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Abstract—Using two analytical methods, we derive exact and more general solutions of the nonlocal nonlin-
ear Schrödinger equation with nonlocal cubic and nonlocal quintic terms. In the first method, equations are
analyzed, and some of their mathematical and physical properties are inferred, which are then used to derive
the exact stationary solutions. In the second method, we demonstrate the Darboux transformation method
and construct exact and more general soliton solutions for the nonlocal NLS equation with nonlocal cubic
and quintic terms. We reconsider the collisional dynamics of the nonlocal NLS equation and observe that
apart from intensity redistribution in the interaction of bright and dark solitons, one also witnesses a rotation
of the trajectories of the solitons. The angle of rotation can be varied by suitably manipulating the self-phase-
modulation (SPM) or cross-phase-modulation (XPM) parameters and also spectral parameters. The angle
of rotation of the solitons arises due to the excess energy that is injected into the dynamical system through
SPM and XPM. We also notice the parallel traveling solitons due to the rotation in the soliton trajectories.
These observations which exclude the quantum superposition for the field vectors may have wider ramifica-
tions in nonlinear optics, Bose–Einstein condensates, and left- and right-handed metamaterials.
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1. INTRODUCTION
The exploration of the dynamical effects of the

nonlinear Schrödinger (NLS) equation paves the way
to understanding many nonlinear wave concepts [1–3]
and studying their quantum phenomena [4–6]. The
NLS equation is widely used in academia to research
about waves in deep water [7] and are used to study the
evolution of Bose–Einstein condensates with external
governs [8]. It can also be used to describe the propa-
gation of laser beams in optical media [9]. The intro-
duction of the nonlocal NLS equation as a parity-time
integrable system by Ablowitz and Musslimani [10] in
2013 has led to extensive work to investigate exact solu-
tions and dynamics of nonlocal NLS equations in var-
ious forms. Soliton solutions and interactions under
the influence of nonlocal interaction have been wit-
nessed in [11]. Nonlocal nature from the integral point
of view has been investigated using the inverse scatter-
ing method [12], and a discrete version of the same has
also been investigated [13]. In this paper, we develop
two analytic methods to study the general exact solu-
tions of the nonlocal NLS with nonlocal cubic-quintic
terms.

The nonlocal interaction or the PT-symmetric
potential in NLS equation has got tremendous atten-

tion from theoretical physicists in recent years.
Replacing q*(x, t) by q*(–x, t) in the NLS equation
results to a self-induced potential of the form V(x, t) =
q(x, t)q*(–x, t) and satisfies the PT-symmetric condi-
tion V(x, t) = V*(–x, t). Inclusion of this PT-symmet-
ric term in classic NLS equation has led to the discov-
ery of new dynamics which reveals many unknown
results in the field of nonlinear fiber optics refinement
and Bose–Einstein condensates (BEC). For example,
it is well known that the focusing NLS equation admits
only bright solitons and defocusing NLS equation
admits dark solitons, but the introduction of nonlinear
nonlocal interaction in the NLS equation will admit
both bright and dark solitons without any change in its
nonlinearity. This type of nonlinearity is observed in
many modern experiments such as the diffusion of
charge carriers, atoms, or molecules in atomic vapors
[14, 15]. It is also observed in the study of BEC with
long-range interaction. The BEC with magnetic
dipole–dipole forces were reported in [16] and veri-
fied in the case of optical spatial solitons in a high non-
local medium [17]. It has been verified that nonlocal
PT-symmetric integrable can act as a new scope for
researchers to work on the ramification of nonlocality
in optics. In optics, the paraxial equation of diffraction
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is mathematically isomorphic to the Schrödinger
equation in quantum mechanics [18–21]. This anal-
ogy allowed the observation of PT-symmetry in opti-
cal waveguide structures and lattices [22, 23]. The
study of PT-symmetric concepts in optics could also
pave the way to alternative classes of optical structures
and devices such as Hermitian Bloch Oscillations [24],
simultaneous lasing absorption [25, 26], and selective
lasing [27]. Lately, PT-symmetric concepts have also
been studied rigorously in plasmonics [28], optical
metamaterial [29] and coherent atomic medium [30].

