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Abstract

This paper is devoted to investigate implicit differential equations with boundary condi-
tion, which involves the composite fractional derivative in weighted space. The existence
and uniqueness of the solution are obtained using the classic fixed point theorems. As an
application, an example is presented to illustrate the main results.
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1 Introduction

In recent years, fractional order calculus has been one of the most rapidly developing areas
of mathematical analysis. Indeed, a natural phenomenon may depend not only on the cur-
rent time but also on its previous time history. Fractional calculus facilitates modeling of
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such phenomena via nonlocal fractional differential and integral operators. Fractional order
differential equations naturally appear in the mathematical modeling of systems with mem-
ory. One can find numerous applications of fractional calculus in diverse fields such as
mathematics, physics, chemistry, optimal control theory, finance, biology, and engineering
[10, 12, 15]. Since it is clear that dealing with Riemann-Liouville (R-L) derivative in var-
ious applied problems is very difficult, therefore, certain modifications were introduced
to avoid the difficulties. In this regard, some new type fractional order derivative opera-
tors were introduced in literature like Caputo and Hadamard. Recently, Hilfer [12] initiated
extended R-L fractional derivative, named Hilfer fractional derivative, which interpolates
Caputo fractional derivative and R-L fractional derivative. This said operator arose in the
theoretical simulation of dielectric relaxation in glass-forming materials (see [24-27]). Fol-
lowed by the work, Sousa and Oliveira [20] introduced the composite fractional derivative
(y-Hilfer fractional derivative) with respect to another function, in order to unify the wide
number of fractional derivatives in a single fractional operator and consequently, open a
window for new applications, we refer to [19, 21].

At present, a great deal of efforts were spent in linear and nonlinear fractional differential
equations (FDEs). As an important issue for the theory of implicit FDEs, the existence,
uniqueness, and stability of solutions for the nonlinear fractional initial value problems and
fractional boundary value problems have attracted scholars’ attention. For some recent work
on the topic, see papers [1, 3, 5-8]. Existence and stability results for nonlinear implicit
fractional differential equations with delay and impulses were discussed in [4]. Abbas et al.
[2] investigated the asymptotic stability for implicit Hilfer fractional differential equations.
Recently, considerable attention has been given to the existence of solutions of initial and
boundary value problems for FDEs with composite derivative [9, 27]. Inspired by the above
works, in this paper, we are mainly concerned with the existence and uniqueness of solutions
of implicit differential equations with composite fractional derivative given by

(Djf“”y) (1) = f(z,y(t), (Djf””y) (t)) foreach 7€ (a,T], a>0, (1)
y(T) =ceR, ()

where Dz;ﬁ Y is the composite fractional derivative (to be defined later) of order & € (0, 1)
and type B € [0, 1]and f : (a, T] x R x R — Riis a given function.

2 Preliminaries

In this section, we introduce some fundamental descriptions and lemmas which are used
throughout this paper; for details, readers should study [13, 16, 17, 22, 23].

Let0 < a < T and J = [a,T]. By C(J,R), we denote the Banach space of all
continuous functions from J into R with the norm

I¥lloo =sup{ly@®)| : t € J}.

We consider the weighted space of continuous functions
Cry={y:@Tl—>R:@®—¥@) yn)eCUR}, 0<y<l,
and
ny) = {yec™ Wy e,y nen,
C) () = Cyy(J)
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with the norms

Iylic,, =sup|(W@®) — ¥ @)’ y@)|
teJ

and

n—1
k
Iyller, = Z Hy Hoo + Hy(n) c
k=0

Consider the space XP(a,b), (ceR, 1< p < oo) of those complex-valued Lebesgue
measurable functions f on J for which || f|| xP < 09, where the norm is defined by

1

b 5
||f||xg=(/ Itcf(t)|dt> , (I=p<ooceR).

In particular, where ¢ = % the space X% (a, b) coincides with the L pla, b) space X ‘i =
P
Ly(a,b).

Definition 1 [19] Letax € Ry, c e Rand g € X P (a, b). The left-sided fractional integral
of order « and of a function f with respect to another function v on J is defined by

g(s)
I (a)

ds, t>a,

(1) = [ v ww - v
where F(j is the Euler Gamma function defined by I (¢) = fooo 2 le=ldt, a0 > 0.

