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EXISTENCE AND UNIQUENESS RESULTS FOR

ψ-FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS WITH BOUNDARY CONDITIONS

Devaraj Vivek, E. M. Elsayed, and

Kuppusamy Kanagarajan

Abstract. We study boundary value problems (BVPs for short) for the inte-
gro-differential equations via ψ-fractional derivative. The results are obtained

by using the contraction mapping principle and Schaefer’s fixed point theorem.
In addition, we discuss the Ulam–Hyers stability.

1. Introduction

In this paper, we investigate the existence and Ulam–Hyers stability results for
ψ-fractional integro-differential equation with boundary condition of the form

c
D
α;ψ

u(t) = F

(

t, u(t),

∫ t

0

h(t, s, u(s))ds

)

, for each lt ∈ I := [0, T ], α ∈ (0, 1),(1.1)

au(0) + bu(T ) = c,(1.2)

where cDα;ψ is the ψ-Caputo fractional derivative of order α. Let F, ψ : I×R → R,
h : ∆×R → R are continuous functions and a, b, c are real constants with a+b 6= 0.
Here ∆ : {(t, s) : 0 6 s 6 t 6 T }. For sake of brevity, we take

Hu(t) =

∫ t

0
h(t, s, u(s))ds.

Fractional differential equations (FDEs) have recently confirmed to be impor-
tant tools in the modelling of many phenomena in different fields of science and
engineering. There are various applications to problems in viscoelasticity, electro-
chemistry, control, porous media, electromagnetics, etc. (see [4,11] and references
therein). There is a significant growth in ordinary and partial differential equa-
tions involving both Riemann–Liouville and Caputo fractional derivatives in mod-
ern years; see the monographs of Hilfer [13], Podlubny [20] and Samko et al. [21].
The theoretical study of these kinds of differential equations is significant for the
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applicability on the reality. For that reason, as a part of theoretical study, the pre-
knowledge of the existence of a solution to FDEs is the first action for finding the
analytic solution. Many natural phenomena can be formulated by BVPs of FDEs.
We mention here some works on FDEs with boundary conditions (see [5,7–10] and
references therein). In [1], Aghajani et al. studied the solvability of a large class
of nonlinear fractional integro-differential equations by establishing some fractional
integral inequalities and using the nonlinear alternative Leray–Schauder type. Bal-
achandran and Kiruthika analysed the existence of solutions of nonlinear fractional
integrodifferential equations of Sobolev type with nonlocal condition in Banach
spaces [6]. Very recently, Almeida [2] introduced the so-called ψ-fractional deriva-
tive with respect to another function. For more informations on ψ-type derivatives,
see [12,22].

The rest of the paper is arranged as follows. In Section 2, we recall some useful
preliminaries. In Section 3, we give some sufficient conditions of the existence of
the solutions and Ulam–Hyers stability is considered in Section 4.

2. Fundamental concepts

By C(I,R) we denote the Banach space of all continuous functions from I into
R with the norm ‖u‖∞ := sup{|u(t)| : t ∈ I}.

For a detailed study on ψ-fractional derivative, we refer to [2,23].

Definition 2.1. Let α > 0, I = [0, T ] be a finite or infinite interval, F an
integrable function defined on I and ψ ∈ C1(I,R) an increasing function such that
ψ′(t) 6= 0, for all t ∈ I. Factional integrals and fractional derivatives of a fuction F

with respect to another function ψ are defined as follows:

Iα;ψF(t) : =
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s)ds,

Dα;ψF(t) : =
( 1

ψ′(t)

d

dt

)n

In−α;ψF(t)

=
1

Γ(n− α)

( 1

ψ′(t)

d

dt

)n
∫ t

0
ψ′(s)(ψ(t) − ψ(s))n−α−1F(s)ds,

respectively, where n = [α] + 1.

We declare the following generalization of Gronwall’s lemma for ψ-fractional
derivative. It plays a vital role in the proof of Ulam–Hyers stability.

