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Abstract
Global pairwise biological network alignment is a pervasive technique in bioinformatics 
and computational biology. Even now, the computation of network alignment is a challeng-
ing effort for delivering an efficient and statistically significant results. Thus, the optimiza-
tion algorithms have been used to get the precise results of protein network alignment. In 
this work, an Improved Firefly Optimization Algorithm method was used to align the bio-
logical protein networks in a pairwise technique which resulted in an optimal solution. By 
utilizing the final outcome of network alignment, the function of proteins in a network and 
KEGG pathways was also obtained and found that the aligned proteins have more func-
tions that are common in nature.

Keywords  Protein network alignment · IFOA method · Synthetic networks · Real-world 
networks · Symmetric substructure score · Gene-ontology Precision

Abbreviations
PPI	� Protein–protein interaction
GRAAL	� GRAph Aligner
S3	� Symmetric substructure score
IFOA	� Improved Firefly Optimization Algorithm
GoP	� Gene-ontology precision
SANA	� Simulated annealing network aligner

1  Introduction

Bioinformatics field works with a large amount of data and it is very difficult to discover 
new biological knowledge using generic algorithms. Due to the drastic development in the 
large-scale computation, many metabolic networks, signalling networks, protein–protein 
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interaction (PPI) networks and many other networks are built and deposited in several data-
bases. However, the biological function annotations of these networks are not much identi-
fied [1].

Aligning the PPI networks of any unique organism is vital. It has a widespread applica-
tion in detecting orthologous proteins, protein complex detections, predicting gene func-
tions, shared pathways, conserved functional modules and evolutionary common ancestor 
and many more. In concise, the network alignment goal is to identify the analogy and dif-
ferences between various biological networks.

Primarily, the approaches of network alignment can be categorized into two techniques. 
One is a local network alignment (LNA), which compares a part of the protein network 
(sub-network) to detect the topological similarity. But here the aligned sub-networks are 
overlying which gives rise to many-to-many indefinite relationship mappings [2, 3]. To 
overcome this drawback, another alignment technique, global network alignment (GNA) 
that compares the entire protein network, which results in a one-to-one relationship map-
ping of proteins [4] is used. Also, the other two major approaches for aligning protein net-
works are classified into two types. One is pairwise network alignment, which aligns with 
only pairs of networks. Another approach is the multiple network alignment, which aligns 
with more than two protein networks simultaneously to infer the biological functions of 
diverse organisms.

Generally, protein network alignment is used to detect how precisely the similar-
ity should be identified and matched between different protein networks. The similarity 
detected can be either topological or biological function similarity. The similarity of either 
structure of a protein network, topology or edges around the proteins in the PPI network is 
called topological similarity and the similarity is calculated by using protein functions is 
called functional similarity [5–7].

Most of the network aligners are classified into two main categories. One is the most 
popular two-stage alignment method. In the first stage, the similarity matrix was calculated 
to show the similarity between two networks, and in the second stage, an identical pair of 
nodes was aligned primarily by giving the input of similarity matrix to ‘seed-and-extend’ 
method [8].

Some of the aligners are IsoRank [9], GRAAL (GRAph ALigner) which has the fam-
ily of algorithms that use the graphlet counts to calculate mathematically hard topologi-
cal node similarity scores. C-GRAAL (common neighbors based global biological network 
alignment) [10], L-GRAAL (Lagrangian based global biological network alignment) [11], 
MI-GRAAL (Matching based integrative global protein interaction network alignment 
[12], GHOST [13], ModuleAlign [14], PROPER (PROtein–protein interaction network 
alignment based on PERcolatin) [15] and Ulign [16].

The second most popular alignment category is search-based alignment techniques. 
They practice metaheuristic algorithms to improve a population of alignments. Some of the 
example aligners are MAGNA [17], MAGNA++ [18], Artificial Bee Colony optimization 
(NABEECO) [19], Ant Colony Optimization (ACOGNA) [4], Optnetalign [8], SUMONA 
[20], Particle Swarm Optimization (PSONA) [1], PISwap [21], SANA (Simulated anneal-
ing network aligner) [22], and WAVE (Weighted Alignment VotEr) [23].

Evolving an accurate network alignment of two or more protein networks obtained from 
different organisms is a hard-computational task which is considered as an NP-complete 
optimization problem. It is difficult to explore the tradeoff among the biological functions 
and topological similarity. When dealing with large networks the computational complex-
ity is a big threat. Thus, this paper deals with a stochastic optimization technique for the 
global network alignment to distinguish the tradeoff between the topological and biological 
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function similarity with better alignment results. The remaining segments of the paper are 
ordered as follows: Sect. 2 defines the materials and methods of proposed IFOA method for 
global network alignment. Section 3 shows the analyses of the experiments accomplished 
on different datasets, comparison of results with existing methods and finally, Sect. 4 dis-
cusses the implementation and its outcome of the proposed approach and also deliberates 
the conclusion of the paper and recommendations for future enhancement.

2 � Materials and Methods

2.1 � Firefly Optimization Algorithm

The projected IFOA (Improved Firefly Optimization Algorithm) method was employed to 
find, the optimal solution for the pairwise global network alignment. The firefly optimiza-
tion algorithm is a swarm intelligence and a novel meta-heuristic optimization algorithm 
stimulated by the population of fireflies twinkling behaviour. It was proposed by Yang [24] 
and it has been evidenced to be an effective optimization algorithm to explore the global 
optimum solution.

The communication among the fireflies is directed by the following rules:

1.	 Every single firefly is unisex; therefore, they are fascinated with alternative fireflies 
irrespective of their sex.

2.	 The distance and brightness between the fireflies direct the attractiveness. For any pair 
of firefly, the attractiveness is directly corresponding to the brightness of a firefly. Hence, 
the less bright firefly will transfer towards the brighter firefly. As the distance raises 
between these pair of fireflies, then both the attractiveness and brightness of the firefly 
will be decreased as they are directly proportional. If none of the fireflies is brighter 
than a distinct firefly, then it will travel arbitrarily.

3.	 The firefly’s brightness is denoted as light intensity, (I) and it is affected by the signifi-
cance score of the fitness function.