Motivated by the above research and its significant
achievements and unique dynamical behavior, we
investigate the PT-symmetric nonlocal NLS equation
with nonlocal cubic-quintic interaction in continuous
media. Our study and analysis indicate that the PT-
symmetric cubic and quintic NLS equation could exhibit
unique dynamics and features so that we can observe dif-
ferent kinds of solitons for Q(x, t) and Q*(–x, t) in con-
trast to the classical NLS equation where we found
same behavioral solitons for both field variable and its
conjugate. In addition, one can also rotate the path of
the bright bound state and dark bound state in a two-
soliton solution by selectively fine-tuning the spectral
parameter while the energy in each mode remains
conserved, unlike the Manakov model.

The plan of the paper is as follows. In Section 2, we
present the mathematical (integrable) model govern-
ing the dynamics of nonlocal PT-symmetric cubic and
quintic nonlinear Schrödinger equation and its Lax
pair. In Section 3, we present the family of all solitonic
solutions generated from the general solution obtained
in Section 2. In Section 4, we discuss the collisional
dynamics of solitons and the mechanism which
involves the rotation of bright, dark solitons. The
results are then summarized in Section 5.

2. MODEL EQUATION
AND SOLITON SOLUTIONS

Let us consider the PT symmetric nonlocal NLS
equation in the following form [12]:

(1)

where q(x, t) is the slowly varying pulse envelope of the
field which evolve in space (x) and time (t) variables,
respectively, and * denotes the complex conjugation.
The q(x, t)t and q(x, t)xx represents the one and two
space and time derivatives, respectively, σ is nonlocal
interaction strength. Equation (1) is a non-Hermitian
PT symmetric system in the sense that the self-
induced potential V(x, t) = q(x, t) q*(–x, t) satisfies
the PT symmetric condition V(x, t) = V*(–x, t). It is
worth mentioning here that Eq. (1) is nonlocal, i.e.,
the evolution of the field variable q(x, t) at the trans-
verse coordinate x always requires information from
the opposite point –x.
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PHYS
2.1. Modified NLS Equation and Phase Dependent 
Amplitude of Matter Wave Solitons

To introduce the new integrable model describing
the impact of both cubic and quintic interactions on
the matter wave solitons, we now consider an addi-
tional phase imprint on the order parameter q(x, t) to
generate a new order parameter Q(x, t) as

(2)

where θ(x, t) is the phase imprint in the old order
parameter q(x, t). We now engineer the phase imprint
θ(x, t) in accordance with the following conditions:

(3)

(4)

so that the transformed order parameter Q(x, t) obeys
an evolution equation

(5)

where τ is the arbitrary constant. The above nonlocal
cubic and quintic NLS Eq. (5) has an initial eigenvalue
problem (Lax pair), which will be presented in the
Appendix.

3. SOLITON SOLUTIONS
Our prior aim is to achieve a solution that itself can

generate all forms of soliton solutions already wit-
nessed for our model given by Eq. (5) in addition with
new results. Over the years numerous results have been
published using bright soliton solution generated by
vacuum seed for NLS equation with cubic and quintic
interaction [32–34]. Notably, the following papers
[35–43] explain how the instability arises in the
dynamical system and how one can manage this insta-
bility due to the reinforcement of quintic nonlinearity
in addition to cubic by means of Feshbach resonance
management in various experimental conditions
which includes spin-orbital (SO) coupling, spatiotem-
poral solitons, and even in discrete solitons. Keeping
this fact in mind, we omitted the vacuum seed solution
and bright solitons as points of convergence.

