasingly incorporated tools from
fractional calculus and stochastic analysis to better capture memory effects and random
fluctuations inherent in real-world data. In [30], the authors, have used the collocation
method to analyze a non-linear stochastic DEs, driven by fractional BM, to demonstrate
its applicability in stochastic models such as the stock model. Traditional models fail to
account for long-range dependence and abrupt market shifts, which are common in as-
set pricing, volatility dynamics, and risk assessment. To address this, SFIDEs involving
T¢-CD models fading memory, which aligns well with financial time series where the in-
fluence of past events gradually diminishes.

The main contributions of our work are highlighted as follows:

+ The fractional T¢-CD stochastic model enriches the existing literature with a novel

perspective.

+ The TDT technique for condensing operators is utilized to establish the EU of

solutions under appropriate Lipschitz conditions.

+ The obtained results are illustrated graphically through suitable examples.

Moreover, the advantages of our work are that, T¢-CD provides better realism through
tempering where the parameter p helps model fading memory more realistically than
standard power-law memory. The function ¢(t) provides a time deformation, capturing
phenomena with nonuniform evolution in time. The system (1) balances both determin-
istic drift and stochastic fluctuations allowing for more comprehensive modeling. Addi-
tionally, handling impulses and nonlocality simultaneously enables modeling of systems
with discontinuous events and nonlocal histories, often found in biological, control, or
mechanical systems.

The structure of the paper is as follows: Section 2 gives the required preliminaries that
includes definitions, propositions, lemmas and theorems. Section 3 proves the EU re-
sults. The next section provides theoretical examples demonstrating the applicability of
the main result. And finally, the last section concludes the paper and outlines the potential
future research directions.

2 Preliminaries
The concepts that lay the foundation of our analysis are stated below:
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Let C(6,R) be the space of all continuous functions, and AC(S, R) be the space of all
absolutely continuous functions. Let x be a BS with the norm ||¢||pc = sup{|[¢ (|| : t € &}.

Definition 1 [22] Let ©® : K — Y be a bounded CM, where L C Y. Then ® is
« o— Lipschitz (o-L) if there exists k > 0 such that o(®(U)) < ko (U) for all bounded
subsets U C K;
« astrict o— contraction if there exists 0 < k < 1 such that o (@(U)) < ko (U);
» 0— condensing if 0 (®(U)) < o (U) for all bounded subsets S € K with o(U) > 0. In
other words, o(®(U)) > o (U) implies o(U) =0,
where o is the Kuratowski MNC.

Definition 2 [22] Let  C Y and J: £ — T, we recall that / : L — 7Y is Lipschitz if there
exists k > 0 such that

I = Jyll < kllx = yl| Vx,y € K,
and if k < 1 then J is strict contraction.

Definition 3 [26] Let @ > 0. The fractional integral (FI) in the sense of Riemann-Liouville
(RL) for ¢ € L'[0, a] is defined by

y
o _ 1 _ el
100) =1 [0-9" s
0

where I'(+) is the Gamma function.

Definition 4 [21] Let « > 0, the real function ¢ () be continuous on [4, b] and ¢ € C![a, b]
is an increasing differentiable function such that ¢’(¢) # 0 for all a < ¢ < b. Then the ¢—
RL-FI of order « is defined by

t
o, _ L _ a-1 ,
90t = T / [o®) = 9] ¢' ()¢ (s)ds.

Definition 5 [21] The T'p-type RL integral of fractional order «, index p € R of function
g is

t
. 1 [,
SO = Foos / GO (s)ds,

where ¢(t) = ¢'(s)(p(t) - (p(s))“‘le—u(w(t)—w(s)).

Moreover, if x € AC"(S), then the ¢-tempered FD of RL and Caputo type, with order
a € (n—1,n) and index u € R, of the function ¢ are given respectively by:

o, 1 d " n—-a,
OTfD(p(l;)((t) = <m% + ,u) ng(t) "¢ (t),and
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1 d "
TC Ry T m—a,
0r Dyt ®) = 0. L™ (m e’ M) fo

Definition 6 (Stochastic Process) A Stochastic process is a set {¢(¢)|¢ > 0} of all random

variables.

Proposition1 [23] If/1,]>: K — Y areo-L with respective constants a, and a,, then J1 +J,
is o-L with constant a, + a.