Definition 2 [19] Let « € Ry /N and ¢/(¢) # 0 (—oo0 <a <t < b < 00). The R-L frac-
tional derivative of a function f with respect to i of order o corresponding to the R-L is
defined by

(Dsvg) @) = 8" (1"Vg) o)

) /1/[(5‘) (@) —(s)" "% 1 g(s)

I'n—a)

s, t>a,

- (1/; (t) dt
where n = [a] + 1 and 8" = (

v (r) dt)n

Lemma 1 [18] Let @ > 0and 0 < y < 1. Then, I:iw is bounded from C, y (J) into
Cyy(J).

Lemma2 [18]Let0 <a <T <00, a>0,0<y <landy e Cyy(J). Ifa > y, then

1%y is continuous on J and
(15y) @ = tim (£575) 1) =0.
Lemma 3 [18] Let x > a. Then, fora > 0 and B > 0, we have
[ o = vy o = 70
(D5 we —v@* o =0 0<a<1.

W (@t) — Y(a)*F-t,

Fus &\ Springer
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Lemmad4 [14] Leta > 0,0 <y < land g € Cy, yla, b]. Then,

(DZ‘JM )(t):g(t) forall t € (a,b).

Lemma5 [14]Let0 <a <1,0<y < 1. Ifg € Cy yla, b] and I;Ja;wg 1S C;’w[a,b],

then
()

) W (1) — @) forall (a,b].

(157 DY g) (1) = g0y -

Definition 3 [19] Let order « and type B satisfyn—1 <o <nand0 < 8 < 1withn e N.
The composite fractional derivative of a function g € C,, y[a, b] is defined by

DEFY ooy (1 AN a-pe-ay
(£6Vs) 0 = ( (w’(r)dr) far g>(’)'

The composite fractional derivative as defined above can be written in the following:

(DY) 0 = (17Dl e) ).y =a+B—ap.

Property I [18] The operator Da;rﬁ V' can be written as

DUFY PO Y g g,

Definition 4 [22] We consider the following parameters «, B, y satisfying y = o+ —apf,
0 < a, B, y < 1. Thus, we define the spaces

il s ={yeci,y, iy e i,y
and
cl W ={yeci, Dl yeci, ).

_ I;;(Pa);wDy:w

D;x;ﬁ:wy _

Since, v, it follows from Lemma 1 that

cl_, (Il () cCiyy).

Lemma 6 [23]Let0 <a <1, 0<p<landy =a+B—aB.Ify € Ci/_wp(J), then
; ; ; B ; ; -
I;+wDZ+w = I:+¢Dz+ﬁ lﬁy, DZ+WI;+W)’ = Dfi a)y~
Theorem 1 [11, 28] (PC;_, y type Arzela-Ascoli Theorem) Let A C PC_, y(J,R). A

is relatively compact (i.e., A is compact) if
1. A is uniformly bounded, i.e., there exists M > 0 such that

|[f(x)| <M forevery feA and xe€ (g, txy1l,k=1,2,....,m
2. A is equicontinuous on (ty, ty+1), i.e., for every € > 0, there exists § > 0 such that for

each x,x € (t, txy1], |x — x| < 8 implies | f(x) — f(X)| < € for every f € A.

Theorem 2 (Krasnoselskii’s fixed point theorem) Let M be a closed, convex and nonempty
subset of a Banach space X, and A, B be the operators such that
1.Ax + By € M forallx,y € M.
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IDEs via Composite Fractional Derivative 535

2. A is compact and continuous.
3. B is a contraction mapping.
Then, there exists z € M such that 7 = Az + Bz.

3 Existence of Solutions

We consider the following linear FDEs of the form:

(D) =e0. te@T), 3)
where ¢(-) € Cy—, y(J) with boundary condition
y(T)=c, ceR. )

The following theorem shows that (3)—(4) have a unique solution given by

@) = @ (T) — W(a))l_y
X |: F( )/ w (S) (w(T) W(S))a 1(p(s)ds] (w(t) _ w(a))y 1

e / V() (1) — P)* ps)ds. )

Theorem 3 Lety =a+ 8 —af, where0 <a < land0 < B <1.Ifp € (a,T] - Ris
a function such that ¢(-) € C1_y, y (J), then y satisfies (3)~(4) if and only if it satisfies (5).