To achieve a more general soliton solution, we start
constructing the soliton using a nontrivial seed. Con-
stant wave background solutions are more effective
than that vacuum soliton solutions. How? In a way,
one can achieve the vacuum seed solution from a con-
stant wave solution by carefully fine-tuning the
parameters involved with the assumed seed, but the
reverse is not possible means one cannot generate a
constant wave solution from vacuum seed solutions in
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any way. So, keeping this context in mind, we worked
on a more general one by feeding plane wave solution
as seed.

We assumed the following form of constant plane

wave seed,   to the
defocusing NLS equation (σ = –1). Inserting these
seed solutions in the Lax pair Eqs. (15) will lead to the
basic solutions in the following form:

(6)

(7)

(8)

(9)

where , , 

and . Inserting these basic solutions
into the Darboux transformation formula [31], and
simplifying the resultant expressions with τ1 = c1/c2

and , we have after tedious calculations that

(10)

(11)

with

(12)

where ρ1 = λ1 + is1, ρ2 = λ2 + is2, ρ3 = λ1 – is1, ρ4 =
λ2 – is2. The above solution is more general in nature
compared to all the other known solutions. Why? The
reason is explained in the next section by creating all
form of solitons states by fine tuning the parameters.
While transforming this solution to model Eq. (5), the
phase imprint parameter θ has the following form:

(13)
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In the next section, we have studied the dynamics
of the above general solution for different parameter
and displayed all types of soliton pairs using this
solution.

4. FAMILY OF EXACT SOLUTIONS
The soliton solution given by Eqs. (10) and (11) is

the more general one for the cubic quintic NLS type
equations compared with all the other previously
determined solutions in the literature. We call this
equation symmetry-breaking soliton solutions since as
we said the solution given by Eqs. (10) and (11) act as
a host for all types of soliton pairs such as Dark–Dark
(DD), Bright–Bright (BB), Dark–Bright (DB),
Bright–Dark (BD) by a suitable combination of
parameters involved in it. The mentioned soliton pairs
DD, BB, DB, BD are displayed in Figs. 1–4, respec-
tively. Why do we call it a symmetry-broken solution?
Because if you look at the soliton solutions Q(x, t) and
Q*(–x, t), you see that they are independent and can-
not be deduced from one to the other. Usually, when
we derive soliton solutions for vector systems, we end
up with more or less the same solitons for both com-
ponents. But here if you look at the figures of soliton
pairs Q(x, t) and Q*(–x, t), you see that they are not
the same and exhibit completely different behaviors.
Let us discuss them one by one. In Fig. 1, there are the
components one and two displayed DD and BB soli-
tons (in plots a and b, respectively), and the final plot
is the combination of the first two is again DD (c). In
Fig. 2, the components one and two displayed BB and
DD solitons (in plots (a) and (b), respectively), and
the final plot is the combination of the first two is
again DD (c). Similarly, in Figs. 3 and 4, the compo-
nent one and two are not the same. This behavior is
the one that we could never come across in the litera-
ture for cubic and quintic NLS equations. In the next
section, we have discussed some interesting new fea-
tures found in the dynamics of the model given by
Eq. (5) called “Rotation of trajectory”.

4.1. Rotation of the Trajectories of Solitons
In this subsection, we are going to display some

new phenomena, for that we choose only one compo-
nent in every pair, and we try to study the dynamics by
fine-tuning the parameters related to it. While tuning
the spectral parameter λ2, we have seen that one mode
of every soliton pair rotates by 360°, while the other
component sticks in one place. The rotation of the sin-
gle-mode of the soliton pair and its contour plots are
shown in Fig. 5. From the contour plots (d–k) in Fig. 5,
one can infer that one of the modes is sticky at one
point and the other can rotate clockwise. It is interest-
ing to see that in the final phase shown in plot 5i and
its corresponding contour plot in 5l after a full rotation
of one mode, the interaction between the modes is
invisible, and they evolve like parallel solitons without
any interaction between them, which is really an inter-
22