Proposition 2 [23] If ] : K — Y is Lipschitz with constant a then ], is o -L with the same
constant a.

Proposition 3 [23] If]; : K — Y is compact, then ], is o -L with constant a = 0.

Proposition 4 [20] If Re(a) > 0 and | € C(Re(a) > 0), then
L 1% (- ) (0) = it - @)™, (Re(@) > 0).

2. D% (t-a) () = F(F;_lfx st—a)™, (Re(er) = 0).

Lemma 1 [20] For «, T > 0 we have the following semigroup property:

IS T h(E) = I h(t), t> a. (2

Lemma 2 [20] If h € C"([a,b],R), h,_o(t) € AC"[a, b], then the equality

(Hy (@)

Fa—jrn " <3>

14D h(t) = h(t) - )
j=1

holds everywhere on [a, b].

Let H = {(I-~F,K,3) : K S T open and bounded, F € C, (K0),y € Y\( - F)(@K) | be the

family of admissible triplets, where C, (KC) represents the class of all ¢ — condensing maps
F:K — Y,K is the closure of .

Theorem 1 Let F: K — Y be o— condensing and
E= {go €Y : there exists 0 < w < 1 such that ¢ = a)Fgo},

If B is a bounded set in Y, then there exists € > 0 such that E C U.(0) then
D(I - wF,U(0),0) =1 for all v € [0,1],

where D : H — Z is a function of degree 1. Thus, F has atleast one FP, and the set of all FPs
of F lies in U, (0).

Theorem 2 (Cauchy-Schwarz inequality) If uy, uy, ..., Uy, and vy, vy, ..., Vy
are arbitrary real numbers, we have

2 m m

m
(Zurw) <3 u2x 30
=1

=1 =1
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Theorem 3 (Banach Contraction Mapping Principle) Let Y be a complete metric space,
and ¥ : Y — Y is a contraction mapping with a contraction constant k, then ¥ has a
unique FP.

3 Main results
This section analyzes the solution to SFIDEs (1) and also contains the needed prerequi-
sites.

Definition 7 The function ¢ € yx is said to be the solution of the system (1) if it satisfies
the system (1).

Lemma 3 The FI equation

Loe OO —(g)e OO — T 3 | 50n6.c6nds
O<L‘l<t ti-1
¢ =1 -ro OZ f G()(s, £ (5))dW(s) + r(a)f G(s,£(5))ds 4)
<t,<t ti_1

e f GOa(s, S ()dW(s) + 3 e WOCOL(r(ty),

O<t;<t

has a solution ¢ € x, for t € (¢, ti1), i =1,2,3,...,m if and only if ¢ is the solution to the
SFIDEs (1).

Proof Assume that ¢ is a solution to the SFIDEs (1). If ¢t € [0, ;) then

sCDehe(t) = It eE) +at, L)L, te[0,4)
with£(0) =0 - n(0).

If t; <t<ty, then

sCDghc(®)  =N(t,C®) + It ()L, telh,b)
with Az(t) =) - ¢(@t) = (¢ (1)).

Integrating the expression (5) from ¢; to ¢, we obtain

t

1 )
/ P18, 2(8))ds + —— | ¢(DJa(s, £ (s)dW(s).

cB=¢@)+ M@ )

['(a)

It follows that

t
$(@) =¢(t) + h(g () + / P@)]2(s, $ (s))dW(s)

t
/ GO1(s,£(s))ds + F(la)
t

1
')
51

t t
£(0) + (& (t) = w1 S $ON(s,E($)ds + wg5 [ GO (5, ¢ ())dls
0 0

t1 t
s [ BOTa(, £ O)AR() + s [ GOV, £($)dW(s).
0 0
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Ift, <t<t3, then

’EED ) =N E0) + It EOD, £ [t t3) ©

with AZ(t) =¢(8) - () = (¢ (1)).

Integrating the equation (6) from £, to £, we obtain

t t

c(t) = ;<r2)+% w(t)h(s,;“(S))dH% GOa(s, £ ()dW(s).