2.1.1 � Major steps involved in Firefly Optimization Algorithm (FOA) method:

(a)	 Unaligned biological network: This work portrays the pairwise global network align-
ment which is the distinctive alignment among two biological networks, by exploring 
the maximal sequence, topological and biological function similarity among them. In 
this work, the two biological PPI networks, namely N1 (Vt1, Ed1) and N2 (Vt2, Ed2) with 
Vt1, Ed1 and Vt2, Ed2 as the group of nodes which represents the proteins and group of 
edges that represents the interactions between the proteins respectively. Let m =|Vt1| 
and n =|Vt2| represents the number of protein elements in Vt.

(b)	 Initial population of networks: Initially the number of protein network population is 
formed by constructing an alignment between two protein networks randomly. Always, 
the network will be aligned when |Vt1| ≤|Vt2| where all the proteins in Vt1 can be 
mapped with Vt2. Here, the alignment of two protein networks N1 and N2 are defined 
as an injective function f: Vt1 → Vt2, where every single protein of Vt1 is mapped exclu-
sively with a protein of Vt2 [17]. The example illustration of global pairwise network 
alignment used in this paper is depicted in Fig. 1.
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	   In Fig 1, the global pairwise network alignment between two protein networks are 
N1 and N2. The N1 protein network has Vt1 vertices and Ed1 edges also the N2 protein 
network has Vt2 vertices and Ed2 edges. Here every single protein of Vt1 is connected 
exclusively with a protein of Vt2 such as A→a, B→b, C→c, D→d.

	   Here, each firefly signifies a protein network alignment between two networks that 
gives a candidate solution.

(c)	 Fitness calculation: Subsequently, once the network alignment is built, the fitness 
(brightness of the firefly) of the particular network alignment is calculated. In this 
paper, the symmetric substructure score (S3) and Gene-ontology Precision (GoP) meas-
ures were the criteria to design the fitness function.

•	 Brightness: For a maximization problem, the brightness of a firefly directly cor-
responds to the significance score of the objective function (fitness function) 
which is denoted by: LI(x) = f(x), where f(x) is the objective function to calculate 
the performance measures such as S3 and GoP. The formula for calculatindg S3 
and GoP is given in Eqs. (10) and (11).

(d)	 Find the best individual: Once the evaluation of fitness was accomplished, the objec-
tive function scores are arranged in an ascending order and the best individual (the 
most attractive) of protein network alignment that has the maximum objective function 
is identified among all other individuals.

•	 Attractiveness: Here, the movement of one firefly (protein network alignment) 
towards other fireflies is based on the attractiveness of other fireflies. Here the 
movement represent the changing of the alignment. The attractiveness of the fire-
flies varies with the brightness which in turn is related to the objective function. 
The light intensity is determined as the quantity of brightness transferred and it 
differs with the distance between proteins. It is known to differ inversely with the 
square of increasing distance and is given by

where LI0 is the opening light intensity and γ is the coefficient of light absorption 
which regulates the decline of light intensity and d is the distance between two 
fireflies.

(1)LI = LI0e
−�d

Fig. 1   Illustration of Global 
Pairwise Network Alignment
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	   Certainly, larger the distance d ab (distance between the firefly a and b), the 
dim light of the fireflies can perceive from each other. The better alignment can-
not be obtained when the distance is larger between the fireflies.

	   The main form of firefly attractiveness is denoted by β(d),

where d is the space gap between two fireflies a and b, β0 is the firefly attractiveness 
for d = 0 and γ is a coefficient constant of light absorption.

•	 Distance: The Euclidean distance is used in this paper to calculate the space 
gap between two fireflies a and b at xa and xb and it is denoted by

where xa,k stands for the kth component node of the spatial coordinate of aligned 
graph xa of ath firefly and xb,k stands for the kth component node of the spatial coor-
dinate of aligned graph xb of bth firefly.

(e)	 Realignment of network towards its attractiveness: The network alignment of all 
other remaining individuals is realigned (movement) towards the best individual to get 
better objective function scores.

•	 Movement: The migration of a firefly a is fascinated to another more attractive 
(brighter) firefly b is defined by

The above equation is based on the attraction and the randomization parameter 
where α is termed as random weight parameter or size of the step which lies in the 
interval [0–1] and the rand is a random value initiator with uniform distribution in 
[0,1] and t represents the current iteration.

(f)	 Check the condition: The above process is accomplished till the algorithm reaches 
the maximum number of generations or the objective function scores get diverged or 
the objective function score is identical for a few consecutive generations.

(g)	 Stop the process: Once the condition becomes true, the process has been terminated.

2.2 � Improved Firefly Optimization Algorithm (IFOA)

The goal of any population-based algorithm is to ensure the balance between exploita-
tion and exploration to identify the optimal solution. So, to accommodate the above 
specifications, it is essential that population should initially diverge and explore the 
entire search space instead of probing around the best firefly. Then in future steps, 
population starts to converge towards the best firefly and try to identify the optimum 
solution around it. In addition, the early convergence around the local minima is the 
common issue for all population-based algorithms [25].

(2)�(d) = �0e
−�d2

(3)da,b =
||||xa − xb

|||| =

√√√√
r∑

k=1

(
xa,k − xb,k

)2

(4)xt+1
a

= xt
a
+ �_0e−�d

2

ab

(
xt
b
− xt

a

)
+ �(rand−1∕2)
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2.2.1 � Balance Between Exploitation and Exploration

The traditional FOA method suffers from the appropriate balance between exploitation and 
exploration. To rectify the disadvantages of traditional FOA, a novel improved firefly opti-
mization algorithm (IFOA) is proposed by presuming that fireflies are arbitrarily gener-
ated and dispersed in search space and initially every firefly updates its location according 
to Eq. (8) and its corresponding fitness function is computed. Later, the updated firefly’s 
fitness function is compared to remaining fireflies and updates its location in further pro-
cess. Fundamentally, initial location of firefly is modified and employed for subsequent 
calculations.