390

PHYSICS OF WAVE PHENOMENA  Vol. 30  No. 6  2022

SAKTHIVINAYAGAM

Fig. 1. (Color online) (a) Dark–Dark soliton for q(x, t) mode, (b) Bright–Bright soliton for q*(x, t), and (c) multiplication for
first two component q(x, t) and q*(x, t) leads to Dark–Dark solitons for the choice of parameters λ1 = 1, λ2 = –1, a1 = 2, a2 = 1.5,
τ1 = –1 – 0.7i, τ2 = –0.5 + 0.3i.
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Fig. 2. (Color online) (a) Bright–Bright soliton for q(x, t) mode, (b) Dark–Dark soliton for q*(x, t), and (c) multiplication for
first two component q(x, t) and q*(x, t) leads to Dark–Dark solitons for the choice of parameters λ1 = 1, λ2 = –1, a1 = 2, a2 = 1.5,
τ1 = 1 + 0.5i, τ2 = 0.5 + 0.3i.
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Fig. 3. (Color online) (a) Dark–Bright soliton for q(x, t) mode, (b) Dark–Dark soliton for q*(x, t), and (c) multiplication for first
two component q(x, t) and q*(x, t) leads to Dark–Dark solitons for the choice of parameters λ1 = 1, λ2 = –1, a1 = 2, a2 = 1.5,
τ1 = 1 – 0.5i, τ2 = 1.5 – 0.3i.
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Fig. 4. (Color online) (a) Bright–Dark soliton for q(x, t) mode, (b) Dark–Bright soliton for q*(x, t), and (c) multiplication for
first two component q(x, t) and q*(x, t) leads to Dark–Dark solitons for the choice of parameters λ1 = –1, λ2 = 1.2, a1 = 2,
a2 = 1.5, τ1 = 1 + 0.5i, τ2 = –0.5 + 0.3i.
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Fig. 5. (Color online) (a–c) and (g–i) Rotation of the trajectories of the Dark–Dark solitons and its corresponding contour plots
(d–f) and (j–l) for the choice of parameter for the plots (a, d) λ1 = 1, λ2 = –1, a1 = 2, a2 = 1.5, τ1 = –1 – 0.7i, τ2 = –0.5 + 0.3i;
(b, e) λ1 = 0.5, all other parameters are same as in the plots (a, d); (c, f) λ1 = 0.1; (g, j) λ1 = –0.1; (h, k) λ1 = –0.5; (i, l) parallel
travelling solitons λ1 = –0.9.
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esting note we witnessed. We have never before
observed such parallel-evolving solitons. We call this
phenomenon of rotation of the one mode in solitons
pairs “Rotation of the trajectories of the solitons”. We
PHYSICS OF WAVE PHENOMENA  Vol. 30  No. 6  20
have tried to find the same behavior in all other pairs
of solitons also. We succeeded in BB pair and showed
the rotation of the trajectories of the soliton pair in
Fig. 6 with its corresponding contour plots. We notice
22
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Fig. 6. (Color online) (a–c) and (g–i) Rotation of the trajectories of the Bright–Bright solitons and its corresponding contour
plots (d–f) and (j–l) for the choice of parameter for plots (a, d) λ1 = 1, λ2 = –1, a1 = 2, a2 = 1.5, τ1 = 1 – 0.5i, τ2 = –1.5 – 0.3i;
(b, e) λ1 = 0.5, all other parameters are same as in plots (a, d); (c, f) λ1 = 0.1; (g, j) λ1 = –0.1; (h, k) λ1 = –0.5; (i, l) parallel
travelling solitons λ1 = –0.9.
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a small difference in the BB pair compared to the pre-
vious one in the final phase of the rotation shown in
plot 6i and its corresponding contour in plot 6l. We
achieved the same parallel travelling solitons without
interaction, but here we notice even though there is no
interaction, the energy sharing happens which was
PHYS
clearly depicted in plot 6i for better understanding. We
have also checked the same behavior in a mixed state
of the soliton pairs such as DB and BD; here in these
two cases, we were able to rotate as we did before in BB
and DD pairs, but not the whole rotation. Due to the
nature of the solitons, we are not able to rotate one
ICS OF WAVE PHENOMENA  Vol. 30  No. 6  2022
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Fig. 7. (Color online) (a–c) Rotation of the trajectories of Dark–Bright solitons and its corresponding contour plots (d–f) for
the choice of parameters: (a, d) λ1 = 1, λ2 = –1, a1 = 2, a2 = 1.5, τ1 = 1 + 0.6i, τ2 = −0.5 + 0.3i; (b, e) except λ1 = 0.1, all other
parameters are the same as in the plots (a, d); (c, f) λ1 = –0.1, all other parameters are the same as in plots (c, f).
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Fig. 8. (Color online) (a–c) Rotation of the trajectories of Bright–Dark solitons and its corresponding contour plots (d–f) for
the choice of parameters: (a, d) λ1 = 1, λ2 = –1, a1 = 2, a2 = 1.5, τ1 = 1 + 0.6i, τ2 = –0.5 + 0.3i; (b, e) except λ1 = 0.1, all other
parameters are same as in plot (a, d); (c, f) λ1 = –0.1, all other parameters are same as in plot (c, f).
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x x x
mode after half of the circle like 180° and cannot move
further, and the parallel travelling soliton solutions
have also not been achievable in mixed states of the
solitons as shown in Figs. 7 and 8, respectively.
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5. CONCLUSIONS
In this paper, we investigated PT-symmetric cubic