Proof Lety € C i/—%w (J) be a solution of (3)—(4). We prove that y is also a solution of (5).
From the definition of C }: s (J), Lemma 1 and using Definition 2, we have

l—y; ; l—y;
I77%yecw) and DYy =351""yeCimyy (). (©6)

By the definition of the space Cf_% ]//(J ), it follows that
1=y;

;"yect, .
Using Lemma 5, with o = y, we obtain

-
( at vy ) (@)

Viv pviv - _ _ -1
(L2 D y) @0 =y = S 0 =y ™)
where t € (a, T]. By hypothesis, y € Cilw//(J) using Lemma 6 with (3), we have
(12 y) @ = (125 Dty 0 = (157 9) @, ®)

Comparing (7) and (8), we see that

((11 Vv )(a)

y() = o)

WO - p@y ™+ (1) 0.
Using (4), we obtain
y(t) = W (T) —y(a)'™

x[c—m / W () (W(T) — Y(s)?~ 1<p(s)als] W) = Y(@)’ !

F( )/ ¥ () (W (1) — Y () p(s)ds,
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with t € (a, b], that is y(-) satisfies (5).
Conversely, let y € C }:yﬂ,}(] ) satisfying (5). We show that y also satisfies (3)—(4).

Apply operator DZ;W on both sides of (5). Then, from Lemmas 3 and 6, we get
(D2 y) 0 = (DI o). ©)
By (6), we have D7y € C1_y 4 (J); then, (9) implies
; 1-8)(1—a); 1—a);
(DY y) @0 = (15P0Y ) ) = (DI V) ) € Cryy (). (10)
As ¢(-) € Ci—y,y(J) and from Lemma 1, it follows
1-B)(1—a);
(1P 60)) € Croyy (. (1)
From (10) and (11) and by the definition of the space C {‘7%1/] (J), we obtain
1-B)(1—
(ILE+ ﬂ)( d)(p) c C]I_yy]/,(J)

PO

Applying operator [} on both sides of (10) and using Lemmas 2 and 5, we have

170 0) @)
BU—a) nv:¥ _ ( at
(Ia+ D, ; y) ) = o)+ rB0—a))

= (D5y) ) = 0.

That is, (3) holds. Clearly, if y € C%’_y, W(J ) satisfies (5), then it also satisfies (4). O

W@ = Y (@)f =t

As a consequence of Theorem 3, we have the following theorem.

Theorem4 Lety = a+B—af whereQ <o < land0 < B < l,let f : (a, TIxRxR —
R be a function such that f (-, y(-),u(-)) € Ci—y y(J) forany y,u € Ci_y, y(J).

Ify € CLWII (J), then y satisfies (1)—(2) if and only if y is the fixed point of the operator
N :Ci—yy(J) = Ci—y y(J) defined by

Ny@®) =M @) — ()~ + e )/ v @) W) —y()* g(s)ds, 1€ (a, T], (12)

where

= W(T) —y@)'™ y[“ﬁ / V() (Y (t) — P(s)* lg(s)ds}

and g : (a, T] — R be a function satisfying the functional equation
g@)=f(1,y(),8().
Clearly, g € C1_y y (J). In addition, by Lemma 1, Ny € Ci_y, y (J).
Suppose that the function f : (a, T] x R x R — R is continuous and satisfies the
conditions

(H1) The function f : (a, T] x R x R — Riis such that f (-, u(), v(-)) € 7"~ for any
u,v € Ci—yy(J).
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(H2) There exist constants K > 0 and L € (0, 1) such that
[f(t,u,v)— f@t,u,0)| < K|lu—ul+Llv—7

forany u,v,u,v € Randt € (a, T].
Now, we state and prove our existence result for (1) and (2) based on Banach’s space
fixed point.

Theorem 5 Assume that (H1) and (H2) hold. If
KI'(y)
A—-L)(a+y)

then (1)—(2) has a unique solution.