Lemma 2.1. [23, Theorem 3] Let Z,W : [0, T ] → [0,∞) be continuous functions

where T 6 ∞. If w is nondecreasing and there are constants k > 0 and 0 < α < 1
such that

Z(t) 6 W(t) + k

∫ t

0
ψ′(t)(ψ(t) − ψ(s))α−1Z(s)ds, t ∈ [0, T ],

then

Z(t) 6 W(t) +

∫ t

0

( ∞
∑

n=1

(kΓ(α))n

Γ(nα)
(ψ(t) − ψ(s))nα−1W(s)

)

ds, t ∈ [0, T ].
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Remark 2.1. [23] Under the hypothesis of Lemma 2.1, let W(t) be a nonde-
creasing function on [0, T ]. Then we have Z(t) 6 W(t)Eα;ψ(kΓ(α)(ψ(t))α).

Theorem 2.1 (Banach’s fixed point theorem). Let C be a non-empty closed

subset of a Banach space X, then any contraction mapping P of C into itself has

a unique fixed point.

Theorem 2.2 (Schaefer’s fixed point theorem). Let P : C(I,R) → C(I,R)
completely continuous operator. If the set

κ = {u ∈ C(I,R) : u = λP(u) for some λ ∈ (0, T )}

is bounded, then P has at least a fixed point.

3. Existence results

Let us begin by defining what we point out by a solution of the problem
(1.1)–(1.2).

Definition 3.1. A function u ∈ C1(I,R) is said to be a solution of (1.1)–(1.2)
if u satisfied the equation cDα;ψu(t) = F(t, u(t)) on I, and the condition au(0) +
bu(T ) = c.

We need the following lemma to derive the existence of solutions for the problem
(1.1)–(1.2).

Lemma 3.1. [22] Let α ∈ (0, 1) and let F, ψ : I → R, h : ∆ × R → R be

continuous. A function u is a solution of the ψ-fractional integral equation

u(t) = u0 +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s, u(s),Hu(s))ds

if and only if u is a solution of the initial value problem for the ψ-fractional differ-

ential equation

cDα;ψu(t) = F(t, u(t),Hu(t)), for each t ∈ I := [0, T ], α ∈ (0, 1), u(0) = u0.

Due to a result of Lemma 3.1 we have the following result which is helpful in
what follows.

Lemma 3.2. Let α ∈ (0, 1) and let F, ψ : I → R, h : ∆ ×R → R be continuous.

A function u is a solution of the ψ-fractional integral equation

u(t) =
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s, u(s),Hu(s))ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1F(s, u(s),Hu(s))ds− c

]

if and only if u is a solution of the ψ-fractional BVP

cDα;ψu(t) = F(t, u(t),Hu(t)), for each t ∈ I := [0, T ], α ∈ (0, 1),

au(0) + bu(T ) = c.

We impose the following assumptions:
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(A1) The function F : I × R → R is continuous.
(A2) There exists a constant K > 0 such that

|F(t,X) − F(t, X̄)| 6 K|X − X̄|, for each t ∈ I, ∀X, X̄ ∈ R.

(A3) There exists a constant M > 0 such that

|F(t,X, X̄)| 6 M for each t ∈ I and ∀X, X̄ ∈ R.

(A4) The function h : ∆ × R → R is continuous and there exists a constant
H1 > 0 such that

|h(t, s,X) − f(t, s, X̄)| 6 H1|X − X̄|, ∀X, X̄ ∈ R.

Our first result is derived from the Banach fixed point theorem.

Theorem 3.1. Suppose (A1), (A2) and (A4) hold. If

(3.1)
K(1 + H1)(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)

< 1,

then the BVP (1.1)–(1.2) has only one solution on I.

Proof. Convert the problem (1.1)–(1.2) into a fixed point problem. Let Φ =
C(I,R). Consider the operator P : Φ → Φ defined by

(3.2) Pu(t) =
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1f(s, u(s),Hu(s))ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1f(s, u(s),Hu(s))ds− c

]

.

Noticeably, the fixed points of the operator P are solution of the problem
(1.1)–(1.2). We shall employ the Banach contraction principle to verify that P

defined by (3.2) has a fixed point. We shall demonstrate that P is a contraction.
Let u, v ∈ Φ. Then, for each t ∈ I we have

|P(u)(t) − P(v)(t)| 6
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)

− ψ(s))α−1|F(s, u(t),Hu(s)) − F(s, v(t),Hv(s))|ds

−
|b|

|a+ b|Γ(α)

∫ T

0
ψ′(s)(ψ(T )

− ψ(s))α−1|F(s, u(t),Hu(s)) − F(s, v(s),Hv(s))|ds

6
K(1 + H1)‖u − v‖∞

Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1ds

−
|b|K(1 + H1)‖u − v‖∞

|a+ b|Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1ds

6

[K(1 + H1)(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)]

‖u − v‖∞.
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Therefore,

‖P(u) − P(v)‖∞ 6

[K(1 + H1)(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)]

‖u − v‖∞.