It follows that

t
$(0) = ¢(8) + L(§ () + / P@)]2(s, S ($))dW(s)

t
/ GO)1(s,£(s))ds + F(la)
5]

1
(@)
ty
£(0) + 11§ (1) + (§ (1)
t1 t
- f G (s, £ ()ds - m5 f @)1 (s, £ (s)ds
Bve / GOV1(5,§(9))ds — g5 / G(t0)]a(s £ ()dW(s)

T f G(E2))2(5, £ ()AW(S) + g5 f GDa(s, £ ($))dW(s).

Thus if £ € (¢, £;41], we get

t

1
@) =¢0)+ Zl(é(tz)) e )/fp(tl)h(s,C(S))dH e ) G(O1(s,£(s))ds
O<tj<t
t; t
T ()]s, (8))dW(s) + % G(O)a(s, £ (s))dW(s), i=1,2,3,...,m

ti-1

Hence by condition ¢(0) = ¢y — n(¢), we deduce

C0=6o- 1)+ Y HEw) - 5 ; f Bt (s, ¢ (5))ds +

O<ti<t

e )/w(t)h(s,C(S))ds

t

1
) P(E))2(s, ¢ (s))dW(s) + @)

ti-1

f‘ﬂ(t)fz(S,C(s))dW(s) i=1,2,3,.

Conversely, assume that ¢ satisfies (4). If £ € (0,£1] then ¢(0) = §o — n(¢). If t; € (¢, ti41], i =
TCI iz

1,2,...,m by using the fact ng o(t) is the left inverse of (1)

and T¢-type CD of a con-

stant is equal to zero, we obtain

SEDGE@) =T, C(0) + ot £ (D)8, £ € [83, 1)
with AZ(t) =@t - ¢(t) = (¢ ().

This completes the proof. d

Page 7 of 20
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Define operators as follows:

Ri(5 (@) =0 —n(¢) + Z Ii(¢(ty)) fortie(tytinl, i=1,2,...,m

O<t;<t

t t
1 1
RAE@) = = / GO (s £(s)ds + —— f BOh(s C(S)dn(s), fort e [0,11),
@ )
0 0

Rs(é’(t))——m > / Gt (s, ¢ (s))ds — m > / G(t)a(s, ¢ ()M (s)

0<t,<tt ) 0<t,<tt )
forte(t;,T], i=12,3,...,m
where R1,Ry,R3: x — x.

From equation (4), we can determine the operator V: x — x, Vi =R + Ry¢ + R3¢
It is obvious that V is well defined. Then, the FI equation (4) can be written as:

§ =V =R + Rl + R3¢ 7)
Therefore, the existence of a FP for operator V in (7) is equal to the existence of a solution
to the SFIDEs (1).

The following assumptions are necessary in order to approach the existence of a solution
to the SFIDEs (1).

Z1: ]1,J,: 6 x T — T are jointly continuous.

Z2: There exist some constants dy,, 87, > 0, such that

Wit 20 = it 82l I3 < 87,1181 = Lallpes
2t 20) = 1ot )l pe < 841161 = Lallper Yi1,50 €Y, tEB.

Z3: There exist 811, 812, 821, (322 >0, o] € [0, 1) such that

Wit Ol < SN I + 82,

ot el 3 < 8211011t + 682, Y (£,0) €6 x Y.

Z4: There are constants y; € [0, i) and §, > 0 such that

() = LEDI* < vila - GlA Ve, o e, i=1,2,...,m,

In(Z1) = n@)Ipe < 821121 = &allper Y &1, 82 €Y.

Z5: There exist y1, ¥2,83,84 > 0,02, 3 € [0, 1) such that

HLEOIP <yPlall®2 + v, Vo eY, i=12,...,m

N3 < 821011 +82, YV & € .
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Lemma 4 The operator R, : x — x is Lipschitz with constant (8, + my:). Subsequently, Ry
is a o -L with the same constant (8, + my:). In addition, R, fulfills:

EllRi¢ 1B = 3(BlIGol > + SEIC IR + myZENEIP2 + 63 + my3 ). ®)
Proof For [0, 1], by using (Z4), we have

IR1¢1 = RiLollpe = [In(G) = n@)l3e < 82116 - Gllper Y 1,02 € X

With the help of Proposition 4, R; is o-L for ¢ € [0, 1].
For t € (t;,¢;41], by using (Z4), we get

El[R 151 - Ritallpe =Bl - n@) + Y LEE) +1(6) - Y IGat)llpe

O<t;<t O<tj<t

< 2E||n(21) - n(@)l3c +2 Y, BII(G1(t)) - I(Ga(t)]

O<t;<t

< 821161 = Lol lpe + my ey = Lol .