and quintic NLS equations employing Darboux trans-
formation to generate a family of exact soliton solu-
22
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tions including combinations of bright dark solitons.
The soliton solution we derived exhibits two different
solitons for the two modes (field variable and its con-
jugate) which we called symmetry-broken solitons. In
addition to that symmetry-broken property, we
observed intensity redistribution and rotation of tra-
jectories of solitons by suitably varying SPM, XPM
parameter, and scattering length parameters. We have
also shown the parallel traveling soliton which is non-
interactive and interactive in nature when we increase
the angle between the solitons by rotation. We believe
that the above phenomena such as symmetry-broken
solitons, rotation of the trajectories of solitons, and
parallel traveling solitons occur due to the nonlocal
nature of the dynamical system. A refinement of the
present model would be incorporating PT-symmetry
through cubic and quintic interaction terms is more
realistic and can be verified experimentally, which we
leave to future study.

APPENDIX

LAX PAIR FORMALISM

Equation (6) admits the following Lax pair:

(14)

(15)

Here U and V are called Lax pair matrices, which are
functionals of the solutions of the model equations.
The consistency condition of the linear system Φxt =
Φtx must be equivalent to the model equation under
consideration,

(16)
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(24)

where λ1,2 is the spectral parameter, U0,1, V0,1,2, and Φ
denotes the Lax pair matrix operators.

The consistency condition Φxt = Φtx leads to Ut −
Vx + [U, V] = 0 which should generate the nonlocal
NLS Eq. (1). Applying the transformation given by
Eq. (2), keeping the constraints given by Eqs. (3), will
generate the required nonlocal cubic and quintic NLS
equation given by Eq. (5).

ACKNOWLEDGMENTS

PSV wholeheartedly thanks the Principal and Secretary,
PSG CAS and management for their moral support and
encouragement.

CONFLICT OF INTEREST

The author declares that he (she) has no conflicts of
interest.