As a result by (3.1), P is a contraction. Due to a result of the Banach fixed
point theorem, we deduce that P has a fixed point which is a solution of the problem
(1.1)–(1.2). �

The next result is derived from Schaefer’s fixed point theorem.

Theorem 3.2. Suppose (A1), (A3) and (A4) hold. Then the BVP (1.1)–(1.2)
has at least one solution on I.

Proof. We shall make use of Schaefer’s fixed point theorem to verify that P

defined by (3.2) has a fixed point. The proof will be given in some steps.

Claim 1: The operator P is continuous. Let {un} be a sequence such that
un → u in Φ. Then for each t ∈ I

|P(un)(t) − P(u)(t)|

6
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1|F(s, un(s),Hun(s)) − F(s, u(s),Hu(s))|ds

+
|b|

|a+ b|Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1|F(s, un(s),Hun(s)) − F(s, u(s),Hu(s))|ds

6
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1 sup

s∈I

|F(s, un(s),Hun(s)) − F(s), u(s),Hu(s))|ds

+
|b|

|a+ b|Γ(α)

∫ T

0
ψ′(s)(ψ(T )−ψ(s))α−1 sup

s∈I

|F(s, un(s),Hun(s))−F(s, u(s),Hu(s))|ds

6
1

Γ(α)

[
∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1ds

+
|b|

|a+ b|

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1ds

]

‖F(·, un(·),Hun(·)) − F(·, u(·),Hu(·))‖∞

6
(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)

‖F(·, un(·),Hun(·)) − F(·, u(·),Hu(·))‖∞.

Since F is a continuous function, we have

‖P(un) −P(u)‖∞ 6
(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)

‖F(·, un(·),Hun(·)) −F(·, u(·),Hu(·))‖∞.

Claim 2: The operator P maps bounded sets into bounded sets in Φ. In fact,
it is sufficient to prove that for any q > 0, there exists a poitive constant ζ such
that for each u ∈ Dq = {u ∈ Φ: ‖u‖∞ 6 q}, we have ‖P(u)‖∞ 6 ζ.

By (A3) we have for each t ∈ I

|P(u)(t)| 6
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1|F(s, u(s),Hu(s))|ds
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+
|b|

|a+ b|

1

Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1|F(s, u(s),Hu(s))|ds +

|c|

|a+ b|

6
M

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1ds

+
|b|

|a+ b|

M

Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1ds+

|c|

|a+ b|

6
M

Γ(α+ 1)
(ψ(T ))α +

M|b|

|α+ 1|Γ(a+ b)
(ψ(T ))α +

|c|

|a+ b|
.

Therefore,

‖P(u)‖∞ 6
M

Γ(α+ 1)
(ψ(T ))α +

M|b|

|a+ b|Γ(α+ 1)
(ψ(T ))α +

|c|

|a+ b|
:= ζ.

Claim 3: The operator P maps bounded sets into equicontinuous sets of Φ.
Let t1, t2 ∈ I, t1 < t2, Dq be a bounded set of Φ as in Claim 2, and let u ∈ Dq.
Then

|P(u)(t2) − P(u)(t1)|

6

∣

∣

∣

∣

1

Γ(α)

∫ t1

0
ψ′(s)[(ψ(t2) − ψ(s)))α−1 − (ψ(t1) − ψ(s))α−1]F(s, u(s),Hu(s))ds

+
1

Γ(α)

∫ t2

t1

ψ′(s)(ψ(t2) − ψ(s))α−1F(s, u(s),Hu(s))ds

∣

∣

∣

∣

6
M

Γ(α)

∫ t1

0
ψ′(s)[(ψ(t2) − ψ(s)))α−1 − (ψ(t1) − ψ(s))α−1]ds

+
M

Γ(α)

∫ t2

t1

ψ′(s)(ψ(t2) − ψ(s))α−1ds

6
M

Γ(α+ 1)
(ψ(t2) − ψ(t1))α +

M

Γ(α+ 1)
((ψ(t1))α − (ψt2))α).