Then,
E||[R1¢1 — Riallpe < (3,2, +myD)& = &ll3e

Hence, R; is Lipschitz with constant (8,21 +my?) € [0,1) for t; € (¢, ;,1]. Proposition 4 gives
that Ry isa o-L for t € (¢, t;,1].
With the help of Theorem 2, (8) and (Z5),

E[Ry ()] I3¢ < 3ElIgol 1> + BEII(@)|[3c +3 ) E

O<t;<t

=3(ElI%ol? + (BEICIZE +83) + m(rZElIC I + 7))

||

< 3(EIIGol? + SBENSIFE + myZENS|* + 8 + my} ). O

Lemma 5 The operators Ry, R3 : x — x are continuous and so is Ry, + Rs. In addition,
R, + R3 satisfies the following condition:

1+ m®)P()(E3 + SHEIL [ + (53 + 63)

ElIRo¢ [ + EllRs¢ llpc < ) ©)

forall¢ € x.

Proof Let the bounded sequence {¢,} be a set Uy(k > 0) € x such that ¢, — ¢ in U. Now,
we have to show that ||[Ry¢, — Ro¢||pc — 0 as n — oo. It is easy to see that Ji(s, £.(s)) —
J1(s, £(s)) and Jo(s, £4(5)) — Ja(s, £ (s)) as m — oo due to the continuity of J; and /,. By ap-
plying (Z3), we obtain for all s € &,

[J1(s, £u(5)) = J1(8, E DI pc < 11168, Su(DIIpc + 11105, ) Ipc
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<2(811l1¢|I36 + 812), and
[1/2(5, £u(8)) = J2(s, £ ()| < 1208, Eu()|pc + 128, £ ()| pc

< 2(82111¢1Ipe + 822).
Then,

GO, 6a(8)) = J1(5, S (Dpc < 2¢E)(S1111E e + b12),
OIS, 6a(9)) = Ja(s, S (e < 20(E)(E111¢ | Ipe + 822),

since s — 2(G(6)*(SHE[C |14 +52,) and s — 2(§(£)2(5%E|[¢ |2 + 82,) are integrable for

s,t € G and with the help of Lebesgue Dominated Convergence Theorem and Ifo isometry,
t
[ @OPEI .60 -5, 6D ds > 0asn -
0

t
/((ﬁ(t))z]El a8, £n(5)) = Ja(8, £ ()| ds — O as n — oo.
0

Thus,

t
i SEI G 64(5) ~ i (5, £ 6 3 ds
0
El(RyZ)(8) ~ (Rat (D)3 < + =0,
t
T JEIAG, 0u(s) ~ o, E @I 3 ds
0

Vit e G.

Therefore, as Ry¢,, — Ry, Ry is continuous for n — oo.

Proceeding the similar process leads to the continuity of R3 on PC([0, 11, ), PC((t;, tis1],
Y) and PC((¢,,, T], Y).

By the property of continuous operators, R, + Rs is continuous.

With the help of (9) and (Z3),

E||Ry(2 (£)) + R3(¢ () [3¢ < 2E[Ra(C (E)|[3¢ + 2EIIR3(£ (0] [3¢
t

o [@@EE1(s, ¢ (5D [3¢ ds
0

t
75 [GOPEI(s £ (65D ds
0

IA

L
tr X [ @RI, c(9))][Bc ds

O<ti<t ti_1

tl
tr X [ @RI, ¢ (9))I[3¢ ds

O<ti<t ti_1




Maheswari et al. Boundary Value Problems (2025) 2025:149 Page 11 of 20

t
%a) J@@OPGuENL ||pe + 821)*ds
0

t
+1ag S (B G1EIC |56 + 820)°ds
0

IA

L
tras 2 [ @EPOuRIC I +821)*ds

O<t;<t tji_1

L
tres 2 [ @EDPOREIC|IpE + 82)%ds.