REFERENCES
1. M. H. Anderson, J. R. Ensher, M. R. Matthews,

C. E. Wiemann, and E. A. Cornell, “Observation of
Bose–Einstein condensation in a dilute atomic vapor,”
Science 269, 198–201 (1995). 
https://doi.org/10.1126/science.269.5221.198

2. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. String-
ari, “Theory of Bose–Einstein condensation in trapped
gases,” Rev. Mod. Phys. 71 (3), 463–512 (1999). 
https://doi.org/10.1103/RevModPhys.71.463

3. C. Sulem and P. L. Sulem, The Nonlinear Schrödinger
Equation (Springer, New York, 1999).

4. G. Theocharis, P. Schmelcher, P. G. Kevrekidis, and
D. J. Frantzeskakis, “Matter-wave solitons of collision-
ally inhomogeneous condensates,” Phys. Rev. A 72 (3),
033614 (2005). 
https://doi.org/10.1103/PhysRevA.72.033614

5. D. S. Wang, D. J. Zhang, and J. Yang, “Integrable
properties of the general coupled nonlinear Schröding-
er equations,” J. Math. Phys. 51 (2), 023510 (2010). 
https://doi.org/10.1063/1.3290736

6. D.-S. Wang, X.-H. Hu, J. Hu, and W. M. Liu, “Quan-
tized quasi-two-dimensional Bose–Einstein conden-
sates with spatially modulated nonlinearity,” Phys. Rev.
A 81 (2), 025604 (2010). 
https://doi.org/10.1103/PhysRevA.81.025604

7. V. E. Zakharov, “Stability of periodic waves of finite
amplitude on the surface of a deep fluid,” J. Appl. Mech.
Tech. Phys. 9, 190–194 (1968). 
https://doi.org/10.1007/BF00913182

8. L. P. Pitaevskii and S. Stringari, Bose–Einstein Conden-
sation (Oxford Univ. Press, Oxford, 2003).

9. Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fi-
bers to Photonic Crystals (Academic, New York, 2003).

10. M. J. Ablowitz and Z. H. Musslimani, “Integrable non-
local nonlinear Schrödinger equation,” Phys. Rev. Lett.

 =  − 
2

1 0
,

0 1
iV
ICS OF WAVE PHENOMENA  Vol. 30  No. 6  2022



NONLOCAL CUBIC-QUINTIC NONLINEAR 395
110 (6), 064105 (2013). 
https://doi.org/10.1103/PhysRevLett.110.064105

11. M. Li and T. Xu, Dark and antidark soliton interactions
in the nonlocal nonlinear Schrödinger equation with
the self-induced parity-time-symmetric potential.”
Phys. Rev. E 91 (3), 033202 (2015). 
https://doi.org/10.1103/PhysRevE.91.033202

12. M. J. Ablowitz and Z. H. Musslimani, “Inverse scatter-
ing transform for the integrable nonlocal nonlinear
Schrödinger equation,” Nonlinearity 29 (3), 915–946
(2016). 
https://doi.org/10.1088/0951- 7715/29/3/915

13. M. J. Ablowitz and Z. H. Musslimani, “Integrable dis-
crete PT symmetric model,” Phys. Rev. E 90 (3), 032912
(2014). 
https://doi.org/10.1103/PhysRevE.90.032912

14. A. C. Tam and W. Happer, “Long-range interactions
between cw self-focused laser beams in an atomic va-
por,” Phys Rev Lett. 38 (6), 278–281 (1977). 
https://doi.org/10.1103/PhysRevLett.38.278

15. D. Suter and T. Blasberg, “Stabilization of transverse
solitary waves by a nonlocal response of the nonlinear
medium,” Phys Rev A 48 (6), 4583–4587 (1993). 
https://doi.org/10.1103/PhysRevA.48.4583

16. K. Góral, K. Rza̧żewski, and T. Pfau, “Bose–Einstein
condensation with magnetic dipole–dipole forces,”
Phys Rev A 61 (5), 051601(R) (2000). 
https://doi.org/10.1103/PhysRevA.61.051601

17. C. Conti, M. Peccianti, and G. Assanto, “Observation
of optical spatial solitons in a highly nonlocal medium,”
Phys Rev Lett. 92 (11), 113902 (2004). 
https://doi.org/10.1103/PhysRevLett.92.113902