Since t1 → t2, the right-hand side of the above inequality tends to 0. Because, a
result of Stage 1 to 3 together with the Arzela–Ascoli theorem, we can finish that
F : Φ → Φ is continuous and completely continuous.

Claim 4: A priori bounds. Now it remains to prove that the set

κ = {u ∈ Φ :=: u = λP(u) for some λ ∈ (0, 1)}

is bounded.
Let u ∈ κ, then λP(u) for some λ ∈ (0, 1). Hence, for each t ∈ I we have

u(t) = λ

[

1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s, u(s),Hu(s))ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
ψ′(s)(ψ(T ) − ψ(s))α−1F(s, u(s),Hu(s))ds− c

]]

.
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We complete this stage by considering the estimation in Claim 2. The same
as a result of Schaefer’s fixed point theorem, we finish the proof that P has fixed
point which is the solution of the problem (1.1)–(1.2). �

4. Ulam–Hyers–Rassias stability

In this part, we study the Ulam stability of BVP for ψ-fractional differential
equations (1.1)–(1.2). There are many works on the Ulam-stability of solutions for
fractional differential equations. We mention here some works [3, 14–19, 24]; also
see the references cited therein. A similar idea can be found in [7]. But there is
no work on the Ulam stability results for ψ-fractional integro-differential equations
with boundary conditions. Now we consider the Ulam stability for the following
problem

(4.1) cDα;ψu(t) = F(t, u(t),Hu(t)), t ∈ I := [0, T ],

and the following inequalities:

|cDα;ψZ(t) − F(t,Z(t),HZ(t))| 6 ǫ, t ∈ I,(4.2)

|cDα;ψZ(t) − F(t,Z(t),HZ(t))| 6 ǫϕ(t), t ∈ I,(4.3)

|cDα;ψZ(t) − F(t,Z(t),HZ(t))| 6 ϕ(t), t ∈ I.(4.4)

Definition 4.1. Equation (4.1) is Ulam–Hyers stable if there exists a real
number Cf > 0 such that for each ǫ > 0 and for each solution Z ∈ Φ of inequality
(4.2) there exists a solution u ∈ Φ of equation (4.1) with

|Z(t) − u(t)| 6 Cf ǫ, t ∈ J.

Definition 4.2. Equation (4.1) is generalized Ulam–Hyers stable if there exists
ψf ∈ C([0,∞), [0,∞)), ψf (0) = 0 such that for each solution Z ∈ Φ of inequality
(4.2) there exists a solution u ∈ Φ of equation (4.1) with

|Z(t) − u(t)| 6 ψf ǫ, t ∈ J.

Definition 4.3. The equation (4.1) is Ulam–Hyers-Rassias stable with respect
to ϕ ∈ Φ if there exists a real number Cf > 0 such that for each ǫ > 0 and for each
solution Z ∈ Φ of inequality (4.3) there exists a solution u ∈ Φ of equation (4.1)
with

|Z(t) − u(t)| 6 Cf ǫϕ(t), t ∈ J.

Definition 4.4. Equation (4.1) is generalized Ulam–Hyers–Rassias stable with
respect to ϕ ∈ Φ if there exists a real number Cf,ϕ > 0 such that for each solution
Z ∈ Φ of inequality (4.4) there exists a solution u ∈ Φ of equation (4.1) with

|Z(t) − u(t)| 6 Cf,ϕϕ(t), t ∈ J.

Remark 4.1. A function Z ∈ Φ is a solution of (4.2) if and only if there exists
a function g ∈ Φ (which depend on Z) such that

(1) |g(t)| 6 ǫ, t ∈ I; (2) cDα;ψZ(t) = F(t,Z(t),HZ(t)) + g(t), t ∈ I.
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Remark 4.2. Let α ∈ (0, 1), if Z ∈ Φ is a solution of the inequality (4.2), then
Z is a solution of the following inequality
∣

∣

∣

∣

Z(t)−Az−
1

Γ(α)

∫ t

0

ψ
′(s)(ψ(t)−ψ(s))α−1F(s,Z(s),HZ(s))ds

∣

∣

∣

∣

6 ǫ
(ψ(T ))α

Γ(α+ 1)

(

1+
|b|

|a+ b|

)

.