In this method the exploitation and exploration of an algorithm is controlled by includ-
ing a new parameter termed ‘E’. The value of ‘E’ chooses whether firefly travel towards 
or away from the best firefly (bf). Moreover, the ‘E’ depends on the value of e index which 
lies in the range of [-3e,3e] where e is the linear decreasing function as given in the Eq. (6) 
and it modifies its value depending on the current iteration and maximum number of itera-
tions. In the initial stage, when E < 1 the firefly deviate and move away from the best firefly 
(bf) in desire of getting improved best firefly (bf) in the search space. During second stage, 
when E > 1, fireflies updates its location towards the best firefly (bf) that directs to more 
convergence. On that account, the proper balance between the exploitation and exploration 
is sustained by adaptively varying the parameter ‘E’.

where r1 is a random value in the range [0,1], M represents the current iteration and 
MGeneration represents the maximum number of iterations.

2.2.2 � Enhanced Exploration Ability

At the beginning, fireflies are arbitrarily produced and separated by larger distance by 
employing a traditional FOA method which leads to increases in diversity. But, after some 
iteration, the diversity gets decreased, because the fireflies arrive closer to each other and 
try to identify the optimal solution around best solution and consequently increase the 
probabilities of falling in local optima. The traditional FOA’s search ability gets reduced 
when premature convergence occurs. So to recover this limitation, the firefly equation is 
altered by including one extra term that comprises of the difference between two random 
fireflies in search space. This will lead to more random walk in search space when firefly 
updates its location towards brighter firefly. The altered equation is given in Eq. (9).

where xt
p
and xt

q
 are randomly chosen fireflies in search space.

(5)E = 3 ∗ e ∗ r1 − e

(6)e = 2 −M ∗
(
(2)∕MGeneration

)

(7)alpha = abs(bf − xt
a
)

(8)xt
a
= best − E ∗ alpha

(9)xt+1
a

= xt
a
+ �

0e
−γd2

ab
(xt

b
− xt

a
) + �(rand −1∕2) + rand ∗ (xt

p
− xt

q
)
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The parameter selection used for the IFOA was displayed in Table 1 with its explanation:
The general pseudocode for IFOA method has been depicted in Fig. 2.
The Schematic representation of the proposed IFOA method for pairwise biological net-

work alignment is depicted in Fig. 3.
From Fig.  3, it is inferred that initially an unaligned two biological protein networks 

have been taken as an input. The pairwise network alignment between these unaligned pro-
tein networks has been done using the IFOA optimization method. As a result of IFOA 
method, an aligned protein network has obtained where every single protein of Vt1 is 
mapped exclusively with a protein of Vt2. Consecutively, once the pairwise protein network 
alignment is built, the similarity of the particular network alignment is calculated using the 
symmetric substructure score (S3) and Gene-ontology Precision (GoP) measures. Finally, 
with these similarity measures the biological significance of attained network alignments 

Table 1   Various parameters used 
for the proposed IFOA method

Parameter Notation in Algorithm

Brightness (LI) Objective function of a problem
Alpha (α) Random weight parameter
Beta (β) Attractiveness of a firefly
Gamma (γ) Absorption coefficient of a firefly
Maximum generations 

(MGeneration)
Number of Iterations

Number of fireflies Number of Population
Dimension (r) Problem dimension space
Distance (d) Exact distance length from the light source

Begin:
Load the algorithm parameters f(x), x = (x1, x2 ...,  xs )M

Randomly create a preliminary population of fireflies xa (a = 1, 2,..., m)  
Compute the fitness value of each firefly (x);
Initialize the parameters like , , , ;

While (M < MGeneration)
For a=1:n

          Update solution using Equation (7) and (8);
Evaluate the fitness LI(x)

       For b=1:n 
If (Ib > Ia)

Move firefly Ia towards Ib using Equation (9) 
Else

Compute fitness of new solution;
End if

End for b
End for a

Rank all the fireflies and update the final best 
End while 
Start the next process for the best results achieved

Fig. 2   Pseudocode for Proposed IFOA method
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identifies the gene ontology function and KEGG pathways in a pair of aligned protein 
network.

The schematic representation of the major steps involved in the proposed IFOA method 
is shown in Fig. 4.

In Fig.  4, the key steps comprised in the proposed IFOA method has been depicted 
clearly. In the First step, an input of two unaligned biological networks have been taken. 
Secondly, the number of protein network population is formed by constructing an align-
ment between two protein networks randomly. Consecutively, once the network alignment 
is built, the fitness (brightness of the firefly) of the particular network alignment is calcu-
lated using S3 and GoP measures.

Once the evaluation of fitness was accomplished, the best individual was found using 
the intensity based on its attractiveness. The above process is accomplished by checking 
the condition that algorithm reaches maximum number of iterations or brightness gets 
converged. Once the condition becomes true, the process has been terminated. Else, the 
network alignment of all other remaining individuals is realigned (movement) towards its 
attractiveness.

2.3 � Performance Measures

In this work, the IFOA method was used for biological global pairwise network alignment. 
The maximization of alignment quality measures such as Symmetric substructure score 
(S3) and Gene-ontology Precision (GoP) leads to explore the optimal solution.

Fig. 3   Schematic Representation of the Proposed IFOA method
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Let f: Vt1 → Vt2 be an alignment among two networks N1 (Vt1, Ed1) and N2 (Vt2, Ed2). If 
P ⊆ N2, let N2 [P] be the induced subnetwork of N2 with a set of node P. Similarly, if Q is a 
subnetwork of N2, let Ed(Q)be its set of edges. Let f(Ed1) = {(f(a), f(b)) ϵ Ed2: (a,b) ϵ Ed1}, and 
let f(Vt1) = {f(b) ϵ Vt2:b ϵ Vt1}.

2.3.1 � Symmetric Substructure Score (S3)

Symmetric substructure score (S3) is defined with reference to both source and target network. 
The |||f

(
Ed1

)||| is described as the ratio of the total quantity of conserved edges with function f. 
The ||Ed1|| is defined as the total quantity of edges in the source network [26] and 
|Ed

(
N2

[
f
(
Vt1

)])
 is described as the total quantity of edges present in the sub-network of N2 

which are aligned to the nodes in N1. Automatically, if N1 and N2 [f(Vt1)] are overlapped into a 
complex graph, then the denominator of S3 is the total quantity of unique edges in this com-
plex graph. The percentage of the S3 value of the function f is 100% only when the function is 
faultless [17].