O<t;<t tji_1

Then,

ElIR:¢ 3¢ + ElIRs¢ 3¢

_ A GOSHENClIpd + 83 (L + m)POSHENC|Ipe + 383,

B I'(a) (@)
_ Lm)p)@ + SLE||C]12 + (82 + 62,
- I'(e) ’
where
o) = (@& — O (1 - ¢ 20090

2u(2a — 1)

The following assumption is necessary to discuss the compactness of R,, Rs.
Z6: For any k > 0, there arise a constant B > 0 such that

o (IVi(s, DI1?) < Bro (1U117)

forallse &, U C Uy :={¢1 € x :|¢1llpc <k}, and

49(T)Bx <1
(T +1)?

Lemma 6 The operators Ry, Rs : x — x are compact implying o -L with zero constant and

S0 is Ry + Rs.

Proof To prove the compactness and relative compactness of R, and Rs, in x, we consider
a bounded subset U C x. Let {¢,} be a sequence on U C Uy, V¥ ¢, € U. By (9), we get

1+ m®)P()(S3 + SHEIL [ + (53 + 63) e

E|IR¢ |5 + BlIRs¢ |lpc < e

V ¢, € U, s0 Ry(U) and R3(U) are bounded. Now, for 0 <¢; < t; < T, we get

[1(Ra8)(E)~Re )0l
ty 1

|5 / 6, ¢ s = =5 [ Ge0nGs £ (s)ds
_ 0 0

ty 1
iy | B E NS ~ i [ s L)
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Therefore, we have

3]
T J (@@))* = @@)))EIi (s ¢ (Dl Ipeds
0

1)
+ i [@EPEI s 6D Beds
E[|(RyZ)(t2) = (Raf (8| < t;l
vy [ (@) ~ @) Ella(s, £ (5))| 3eds
0

1)
e [ GBI 5D heds

(83, + 85)k™ + 82, + 83,
< 21(F( = Rt s, 4

Therefore we have,

(8%, + 82)k* + 82, + 82, __
i1+ 991 d YD Sy g,
(C(a))

E[|(R2¢)(t2) — (RaZ)(t)| 3¢ <

When t, — t;, {R¢,} becomes equicontinuous.

Take
t
U(t) = {£u(t) : Cu(8) = @ / (0)]1(s,¢(s)) ds + F(l) GDO]a(s,¢(5)) dW(s)} C Uy,
t
Ui)=—— M@ f GON1(s,5(s)) ds + —— F( ) @(B))2(s, £ (s)) dW(s) and
t
EllU@)| < (F( )2 /(w(t))zEllh(s c()II* ds (F(i)ﬁ Of(ﬁ(t))zElllz(s,i(S))llzdS-

As U(t) C x is equicontinuous, using Proposition 1, £ — o (L[ (t)) is continuous on &, and
by (Z6), for s,t € &G we get

o (ElU®IP)

(r(o,))z ( f GOYEINs, ¢ (6Dl *ds + / (@) E)2(s,£ (5))] |2ds>

(F(a))2 (/(<P(t))2 Ell/1(s, é“(S))II2 ds+/((,a(t))2 E||J(s, ;(S))“Z) )

t t

2
< (r(ﬁl;)z (/@(t)U(E||U||2)ds+/gb(t)g(E”u“z)ds)
0

0

_ (DB

<T@y o (EIIUI?) <o (ENUI?)
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40(T)By
(T(@)?
is a o -L with zero constant by Proposition 3.

The compactness of the operators Ré on C((t; tis1], ) and Ry on C((¢,, T1, T) may be
obtained by repeating the same procedure of the operator R, on C([0,¢;], Y'). By Proposi-

The condition < 1 infers U(IE| |u ||2) = 0. Since Ry(U) C x is relatively compact, it

tion 3, R3 is a o -L with zero constant. O

Theorem 4 [f (Z1) - (Z6) are true, then the collection of SFIDEs (1)’s solution is bounded

and there exists at least one solution ¢ € x.

Proof Let us consider the continuous, o-L and bounded operators, Ry,Ry,R3 : x — x as
defined above. By Proposition 2, V': x — x isao-Land strict o - contraction with constant
(82 + my}) €0, 1).

Set M ={¢ € x:3r €[0,1] such that ¢ =AV¢}.