18. R. El-Ganainy, K. G. Makris, D. N. Christodoulides,
and Z. H. Musslimani, “Theory of coupled optical
PT-symmetric structures,” Opt. Lett. 32 (17), 2632–
2634 (2007). 
https://doi.org/10.1364/OL.32.002632

19. K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
and Z. H. Musslimani, “Beam dynamics in PT sym-
metric optical lattices,” Phys Rev Lett. 100 (10), 103904
(2008). 
https://doi.org/10.1103/PhysRevLett.100.103904

20. C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christo-
doulides, M. Segev, and D. Kip, “Observation of pari-
ty-time symmetry in optics,” Nat. Phys. 6, 192 (2010). 
https://doi.org/10.1038/nphys1515

21. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchu-
kov, D. N. Christodoulides, and U. Peschel, “Parity-
time synthetic photonic lattices,” Nature 488, 167–171
(2012). 
https://doi.org/10.1038/nature11298

22. A. Regensburger, M.-A. Miri, C. Bersch, J. Näger,
G. Onishchukov, D. N. Christodoulides, and U. Peschel,
“Observation of defect states in PT-symmetric optical
lattices,” Phys. Rev. Lett. 110 (22), 223902 (2013). 
https://doi.org/10.1103/PhysRevLett.110.223902

23. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti,
M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and
D. N. Christodoulides, “Observation of defect states in
PT-symmetric optical lattices,” Phys. Rev. Lett. 103 (9),
093902 (2009). 
https://doi.org/10.1103/PhysRevLett.103.093902
PHYSICS OF WAVE PHENOMENA  Vol. 30  No. 6  20
24. S. Longhi, “Bloch oscillations in complex crystals with PT
symmetry,” Phys. Rev. Lett. 103 (12), 123601 (2009). 
https://doi.org/10.1103/PhysRevLett.103.123601

25. Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry
breaking and laser-absorber modes in optical scattering
systems,” Phys. Rev. Lett. 106 (9), 093902 (2011). 
https://doi.org/10.1103/PhysRevLett.106.093902

26. S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A
82 (3), 031801 (2010). 
https://doi.org/10.1103/PhysRevA.82.031801

27. H. Benisty, A. Degiron, A. Lupu, A. De Lustrac,
S. Chénais, S. Forget, M. Besbes, G. Barbillon,
A. Bruyant, S. Blaize, and G. Lérondel, “Implementa-
tion of PT symmetric devices using plasmonics: Princi-
ple and applications,” Opt Express 19 (19), 18004–
18019 (2011). 
https://doi.org/10.1364/OE.19.018004

28. M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and
D. V. Plant, “Nonreciprocal waveguide Bragg grat-
ings,” Opt Express 13 (8), 3068–3078 (2005). 
https://doi.org/10.1364/opex.13.003068

29. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos,
H. Cao, and D. N. Christodoulides, “Unidirectional
invisibility induced by PT-symmetric periodic struc-
tures,” Phys. Rev. Lett. 106 (21), 213901 (2011). 
https://doi.org/10.1103/PhysRevLett.106.213901

30. J. Sheng, M.-A. Miri, D. N. Christodoulides, and
M. Xiao, “PT-symmetric optical potentials in a coher-
ent atomic medium,” Phys. Rev. A 88 (4), 041803(R)
(2013). 
https://doi.org/10.1103/PhysRevA.88.041803

31. V. B. Matveev and M. A. Salle, Darboux Transforma-
tions and Solitons (Springer, Berlin, 1991).

32. V. Ramesh Kumar, R. Radha and M. Wadati, “Phase
engineering and solitons of Bose–Einstein condensates
with two- and three-body interactions,” J. Phys. Soc.
Jpn. 79 (7), 074005 (2010). 
https://doi.org/10.1143/JPSJ.79.074005

33. S. Loomba, R. Pal, and C. N. Kumar, “Bright solitons
of the nonautonomous cubic-quintic nonlinear Schrö-
dinger equation with sign-reversal nonlinearity,” Phys.
Rev. A 92 (3), 033811 (2015). 
https://doi.org/10.1103/PhysRevA.92.033811