(10)S3(f ) =

|||f
(
Ed1

)|||
||Ed1|| +

|||Ed
(
N2

[
f
(
Vt1

)])||| −
|||f
(
Ed1

)|||

Fig. 4   Schematic representation of the major steps involved in the proposed IFOA method
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2.3.2 � Gene‑ontology Precision (GoP)

Gene-ontology Precision (GoP) is used to evaluate the accuracy of the aligned network 
with biological relevance [15]. It is defined as the capability of an alignment that involves 
similar functional gene ontology functions such as biological process, molecular function 
and cellular component and it is expressed as:

where p є N1 and q є N2 for aligning pairs of nodes in two protein networks. And GO(p) 
and GO(q) denotes gene ontology annotations related to the protein p and q.

Now the summation of Gene-ontology Precision (GoP) of all aligned proteins in п is 
defined as

3 � Results

The proposed IFOA method was examined with benchmark datasets that used to address 
the protein biological network alignment. It is a high eminence standard protein network 
dataset to find the weak and strong facts of numerous network alignment techniques in pur-
suance to analyze the efficiency of the algorithms. The datasets were collected from vari-
ous benchmark databases like STRING [27], INTACT [28], BIOGRID [29] and Synthetic 
protein interaction network data [17] to observe the proposed algorithm against the other 
existing methods.

This paper employed two prevalent sets of network data such as "synthetic networks" 
in which the node mapping is known in prior and "real-world networks" in which the node 
mapping is unknown. The benchmark synthetic networks dataset comprises of high-con-
fidence yeast protein–protein interaction network [17] which has 1,004 nodes and 8,323 
protein interactions, and also 5 noisy networks have been built by including a proportion 
of low-confidence protein interactions to the high-confidence network from same data set. 
The noise percentage has been varied from 5 to 25% in intervals of 5%. The primary high-
confidence network has been aligned to each of 5 noisy networks, which results in a five 
network aligned pairs. The real-world networks dataset comprises 21 different pairs of 
benchmark protein networks. All the 21 protein networks of different organisms are classi-
fied into three categories. The first category is for bacteria, pathogen and virus, the second 
category is for worms and fly, and the final third category is for mammals and fungus. The 
protein networks used in this research are described in Table  2. Further, the efficacy of 
the projected IFOA method has been evidenced to be better by comparing with different 
network alignment methods, namely, IsoRank, MI-GRAAL, GHOST, MAGNA, PROPER, 
NABEECO, ACOGNA and PSONA. The network alignment performance measures, 
namely, S3 and GoP were considered for an optimal solution.

The algorithm’s initial members of a population are various random alignments of the 
pair of protein networks. The proposed IFOA method was tested with different population 

(11)GoP(f ) =
|GO(p) ∩ GO(q)|
|GO(p) ∪ GO(q)|�

(12)GoP(n) =
∑

p∈N1

GoP(p, n(p))



Improved Firefly Optimization for Pairwise Network Alignment…

1 3

Ta
bl

e 
2  

C
om

m
on

 b
en

ch
m

ar
k 

pr
ot

ei
n 

ne
tw

or
ks

 fr
om

 v
ar

io
us

 d
at

ab
as

es

S.
N

O
D

at
as

et
s (

Re
al

-w
or

ld
 d

at
as

et
s)

C
at

eg
or

y

1
C

am
py

lo
ba

ct
er

 je
ju

ni
 (C

. j
ej

un
i)—

Es
ch

er
ic

hi
a 

co
li 

(E
. c

ol
i)

B
ac

te
ria

, P
at

ho
ge

n 
an

d 
V

iru
s

2
M

es
or

hi
zo

bi
um

 lo
ti 

(M
es

o)
—

Sy
ne

ch
oc

ys
tis

 (S
yn

e)
3

Fr
an

ci
se

lla
 tu

la
re

ns
is

 (F
ra

tt)
—

Ba
ci

llu
s a

nt
hr

ac
is

 (B
ac

an
)

4
Ba

ci
llu

s a
nt

hr
ac

is
 (B

ac
an

)—
Ye

rs
in

ia
 p

es
tis

 (Y
er

pe
)

5
H

er
pe

s S
im

pl
ex

 V
ir

us
es

 (H
SV

)—
Ep

ste
in

-B
ar

r V
ir

us
 (E

BV
)

6
K

ap
os

i’s
 sa

rc
om

a-
as

so
ci

at
ed

 h
er

pe
sv

ir
us

 (K
SH

V)
—

Va
ri

ce
lla

 zo
ste

r v
ir

us
 (V

ZV
)

7
K

ap
os

i’s
 sa

rc
om

a-
as

so
ci

at
ed

 h
er

pe
sv

ir
us

 (K
SH

.*
*V

)—
M

ai
ze

 C
hl

or
ot

ic
 M

ot
tle

 V
ir

us
 (M

C
M

V)
8

C
ae

no
rh

ab
di

tis
 E

le
ga

ns
 (C

E)
—

M
us

 M
us

cu
lu

s (
M

M
)

W
or

m
s a

nd
 F

ly
9

C
ae

no
rh

ab
di

tis
 E

le
ga

ns
 (C

E)
—

D
ro

so
ph

ila
 m

el
an

og
as

te
r (

D
M

)
10

C
ae

no
rh

ab
di

tis
 E

le
ga

ns
 (C

E)
—

H
om

o 
Sa

pi
en

s (
H

S)
11

C
ae

no
rh

ab
di

tis
 E

le
ga

ns
 (C

E)
—

Sa
cc

ha
ro

m
yc

es
 C

er
ev

is
ia

e 
(S

C
)

12
D

ro
so

ph
ila

 m
el

an
og

as
te

r (
D

M
)—

H
om

o 
Sa

pi
en

s (
H

S)
13

D
ro

so
ph

ila
 m

el
an

og
as

te
r (

D
M

)—
Sa

cc
ha

ro
m

yc
es

 C
er

ev
is

ia
e 

(S
C

)
14

D
ro

so
ph

ila
 m

el
an

og
as

te
r (

D
M

)—
M

us
 M

us
cu

lu
s (

M
M

)
15

Ye
as

t-H
um

an
M

am
m

al
s a

nd
 F

un
gu

s
16

Sa
cc

ha
ro

m
yc

es
 C

er
ev

is
ia

e 
(S

C
)—

Ra
ttu

s N
or

ve
gi

cu
s (

RA
T)