Consider, { € M and A € [0,1] such that £ = AV¢. It follows from (8) and (9)

El¢]2c = EIAVE| 20 < AXE|R1 3¢ + BR3¢ + EIIR3E [13¢)

2 o
<El%l1* + S3EI¢18 + myPElC |2 + 85 + my,

L Qe mp(nE, + SIDENL|Ipe + (8% + 82,
(T())? '

The above inequality, together with a7 < 1,05 < 1 and a3 < 1 demonstrate that M has a
bound in x. The set of the FPs of V is bounded in x and as a result, we deduce from
Theorem 3 that V has at least one FP. O

Remark 1

1. When the assumption (Z3) is defined for «; = 1, we obtain that the conclusions of
d L+m)(T)82; 1
(T(@))?
2. When the assumption (Z4) is defined for ay = a3 = 1, we obtain that the conclusions

Theorem 4 hold, provide

of Theorem 4 hold, provided (83 + my?) < 1.
3. When the assumptions (Z3) and (Z4) are defined for o = @y = a3 = 1, we obtain that

. . P(T)82
the conclusions of Theorem 4 hold, provided 8% + my} + % <L

Theorem 5 If the assumptions (Z1) to (Z6) hold, with

(1+m)@(T)S} +87)
(T(@))?

2 2
&, +myj +

(10)

then (1) has a unique solution (US), ¢ € .

Proof For arbitrary ¢;,¢; € x, we can easily demonstrate that V' is a contraction operator
on x by (Z2) and (Z4) as follows:

E[(VE)(©®) - (Va2
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6E|[1(51) = n(62)l 3¢ + Ogjl(tam \L(E1(8)) = TG (8|2
TR <Z< f (@ENEI1(s, £1(5) = J1(s, a(s)) 3 el
= m»z Z f (GENEa(s, £1(5) = Ja(s, Ea(s))| 3 cdls
+FoR { (GO’ EII1(s,21(5) = Ji (5, E2()) | [F s
o { (GO’ EIIJas, C1(5) = Ja(s, ()| [B s
526E||C1—§2||%>c+0§<t3/126E||§1—C2||2
TR Z/ (@(t))*8} Ellty - Gallfeds
<{+5or <Z<“l/1 (@) L EN 1 — Lol [peds
R { (@OPSElG - &l l3eds
o g GO Ele1 — ollbeds,  i=1,2,...,m.

Therefore we have,

(1 +m@(T)(;,
(T'(e))?

)
El(VE)®) - (VE)®)|[3e < [53 +my} + ] 121 = &al 3
According to the inequality (10), V is a contraction operator on x. We conclude that
operator V has a unique FP on x by applying Theorem 3. This suggests that SFIDEs (1)
has a US, completing the proof. O

Remark 2 The space C(T,Y), where T € R is a compact interval and Y is a BS, forms
a crucial setting for studying the evolution of functions over time. This space, consisting
of all continuous Y-valued functions on 7, is itself a BS under supremum norm, and it
frequently arises in the context of initial value problems and evolution equations.

4 Examples
In this section, we provide some examples to substantiate our results.

Example 1 Consider the following SFIDEs:

DGE® = im0t - P(0)F o ‘;jw“ WO 1 e (0, TY/{t),
Ag(tl) = E;r (11)
2(0) +sin(t) = 1.

ASJi = 515 (90~ 9(O)3 ¢ o and Jy = 15" - lz,and

n(¢) = sin(t). The assumptions in Theorem 5 are satisfied.

W1t 1) = Ti(t, &)

Page 14 of 20
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—cos?¢1(t) 8 0]
Hm 700 - ()} T I - (0))} 7\/—1:(!
_ L0415 ) )
151 = &l = &7, =0.248,
||/2<t,;1>—12<t,;2>||2=H *sin 616~ sin t0) ||
15 15

1
= (FVlG -0l = 5, = 00044,
|1n(¢1) = n(@I* = (sin(@®)*[161 - &> = 87 = 0.7081,

2 L 2 2
1(51) = 1(§)II” = (E) 1161 — &l = yi =0.0044.
With ¢(¢) = t, £ = 0.6 and o = 0.8, it yields

(&) — p(0))*! (1

Y= 1)

_ e—zﬂ(‘ﬂ(t)—<ﬂ(0))) =1.2165.

For T =1 and m = 1 the condition (10) becomes,

1 )8} + 6,
82+ myf + AP0 +5) o 351,
(T (e))?

Now with the help of Theorem 5, Equation (11) possesses a US.