34. U. Al Khawaja and H. Bahlouli, “Integrability condi-
tions and solitonic solutions of the nonlinear
Schrödinger equation with generalized dual-power
nonlinearities, PT-symmetric potentials, and space-
and time-dependent coefficients,” Commun. Nonlinear
Sci. Numer. Simul. 69, 248–260 (2019). 
https://doi.org/10.1016/j.cnsns.2018.07.015

35. R. Radha and P. S. Vinayagam, “Stabilization of matter
wave solitons in weakly coupled atomic condensates,”
Phys. Lett. A 376 (8–9), 944–949 (2012). 
https://doi.org/10.1016/j.physleta.2012.01.029

36. R. Radha, P. S. Vinayagam, and K. Porsezian, “Soliton
dynamics of spatially coupled vector BECs,” Rom. Rep.
Phys. 66 (2), 427–442 (2014). http://rrp.infim.ro/
2014_66_2/A15.pdf

37. R. Radha and P. S.Vinayagam, “An analytical window into
the world of ultracold atoms,” Rom. Rep. Phys. 67 (1), 89–
142 (2015). http://www.rrp.infim.ro/2015_67_1/A5.pdf
22



396 SAKTHIVINAYAGAM
38. U. Al. Khawaja, P. S. Vinayagam, and S. M. Al-Mar-
zoug, “Enhanced mobility of discrete solitons in aniso-
tropic two-dimensional waveguide arrays with modu-
lated separations,” Phys. Rev. A 97 (2), 023820 (2018). 
https://doi.org/10.1103/PhysRevA.97.023820

39. P. S. Vinayagam, A. Javed, U. and Al Khawaja, “Stable
discrete soliton molecules in two-dimensional wave-
guide arrays,” Phys. Rev. A 98 (6), 063839 (2018). 
https://doi.org/10.1103/PhysRevA.98.063839

40. R. Radha, P. S. Vinayagam, H. J. Shin, and K. Porse-
zian, “Spatiotemporal binary interaction and designer
quasi-particle condensates,” Chin. Phys. B 23 (3),
034214 (2014). 
https://doi.org/10.1088/1674-1056/23/3/034214

41. P. S. Vinayagam, R. Radha, S. Bhuvaneswari, R. Ra-
visankar, and P. Muruganandam, “Bright soliton dy-

namics in spin orbit-Rabi coupled Bose–Einstein con-
densates,” Commun. Nonlinear Sci. Numer. Simul. 50,
68–76 (2017). 
https://doi.org/10.1016/j.cnsns.2017.02.012

42. H. Chaachoua Sameut, Sakthivinayagam Pattu,
U. Al Khawaja, M. Benarous, and H. Belkroukra,
“Peregrine soliton management of breathers in two cou-
pled Gross–Pitaevskii equations with external potential,”
Phys. Wave. Phenom. 28 (3), 305–312 (2020). 
https://doi.org/10.3103/S1541308X20030036

43. P. Sakthivinayagam and J. Chen, “PT symmetric cu-
bic-quintic nonlinear Schrödinger equation with dual
power nonlinearities and its solitonic solutions,” Optik
217, 164665 (2020). 
https://doi.org/10.1016/j.ijleo.2020.164665
PHYSICS OF WAVE PHENOMENA  Vol. 30  No. 6  2022


	1. INTRODUCTION
	2. MODEL EQUATION AND SOLITON SOLUTIONS
	2.1. Modified NLS Equation and Phase Dependent Amplitude of Matter Wave Solitons

	3. SOLITON SOLUTIONS
	4. FAMILY OF EXACT SOLUTIONS
	4.1. Rotation of the Trajectories of Solitons

	5. CONCLUSIONS
	LAX PAIR FORMALISM
	REFERENCES

		2022-12-24T12:12:45+0300
	Preflight Ticket Signature