17
Sa

cc
ha

ro
m

yc
es

 C
er

ev
is

ia
e 

(S
C

)—
D

ro
so

ph
ila

 m
el

an
og

as
te

r (
D

M
)

18
H

om
o 

Sa
pi

en
s (

H
S)

—
M

us
 M

us
cu

lu
s (

M
M

)
19

U
LI

TS
K

Y-
H

PR
D

20
H

um
an

-H
PR

D
21

H
om

o 
Sa

pi
en

s (
H

S)
—

Ra
ttu

s N
or

ve
gi

cu
s (

RA
T)

Sy
nt

he
tic

 d
at

as
et

s
22

K
ro

ga
n_

20
07

 Y
ea

st 
da

ta
se

t w
ith

 n
oi

se
 le

ve
ls

Fu
ng

us



	 R. Ranjani Rani, D. Ramyachitra 

1 3

sizes such as 200, 500, 1000, 2000, 5000, 10,000, 20,000, 25,000, 30,000. The fitness func-
tion of the algorithm is the performance measure of network alignment quality, namely, S3 
and GoP. The termination criterion is fixed, if the best solution formed in each generation 
remains alike for 100 successive generations or the maximum quantity of generations is 
reached. The proposed IFOA method has been executed for several generations, from 0 to 
3000 in the increment interval of 200.

The grouping of the initial population, the size of the population, the number of genera-
tions and the fitness function of the alignment results in one ultimate alignment.

Consequence of the initial population: The initial population of alignments is con-
structed randomly.

Consequence of the size of the population: The largest population size is always pre-
ferred to gain more alignments. Here, the largest population size is 30000.

Consequence of the number of generations: A large number of generations are always 
preferred to increase more variety of alignments. This may result in better alignments and 
in the improvement of the results.

Consequence of fitness function: The random weight parameter α has the range of [0,1]. 
Because of the existence of the α parameter in the fitness function, the actual alignment 
and the similarity values get varied across different α values and also across different runs 
of the algorithm of same α value. To know the specific random value that gives some bet-
ter results, it requires a trial and error technique on the manipulator side and the complete 
recalculation of alignment is done when the α gets changed. Once the value is found, it can 
be used for other population sizes and generations. In this work, the highest topological 
and biological function similarity values have been achieved when the value of α is 0.8.

The results of network alignment with the diverse values of the population and itera-
tions were given in supplementary results. The best appropriate alignment from the previ-
ous generations is conveyed as the final alignment. The comparison of S3 scores of all three 
categories of real-world benchmark protein network pairs of proposed and existing algo-
rithms is shown in Figs. 5, 6 and 7. When the value of S3 is higher, it is inferred that the 
better alignment of a network is predicted based on the both, dense to the sparse network 
and vice versa.

From Figs. 5, 6 and 7, it is inferred that the proposed IFOA method has been performed 
better and produced the better S3 scores when compared to all other popular existing meth-
ods in all three categories of the real-world protein networks.

The comparison of GoP scores of all three categories of real-world benchmark protein 
network pairs of proposed and existing algorithms is shown in Figs. 8, 9, and 10.

From Figs. 8, 9, and 10, it is clearly inferred that the proposed IFOA method has good 
GoP scores when compared to other methods and also it is inferred that although the 
IsoRank method has less S3 scores when compared to others, it has good average GoP 
scores when compared to MI-GRAAL, GHOST and MAGNA.

The robustness of the proposed IFOA method has been evaluated by adding noise to the 
benchmark high-confidence yeast protein interaction network called synthetic networks. 
The comparison of S3 scores for all 5–25% of noise levels of yeast protein interaction net-
works have been depicted in Fig. 11.

As predicted, a higher noise in a network has a more undesirable effect on the alignment 
results of most of the techniques. However, the proposed IFOA method still reliably out-
performs all other existing techniques beyond different noise levels.

The proposed IFOA method was assessed using the non-parametric test, namely Wil-
coxon Matched-signed Rank test between each pair of techniques in order to produce statis-
tical significance. The transformation between various existing methods and the proposed 
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Fig. 7   Comparisons of average S3 scores for mammals and fungus with proposed and existing algorithms
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method using S3 and GoP scores was verified using the significant confidence level of 5% 
(P-value < 0.05). The p-values less than 0.05 were described as highly significant and the 
values superior than 0.05 were described as insignificant values.
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Fig. 9   Comparisons of average GoP scores for worms and fly with proposed and existing algorithms
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In Table 3, the upper right corner of the matrix is attained from S3 values and the 
lower left corner of the matrix is attained from GoP values by using the Wilcoxon 
Matched-signed Rank test as a non-parametric statistical analysis. It is diagnosed that 
the proposed IFOA method achieves statistically better results over all other methods.

After aligning the pairwise protein networks using the IFOA method, the aligned pro-
teins have more common gene ontology functions and KEGG pathways. One of the pro-
tein network pair namely, Yeast-Human (TAF6_YEAST- TAF10_HUMAN) have shared 
functions and they are highlighted and given below in Table 4. Remaining pairs of pro-
tein networks and their common functions are given in the supplementary material.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 % 1 0 % 1 5 % 2 0 % 2 5 %

S3
SC

O
R

E
S

VARIOUS NOISE LEVELS

C O M P A R I S O N  O F  S 3 S C O R E S
B A S E D  O N  S Y N T H E T I C  N O I S Y  Y E A S T  N E T W O R K S

IsoRank
MI-GRAAL
MAGNA
SANA
NETAL
WAVE
PROPER
NABEECO
ACOGNA
PSONA
FOA
IFOA

Fig. 11   Comparisons of average S3 scores for synthetic noisy Yeast networks with proposed and existing 
algorithms

Table 3   Comparison of S3 and GoP values of the proposed algorithm against other existing algorithms 
using Wilcoxon Signed Rank Test