1
W (T) —¥(@)* < > 13)

Proof Step 1 We show that the operator N defined in (12) has a unique solution fixed point

y* in C1,V,¢(J).
Lety,u € Ci—y y(J)and ¢t € (a, T], then we have

1
INy() = Nu| = 5 — (T = (@) (@) — Ya) !
(@)
T
x f Y () (W(T) — ¥(s)* " g(s) — h(s)| ds

F( )/ Y (s) (W) — P(s)* " g(s) — h(s)| ds,
where g, h € C1_y.y (J) such that
gy = f@t,y(®),8), h(r)= [, u),h()).
By (H2), we have
lg@®) —h®] =11, y@),8®) — f u@), h@®) < K|y@) —u@)|+ L|gk) — h(@)].
Then,

18) = h)] = —— [y(®) — (o).

Hence, for each t € (a, T']
[Ny() —Nu(t)l

1- -1
S( L)ﬁ(w( )= ¥(@) " (@) — (@)

Xf W) (W (T) = YD) y(s) —uls)lds

L
(1—-1L) '

W () =¥ @)' 7 @G0 —v@) "y —ule,_,,

/wm W) = v y(s) — u(s)|ds

IA

-0
x (15 ) = @)’ ") (@)

y—1
+ Y - v@) Oy -ule,_,,-

a- L)(
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By Lemma 3, we have

INY() — Nu()] < [L(” W(T) = Y@ W) — p@)’~"
1-LDI'(e+y)
% W) — wa»““-l] Iy —ulle,_ .
hence
| v @) Wy~ )
< [ KT 1y -y + Wy - w(a))“]
A-L)Tr'a+y) A-L)I'e+vy)
<Ny —ulle, .,
< HKTW ey @) iy —ule, .
S U- Dl -
which implies that
INy — Nulle,, < —2LD ey~ y@n® iy —ulle,_, -
ot S T D@+ y) =2

By (13), the operator N is a contraction. Hence, by Banach’s contraction principle, N
has a unique fixed point y* € Ci_, y (J).

Step 2 We show that a fixed point y* € Ci_, (/) is actually in CV 1/,(J).
Since y* is the unique fixed point of operator N in Ci_, y (J), then foreacht € (a, T],
we have

* = (Y(T) — Y(a))'™ V[c—m / U (s) (W(T) — YN f(s, y* (), g(s))ds]

X (Y (6) —y@) " + Ia+’ fs,y*(s), g(s)).
Applying ngr'// to both sides and by Lemmas 3 and 6, we have

DYV y(0) = DLV IS £y (9),860)) 0 = (DU VY 5,950, 860)) ().

Since ¥y > «, by (HI), the right-hand side is in Ci_, y(J) and thus D;T/fy* €
Ci—y,w(J), which implies that y* € Cl " 1//(‘]) As a consequence of Step 1 to 2 together
with Theorem 4, we can conclude that (1)—(2) have a unique solution in C -, ]/,(J ). O

We present now the second result, which is based on Krasnoselskii fixed point theorem.

Theorem 6 Assume that (H1) and (H2) hold. If

KI'(y)
(1-L)(a+7y)

then (1)—(2) have at least one solution.

W (T) =¥ @) <1, (14)

Proof Consider the set

Be={veCiyut s Il <n],
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where

_ - V@' [lel+ s (D) = (@)

n =
| — = e (U (T) = (@)
and f* = sup,.; | f(t,0,0)|. We define the operator P and Q on B+, by

Py(t) = (y(T) — wa))l—y
w(s)o/fm w(a»“*‘g(sms}(w(z)—xp(a)w, (15)

ST,
Oy() = 7‘/ ¥ () (Y (1) — Y(@)* ! g(s)ds.
I'a)Jq
Then, the fractional integral (12) can be written as the operator equation

Ny(t) = Py(1) + Qy(1), y € Ci—yy(J).

The proof will be presented in several steps.