In fact, by Remark 4.1, we have that cDα;ψZ(t) = F(t,Z(t),HZ(t)) + g(t), t ∈ I.
Then

Z(t) = Az +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s,Z(s),HZ(s))ds

+
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1g(s)ds

−
( b

a+ b

) 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1g(s)ds, t ∈ I,

with

AZ =
1

a+ b

[

c−
b

Γ(α)

∫ T

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s,Z(s),HZ(s))ds

]

.

From this it follows that
∣

∣

∣

∣

Z(t) − Az −
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s,Z(s),HZ(s))ds

∣

∣

∣

∣

=

∣

∣

∣

∣

1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1g(s)ds

−
( b

a+ b

) 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1g(s)ds

∣

∣

∣

∣

6
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1|g(s)|ds

−
( b

a+ b

) 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1|g(s)|ds

6 ǫ
(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)

.

Remark 4.3. Undoubtedly,
Definition 4.1 ⇒ Definition 4.2 and Definition 4.3 ⇒ Definition 4.4.

Remark 4.4. A solution of the ψ-fractional diferential equations with bound-
ary condition inequality (4.2) is called an ǫ-solution of problem (4.1).

Theorem 4.1. Suppose (A1), (A2), (A4) and (3.1) hold. Then, the problem

(1.1)–(1.2) is Ulam–Hyers stable.

Proof. Let ǫ > 0 and let Z ∈ Φ be a function which satisfies inequality (4.2)
and let u ∈ Φ be the unique solution of the following problem

cDα;ψu(t) = F(t, u(t),Hu(t)), t ∈ I, α ∈ (0, 1),

u(0) = Z(0), u(T ) = Z(T ).
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Using Lemma 3.2, we obtain

u(t) = Au +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s, u(s),Hu(s))ds.

Alternatively, if u(0) = Z(0), u(T ) = Z(T ), then Au = AZ. In fact,

|Au − AZ| 6
|b|

|a+ b|Γ(α)

∫ T

0
ψ′(s)(ψ(t) − ψ(s))α−1|F(s, u(s),Hu(s))

− F(s,Z(s),HZ(s))|ds

6
K(1 + H1)|b|

|a+ b|
Iα;ψ|u(T ) − Z(T )| = 0.

Therefore, Au = AZ . We have

u(t) = AZ +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s, u(s),Hu(s))ds.

By integration of inequality (4.2) and using Remark 4.2, we obtain

∣

∣

∣

∣

Z(t) − Az −
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s,Z(s),HZ(s))ds

∣

∣

∣

∣

6 ǫ
(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)

.

We have for any t ∈ I

|Z(t) − u(t)| 6

∣

∣

∣

∣

Z(t) − Az −
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1F(s,Z(s),HZ(s))ds

∣

∣

∣

∣

+
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1|F(s, u(s),Hu(s))

− F(s,Z(s),HZ(s))|ds

6 ǫ
(ψ(T ))α

Γ(α+ 1)

(

1 +
|b|

|a+ b|

)

+
K(1 + H1)

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1|Z(s) − u(s)|ds

Using the Gronwall inequality, Lemma 2.1 and Remark 2.1, we obtain

|Z(t) − u(t)| 6
(

1 +
|b|

|a+ b|

)ǫ(ψ(T ))α

Γ(α+ 1)
Eα;ψ(K(1 + H1(ψ(T ))α).

Thus, the problem (1.1)–(1.2) is Ulam–Hyers stable. �

Theorem 4.2. Suppose (A1)–(A2), inequality (3.1) and

(A4) there exists an increasing function ϕ ∈ Φ and λϕ > 0 such that

Iα;ψϕ(t) 6 λϕϕ(t), for each t ∈ I

hold. Then problem (1.1)–(1.2) is Ulam–Hyers–Rassias stable.
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Remark 4.5. Under the assumptions of Theorem 4.1, we consider problem
(1.1)–(1.2) and inequality (4.4). One can repeat the same process to verify that
problem (1.1)–(1.2) is Ulam–Hyers–Rassias stable.
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