IsoRank MI-
GRAAL

MAGNA PROPER NABEECO ACOGNA PSONA FOA IFOA

IsoRank 0 0.086 0.071 0.062 0.072 0.052 0.050 0.042 0.040
MI-GRAAL 0.078 0 0.062 0.059 0.060 0.057 0.055 0.049 0.042
MAGNA 0.070 0.075 0 0.067 0.065 0.065 0.069 0.059 0.052
PROPER 0.052 0.050 0.048 0 0.040 0.042 0.045 0.048 0.039
NABEECO 0.050 0.048 0.042 0.048 0 0.040 0.040 0.042 0.046
ACOGNA 0.061 0.050 0.048 0.046 0.039 0 0.030 0.038 0.035
PSONA 0.060 0.054 0.047 0.042 0.038 0.035 0 0.032 0.030
FOA 0.045 0.049 0.050 0.042 0.040 0.035 0.031 0 0.029
IFOA 0.039 0.036 0.039 0.034 0.035 0.032 0.027 0.025 0
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3.1 � Implementation and Discussion

Computing the global pairwise biological protein network alignment with high topologi-
cal and biological function accuracy is still a difficult task. This article presented an IFOA 
method to solve the biological network alignment problem. It has established a significant 
improvement in the alignment accuracy over all other leading network aligners. The net-
work performance measures, namely S3 and GoP were considered for an optimal solution.

The computational execution time of a network alignment using the proposed IFOA 
method is O(n2p) where n is the number of population and p is the number of iterations. 
The construction of realignment will take time. The growing size of the biological network 
may lead to increased time complexity. The proposed IFOA method could be effortlessly 
executed as a parallel to work with huge PPI networks and to reduce the running time.

Subsequently, not all aligners were available under the same platform, the execu-
tion of many of the aligners was done on virtual machines, which prohibited us from 

Table 4   The common gene ontology functions and KEGG pathways for protein TAF6 and TAF10 in Yeast-
Human organism protein networks

Protein network 1 Protein network 2 KEGG 
Pathways for 
Network 1

KEGG 
Pathways 
for Net-
work 2

Yeast-Human TAF6_YEAST TAF10_HUMAN
Molecular Function chromatin binding

identical protein binding
protein complex scaffold 

activity
RNA polymerase II 

activating transcription 
factor binding

transcription factor com-
plex TFIID

DNA binding
enzyme binding
estrogen receptor bind-

ing
RNA polymerase bind-

ing
RNA polymerase II 

activating transcrip-
tion factor binding

transcription factor 
(TFIID) complex

Basal tran-
scription 
factors

Basal 
tran-
scription 
factors

Herpes 
simplex 
infection

Biological Process chromatin organization
histone acetylation
regulation of transcrip-

tion, DNA-templated
RNA polymerase II tran-

scriptional preinitiation 
complex assembly

transcription from RNA 
polymerase II promoter

apoptotic process
DNA-templated tran-

scription, initiation
hepatocyte differentia-

tion
histone acetylation
histone H3 acetylation
protein deubiquitination
regulation of DNA 

binding
regulation of transcrip-

tion, DNA-templated
transcription from 

RNA polymerase II 
promoter

transcription initiation 
from RNA polymerase 
II promoter

Cellular Component Nucleus Cytosol Nucleus Cytosol
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accomplishing an exact comparison of their relative execution time. Thus, here the com-
parison of execution time between different population size and generations has been 
given for the proposed method. The proposed technique consumes several hours to 
obtain better alignment results. Since our technique is a meta-heuristic in nature, it can 
conceivably keep trying to improve its alignment indefinitely. The execution time for a 
proposed IFOA method with the various sizes of the population and a different number 
of generations are depicted in Fig. 12.

From Fig. 12, it has been inferred that when the size of the population and the gen-
erations of the population increased, simultaneously the execution time of the algorithm 
has also been increased, they are directly proportional to each other.

In favour of obtaining the biological significance of resulted protein network align-
ments the gene ontology function prediction and KEGG pathways were identified. From 
this, it is inferred that, the network alignment using the IFOA method, has more shared 
protein functions in nature.

The highest protein sequence similarity habitually correlates the highest similarity 
of protein function. Although the protein pairs which are considered in this work had 
less sequence similarity in nature, they exhibit the more common biological function by 
aligning their protein network using IFOA approach. The sequence similarity between 
two proteins in a network is evaluated using EMBOSS Needle pairwise sequence align-
ment technique [30]. The minimum sequence similarity was 2.3% among the protein 
pairs and maximum sequence similarity was 64.4% between the protein pairs and the 
average of all protein pairs in the dataset was 16.62% of the sequence similarity.

For example, though the protein pair of Yeast-Human namely TAF6- TAF10 has a 
sequence similarity of 6.0%, it has two molecular functions, three biological processes 
and two cellular components in common and the names of these common functions are 
given in Table 4. The KEGG pathway for the above-aligned protein pair has one com-
mon pathway namely "basal transcription factors". More than aligning the Human pro-
tein with other organisms like Mouse, Rat and others, it is better to align with Yeast 
which has balanced data. The protein pair STH1- REG3A has a sequence similarity of 
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4.2% and it shares two molecular functions and cellular components. The detailed dis-
cussion of remaining protein pairs is described in supplementary material.

In order to identify some useful conclusion with a certain level of statistical signifi-
cance, this implementation was run on a 2GHZ Intel CPU with 1 GB of memory, run-
ning on windows 8.1. When increasing the number of population and iterations the val-
ues of performance measures increases simultaneously.

Also, the performance of the alignment algorithm depends on the nature of the pro-
tein network to be aligned which has the diverse interactions between proteins. For 
example, the pair of Yeast and Human organisms has more similarity between them and 
the accuracy also is higher than other pairs of biological networks. All the performance 
measures had fluctuated during the first 100 iterations of the experiment and in the later 
run, consistency was observed. The algorithm gets dismissed only if the total number of 
iterations reached or the best solution produced in each generation remains identical for 
100 consecutive iterations.

4 � Conclusion

The network alignment problem is an open question to researchers. The alignment tech-
niques employed to solve this problem should be boosted habitually as they play a vital 
role in the analysis of massive data delivered by next-generation sequencing and high-
throughput experiments. The goal of this experiment is to attain the purpose of assess-
ing evolutionary algorithms and discovering ways to further progress their performance 
to accomplish the optimal solution. This research work proposed the IFOA method, to 
perform global pairwise protein biological network alignment and leads the result in the 
direction of the optimal solution. The performance measures, namely symmetric sub-
structure score (S3) and gene-ontology precision (GoP) was used as a network align-
ment quality.