Example 2 Let us examine the below SFIDE’s overall growth rate when random fluctua-
tions (noise) from unforeseen outside variables are present:

o() r2-a)
AL(t) =4¢, i=1,2 (12)
£0)+5¢ =0,

TCDYh p(p) = Wl-e@ cos(l—log“(t)) + sin( C(t)) WO ¢ € (0, T)/{t1, 1),

2-a . .
As i = PO o)), Jo = sin( 160), e () = ¢, and (§) = 4¢. Then it s
easy to observe that Theorem 5’s assumptions are all met.
1t £1) = 1(5 811

161 = &l = 5/21 =

< )
 78.7237 78.7237

st~ ot 6211 = [ fsin(5110) —sin (5220 |

1
<—lla-ol? =8 =

=25 25’

lIn(¢) = n(&)II* = —||§1 ol = 8 =

625 625’

1(6) = 1(&)I* =2 x —||<§1 LI = vl =

121 121°
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Table 1 ¢(t) for 0.5 <« < 1 without stochastic term

t a=05 a=06 a=07 a=08 a=09 a=10

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 -0.029282 -0.029231 -0.029253 -0.029354 -0.029541 -0.029817
1.0 -3.487897 -3.427259 -3.331774 -3.200640 -3.033855 -2.832332
1.5 0.329384 0313178 0.294404 0.273251 0.249973 0.224883
20 0.659305 0611714 0.561455 0.509161 0455528 0.401298
25 0.520058 0472065 0423821 0375876 0328787 0.283103
30 0.182424 0.162458 0.143037 0.124335 0.106518 0.089739
35 0.030408 0.026621 0.023025 0.019643 0.016495 0.013598
4.0 -0.254595 -0.219872 -0.187526 -0.157658 -0.130344 -0.105640
45 0.000113 0.000095 0.000079 0.000064 0.000051 0.000039

)
I

o

o

-3 a=08

00 05 10 15 20 25 30 35 40 45
Time t

Figure 1 The solutionto (12) at t € [0,4.5], and 0.5 <« < 1.0 without stochastic term

With ¢(¢) =%, 0 = 1 and a = 2.

(p(2) — (0))**~ i

_ e—ZM(w(t)—w(O))) =0.8382.
2ua —1)

P =
Let us verify whether (10) is satisfied for T = % and m = 2,

, L m@(TIE: +82)

82+ myl + TP =0.57036 < 1.

1
Therefore, our result can be used to solve the SFIDEs (12). (N

goe—u(w(t)—w(o)) —n( ;)e—ﬂ(w(t)—w(O))

~Fa > f ‘/’(t)(w(t)r(g((;); a‘”’(%ﬁ@)‘h

0<t;<t t;_ 1
@)= o
_I'(la) OZ::: tf go(t)cos( ;(t))dw(s) + F(a) f(p(t) (‘”(t)r(g((g; sm(%{(t))ds
<li<t lj-1
ks f go(t)cos( ;(t))dw(s)+ Y e 0O (e (t), i=1,2.

O<tij<t

As we can see, the trajectory of the system (12) of order o € (1/2,1), subject to a
nonlocal initial condition and deterministic impulses at ; = 1 and £, = 4. Between im-

Page 16 of 20
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Table 2 {(t) for 0.5 <« < 1 with stochastic term

t a=05 a=06 a=07 a=08 a=09 a=10

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 -0.031958 -0.031718 -0.031564 -0.031502 -0.031537 -0.031672
1.0 -3.924572 -3.863926 -3.768433 -3.637290 -3.470497 -3.268965
1.5 0367610 0.352949 0335779 0.316291 0.294741 0.271445
20 0.685351 0.639583 0.591265 0.541036 0489598 0.437697
25 0451315 0.396979 0341862 0.286490 0231398 0177121
30 0.172764 0.151731 0.131138 0.111156 0.091950 0.073675
35 0.030797 0.027059 0.023517 0.020195 0.017112 0.014284
4.0 -0.255414 -0.220805 -0.188586 -0.158857 -0.131694 -0.107149
45 0.000111 0.000093 0.000076 0.000061 0.000047 0.000034