The statistical significance was calculated to compare the significance of the pro-
posed approach with existing methods. As the stochastic optimization techniques were 
employed to align the network alignment, few execution concerns had raised. The major 
concerns in execution were the computational limitations and execution time as it is 
based on successive iterations, parameter selection, the number of populations, etc. In 
the future, this method can be achieved on a multicore/ more powerful CPU. It can also 
be extended or combined with any other evolutionary algorithms for optimal results. 
Different network quality measures may be introduced to attain the best results of net-
work alignment and to find the phylogeny based on network similarity between species.
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org/​10.​1007/​s11277-​021-​08851-z.

Declarations 

Conflict of interest  There are no conflicts of interest.

Competing interests  The authors declare no competing financial interests.

https://doi.org/10.1007/s11277-021-08851-z
https://doi.org/10.1007/s11277-021-08851-z


	 R. Ranjani Rani, D. Ramyachitra 

1 3

References

	 1.	 Huang, J., Gong, M., & Ma, L. (2016). A global network alignment method using discrete particle 
swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 99, 1. 
https://​doi.​org/​10.​1109/​TCBB.​2016.​26183​80

	 2.	 Ciriello, G., Mina, M., Guzzi, P. H., Cannataro, M., & Guerra, C. (2012). AlignNemo: A local net-
work alignment method to integrate homology and topology. PLoS ONE, 7(6), e38107. https://​doi.​
org/​10.​1371/​journ​al.​pone.​00381​07

	 3.	 Mina, M., & Guzzi, P. H. (2014). Improving the robustness of local network alignment: Design and 
extensive assessment of a Markov Clustering-based approach. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics., 11, 561–572. https://​doi.​org/​10.​1109/​TCBB.​2014.​23187​07

	 4.	 Ngoc, H. T., & Xuan, H. H. (2016). ACOGNA: An efficient method for protein-protein interaction 
network alignment. In: Proceedings of IEEE eighth international conference on knowledge and sys-
tems engineering. https://​doi.​org/​10.​1109/​KSE.​2016.​77580​21

	 5.	 Elmsallati, A., Clark, C., & Kalita, J. (2015). Global alignment of protein-protein interaction net-
works: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 
13, 689–705. https://​doi.​org/​10.​1109/​TCBB.​2015.​24743​91

	 6.	 Yerneni, S., Khan, I., Wei, Q., & Kihara, D. (2018). IAS: Interaction specific GO term associations 
for predicting protein-protein interaction networks. IEEE/ACM Transactions on Computational 
Biology and Bioinformatics. https://​doi.​org/​10.​1109/​TCBB.​2015.​24768​09

	 7.	 Wei, Q., Khan, I. K., Ding, Z., Yerneni, S., & Kihara, D. (2017). NaviGO: An interactive tool for 
visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinfor-
matics, 18, 177. https://​doi.​org/​10.​1186/​s12859-​017-​1600-5

	 8.	 Clark, C., & Kalita, J. (2015). A multiobjective memetic algorithm for PPI network alignment. Bio-
informatics, 31(12), 1988–1998. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv063

	 9.	 Singh, R., Xu, J., & Berger, B. (2008). Global alignment of multiple protein interaction networks 
with application to functional orthology detection. Proceeding of the National Academy of Sciences 
of the United States of America., 105, 12763–12768. https://​doi.​org/​10.​1073/​pnas.​08066​27105

	10.	 Memisevica, V., & Przulj, N. (2012). C-GRAAL: Common-neighbors-based global GRAph ALign-
ment of biological networks. Integrated Biology., 7, 734–743. https://​doi.​org/​10.​1039/​c2ib0​0140c

	11.	 Malod-Dognin, N., & Przulj, N. (2015). L-GRAAL: Lagrangian graphlet-based network aligner. 
Bioinformatics, 31, 2182–2189. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv130

	12.	 Kuchaiev, O., & Przulj, N. (2011). Integrative network alignment reveals large regions of global 
network similarity in yeast and human. Bioinformatics, 27, 1390–1396. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btr127

	13.	 Patro, R., & Kingsford, C. (2012). Global network alignment using multiscale spectral signatures. 
Bioinformatics, 28, 3105–3114. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts592

	14.	 Hashemifar, S., Ma, J., Naveed, H., Canzar, S., & Xu, J. (2016). ModuleAlign: Module-based 
global alignment of protein-protein interaction networks. Bioinformatics, 32, i658–i664. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btw447

	15.	 Kazemi, E., Hassani, H., Grossglauser, M., & Modarres, H. P. (2016). PROPER: Global protein 
interaction network alignment through percolation matching. BMC Bioinformatics, 17, 527. https://​
doi.​org/​10.​1186/​s12859-​016-​1395-9

	16.	 Dognin, N. M., Ban, K., & Pruzlj, N. (2017). Unified alignment of protein-protein interaction net-
works. Scientific Reports., 7, 953. https://​doi.​org/​10.​1038/​s41598-​017-​01085-9

	17.	 Saraph, V., & Milenkovic, T. (2014). MAGNA: Maximizing accuracy in global network alignment. 
Bioinformatics, 30, 2931–2940. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu409

	18.	 Vijayan, V., Saraph, V., & Milenkovic, T. (2015). MAGNA++: Maximizing accuracy in global net-
work alignment via both node and edge conservation. Bioinformatics, 31, 2409–2411. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btv161

	19.	 Ibragimov, R., Martens, J., Guo, J., & Baumbach, J. (2013). NABEECO: Biological network align-
ment with bee colony optimization algorithm. In: Proceeding of 15th annual conference companion 
on genetic and evolutionary computation (pp. 43–44). https://​doi.​org/​10.​1145/​24645​76.​24646​00

https://doi.org/10.1109/TCBB.2016.2618380
https://doi.org/10.1371/journal.pone.0038107
https://doi.org/10.1371/journal.pone.0038107
https://doi.org/10.1109/TCBB.2014.2318707
https://doi.org/10.1109/KSE.2016.7758021
https://doi.org/10.1109/TCBB.2015.2474391
https://doi.org/10.1109/TCBB.2015.2476809
https://doi.org/10.1186/s12859-017-1600-5
https://doi.org/10.1093/bioinformatics/btv063
https://doi.org/10.1073/pnas.0806627105
https://doi.org/10.1039/c2ib00140c
https://doi.org/10.1093/bioinformatics/btv130
https://doi.org/10.1093/bioinformatics/btr127
https://doi.org/10.1093/bioinformatics/btr127
https://doi.org/10.1093/bioinformatics/bts592
https://doi.org/10.1093/bioinformatics/btw447
https://doi.org/10.1093/bioinformatics/btw447
https://doi.org/10.1186/s12859-016-1395-9
https://doi.org/10.1186/s12859-016-1395-9
https://doi.org/10.1038/s41598-017-01085-9
https://doi.org/10.1093/bioinformatics/btu409
https://doi.org/10.1093/bioinformatics/btv161
https://doi.org/10.1093/bioinformatics/btv161
https://doi.org/10.1145/2464576.2464600


Improved Firefly Optimization for Pairwise Network Alignment…

1 3

	20.	 Tuncay, E. G., & Can, T. (2016). SUMONA: A supervised method for optimizing network align-
ment. Computational Biology and Chemistry., 63, 41–61. https://​doi.​org/​10.​1016/j.​compb​iolch​em.​
2016.​03.​003

	21.	 Chindelevitch, L., Ma, C. Y., Liao, C. S., & Berger, B. (2013). Optimizing a global alignment of 
protein interaction networks. Bioinformatics, 29, 2765–2773. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​btt486

	22.	 Mamano, N., & Hayes, W. B. (2017). SANA: Simulated Annealing far outperforms many other search 
algorithms for biological network alignment. Bioinformatics, 33, 2156–2164. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btx090

	23.	 Sun, Y., Crawford, J., Tang, J., & Milenkovic, T. (2014). Simultaneous optimization of both node and 
edge conservation in network alignment via WAVE. In M. Pop, sH. Touzet (Eds.), Algorithms in bioin-
formatics. WABI 2015. LNCS (p. 9289). https://​doi.​org/​10.​1007/​978-3-​662-​48221-6_2.

	24.	 Yang, X. (2009). Firefly algorithms for multimodal optimization. stochastic algorithms: Foundations 
and applications SAGA 2009. LNCS (p. 5792). Heidelberg: Springer. https://​doi.​org/​10.​1007/​978-3-​
642-​04944-6_​14

	25.	 Kaur, K., Salgotra, R., & Singh, U. (2017). An improved firefly algorithm for numerical optimization. 
Proceedings of International Conference on Innovations in Information, Embedded and Communica-
tion Systems. https://​doi.​org/​10.​1109/​ICIIE​CS.​2017.​82759​14

	26.	 Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., & Przulj, N. (2010). Topological network 
alignment uncovers biological function and phylogeny. Journal of Royal Society Interface. https://​doi.​
org/​10.​1098/​rsif.​2010.​0063

	27.	 Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Cepas, J. H., Simonovic, M., Doncheva, 
N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein–protein 
association networks with increased coverage, supporting functional discovery in genome-wide experi-
mental datasets. Nucleic Acids Research., 47, D607–D613. https://​doi.​org/​10.​1093/​nar/​gky11​31

	28.	 Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumous-
seau, M., Feuermann, M., Hinz, U., et al. (2012). The intact molecular interaction database in 2012. 
Nucleic Acids Research, 40, D841–D846. https://​doi.​org/​10.​1093/​nar/​gkr10​88

	29.	 Chatr-aryamontri, A., Breitkreutz, B.-J., Heinicke, S., Boucher, L., Winter, A., Stark, C., Nixon, J., 
Ramage, L., Kolas, N., O’Donnell, L., et  al. (2013). The biogrid interaction database: 2013 update. 
Nucleic Acids Research., 41, D816–D823. https://​doi.​org/​10.​1093/​nar/​gks11​58

	30.	 Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities 
in the amino acid sequence of two proteins. Journal of Molecular Biology., 48, 443–453. https://​doi.​
org/​10.​1016/​0022-​2836(70)​90057-4

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

R. Ranjani Rani  is an Assistant Professor in the Department of Com-
puter Science, PSG College of Arts and Science in Coimbatore. India. 
She has published various articles in reputed SCI/SCIE indexed jour-
nals and attended various National and International conferences in 
and outside India. Her area of research is Data Mining and 
Bioinformatics.

https://doi.org/10.1016/j.compbiolchem.2016.03.003
https://doi.org/10.1016/j.compbiolchem.2016.03.003
https://doi.org/10.1093/bioinformatics/btt486
https://doi.org/10.1093/bioinformatics/btt486
https://doi.org/10.1093/bioinformatics/btx090
https://doi.org/10.1093/bioinformatics/btx090
https://doi.org/10.1007/978-3-662-48221-6_2
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1109/ICIIECS.2017.8275914
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkr1088
https://doi.org/10.1093/nar/gks1158
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4


	 R. Ranjani Rani, D. Ramyachitra 

1 3

D. Ramyachitra  is an Assistant Professor in the Department of Com-
puter Science at Bharathiar University in Coimbatore, India. She has 
16 years of teaching experience and 9 years of Research experience. 
She has published numerous articles in various reputed SCI/ SCIE 
indexed journals and attended various National and International con-
ferences in and outside India. She has delivered lectures on various 
seminars and conferences. Her area of research is Data Mining and 
Bioinformatics.


	Improved Firefly Optimization for Pairwise Network Alignment with its Biological Significance of Predicting GO Functions and KEGG Pathways
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Firefly Optimization Algorithm
	2.1.1 Major steps involved in Firefly Optimization Algorithm (FOA) method:

	2.2 Improved Firefly Optimization Algorithm (IFOA)
	2.2.1 Balance Between Exploitation and Exploration
	2.2.2 Enhanced Exploration Ability

	2.3 Performance Measures
	2.3.1 Symmetric Substructure Score (S3)
	2.3.2 Gene-ontology Precision (GoP)


	3 Results
	3.1 Implementation and Discussion

	4 Conclusion
	References