1
0 - Y
-1
-2
— a=05
— a=06
31— a=07
a=08
—_—a=09
4 a=1.0
00 05 10 15 20 25 30 35 40 45
Time t
Figure 2 The solution to (12) at t € [0,4.5], and 0.5 < & < 1.0 with stochastic term
Table 3 £(t) for 0.5 <« < 1 without stochastic term
t a=05 a=06 a=07 a=08 a=09 a=10
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 —-0.029282 —-0.029231 -0.029253 -0.029354 —-0.029541 -0.029817
1.0 0.030777 0.029619 0.027771 0.025213 0.021947 0.017987
15 0.329384 0.313178 0.294404 0.273251 0.249973 0.224883
2.0 0.659305 0611714 0.561455 0.509161 0.455528 0401298
25 0.520058 0.472065 0423821 0.375876 0.328787 0.283103
3.0 0.182424 0.162458 0.143037 0.124335 0.106518 0.089739
35 0.030408 0.026621 0.023025 0.019643 0.016495 0.013598
40 —0.254595 -0.219872 -0.187526 -0.157658 -0.130344 —0.105640
45 0.000105 0.000089 0.000073 0.000060 0.000047 0.000036
5.0 0.000002 0.000002 0.000001 0.000001 0.000001 0.000000

pulses, the state ¢(t) evolves according to (12) with tempering parameter ¢(¢). The
nonlocal condition prescribes ¢(0) = ¢ + 1(¢), so the initial level reflects aggregated
pre-history. At the impulse times, A¢(%),i € {1,2}, producing visible jump discontinu-
ities at £; = 1 and ¢, = 4. For ¢ # t;, paths are continuous but unpredictable due to the
stochastic forcing; immediately after each impulse, the trajectory relaxes toward the drift-
dominated trend with a fractional-order memory kernel, which is shortened by temper-

ing.
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— a=05
06 — a=06
— a=07
04 a=08
— a=09
02 — a=1.0
_ 00
v -0.2
-04
-0.6
-0.8
0 1 3 1 5
Time t
Figure 3 The solution to (12) at t € [0,5],and 0.5 < o < 1.0 without stochastic term
Table 4 £(t) for 0.5 <« < 1 with stochastic term
t a=05 a=06 a=07 a=08 a=09 a=10
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 -0.031958 -0.031718 -0.031564 -0.031502 -0.031537 -0.031672
1.0 -0.027261 -0.028410 -0.030250 -0.032799 —-0.036057 —0.040008
1.5 0.367610 0.352949 0.335779 0.316291 0.294741 0.271445
20 0.685351 0.639583 0.591265 0.541036 0.489598 0437697
25 0451315 0.396979 0.341862 0.286490 0.231398 0.177121
3.0 0.172764 0.151731 0.131138 0.111156 0.091950 0.073675
35 0.030797 0.027059 0.023517 0.020195 0.017112 0.014284
40 -0.255414 —-0.220805 —0.188586 -0.157658 -0.131694 —-0.107149
4.5 0.000105 0.000089 0.000073 0.000060 0.000047 0.000036
50 0.000002 0.000002 0.000001 0.000001 0.000001 0.000000
— a=05
10 — a=06
— a=07
a=08
—_— a=09
05 — a=10

q(e)

00

-1.0

Time t

Figure 4 The solutionto (12) at t € [0,5],and 0.5 < & < 1.0 with stochastic term

Tables (1, 2) and Fig. (1, 2) represent the solution ¢(¢) for ¢ € [0,4.5] with impulses at
t; =1 and £, = 4. Tables (3, 4) and Fig. (3, 4) represent the solution ¢ (¢) for ¢ € [0, 5] with
impulses at t; = % and £, = 4. With the aid of Theorem 5, Equation (12) has a US since this

simulation makes it evident where the result is.

Page 18 of 20
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5 Conclusion

In this paper, we have established the EU of solution for a class of SFIDEs incorporating
the T'¢-CD with nonlocal condition in a BS. By utilizing TDT, we have provided a rigor-
ous mathematical foundation for addressing the challenges posed by stochastic perturba-
tions, memory effects, and impulse influences. The inclusion of Gaussian noise enhances
the model’s relevance in capturing real-world uncertainties and dynamic fluctuations. Our
findings contribute to the growing field of SFIDEs and extend existing results by incorpo-
rating both impulse effects and tempered fractional derivatives. Future research could fo-
cus on numerical methods for approximating solutions, and exploring stability properties
under different stochastic perturbations.
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