Step 1 We prove that Py(t) + Qy(t) € By, for any y,u € B+. For any operator P,
multiplying both sides of (15) by (¥ (z) — ¥ (a))'~7, we have
W) =¥ @) 7 Py

— W) — Y@y~ V[c—m / () (U (T) — Y () 1g(s>ds}

then
W) = v @) Py

< W(T) —y@)' [ICI +m/ Y () (W(T) — P (s)*~ 1Ig(S)IdY} (16)
By (H3), we have for each ¢ € (a, T]

g = |f @, y(®),g(®) — f(2,0,0) + f(z,0,0)]
= 1f @ y@),g®) — f(,0,0)]+ (0,0
S Kly®l+Llg®l+ f*
Multiplying both sides of the above inequality by (v (1) — ¥ (a))' ™7, we get

WO = ¥@)' " g0
< WO = $@)' 7 K |00 = @) 0]+ Lo - v @) 7 g0
= PO — Y@ S K+ L0 = v@)' 7 g

Then, for each ¢ € (a, T], we have

A

T) — I—y rx Kn*
o —pian' g| < VTV ZIHET .y )

Thus, (16) and Lemma 3 imply

MI(y)
I'la+vy)

| =y @) Pyo| = @) - vy [|c| + W) - w(a))“”—l] . (18)

Ful @ Springer



540 D. Vivek et al.

Using (17) and Lemma 3, we have

Q@) ()]

ALY mwn] ey
= |:(1—L)F(o¢—|—y) W (T) —y(a) " + 0Dl W (1) — ¥ (a)) :
Therefore,
| = @)™ Qu
__ I vy %] @)
= [(1_L)F(a+y) W (T) —¥(@) "+ ARG W (T) — ¥ (a))
__r»mr eyiyta . KTt TN
S 0Dty W (T) — ¥ (a)) + EACERS W (T) — ¥(a)®.
Thus,
lQulc,_,,
rir* KT (y)n*

W (T) = Y(a) 7+ + W(T) = Y@)®. (19)

T (1-L)(a+vy) 1-L)Y'(a+vy)
Linking (18)—(19), for every y, u € B+, we obtain

1Py + Qulle, .,

< max {I1Pylc,_,,, - I1Qulc, ,, |
mMr
< W)~ Y@y [|c| + s 0 - w(a))aw—l]

ry)f* l—y+a KT (y)n*
L A — T) — Y T
=Dty VD - v@) M AYRCERD

+ @ (T) = (@)™ |c|.

W (T) — ¢ (a)®

Since

W(T) =y @) |lel + gLy (T) — y(@)®
0> [ o ] W(T) = Y @)®.

1= w=orem
We have
1Py + Qulpe,_,, <",
which infers that Py + Qu € By.

Step 2 P is a contraction.
Lety,u € Ci—y y(J)and ¢ € (a, T], then we have

1
|Py(®) = Pu@®)] = = ((T) - Y@ @) — )’
(@)

T
x / W' () (W (T) — ¥(@)* " g(s) — h(s)l ds,

where g, h € Ci—y, y(J) such that
g(0) = f(t,y(),8@), h@) = f@ u@),h()).
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By (H2), we have
lg(®) —h@®)| =11, y@), g@®) — f&u@),h@)| < K |y@) —u@)|+ L|gk) —h(@)].

Then,
lg(t) —h(D)| < K |y@) —u@)|+ LIgk) —h@).
Therefore, for each t € (a, T']

K 1— -1
Py = Pud)l = =5 (1) =¥ (@) Y () - y@)
T
x / ¥ () (W(T) — (@) y(s) — uls)lds
<K W) — Y@ @) — @)’y —ull
-~ (a-10 Ciy

x (125" () = w@)r ) (@),

By Lemma 3, we have

Py(t) = Put)] < —— L0 Ty = @) @) — @)’ lly — ul
ST@+y(-1L) Cioy
hence,
W) = Y @) Py(t) — Pu@)| < —— P 41y — @) Iy — ul
T T+ (-1 Corw

By (14), the operator P is contraction.

Step 3 Q is compact and continuous.

The continuity of Q follows from the continuity of f. Next, we prove that Q is uniformly
bounded on Bx.

Let any u € By+. Then, by (19), we have

” Qu ” PCi_yy

* *
< TP yry - gy ey KLOW
I-L)Y(a+vy) A-L)y'(a+y)
This means that Q is uniformly bounded on Bj+. Next, we show that QB is
equicontinuous.
Letanyu € By and 0 < @ < 11 < 72 < T. Then,

|V (@) = $@)'" 00)(@) - W (@) = ¥@)' Q@)

W (T) = y(@)*.

1 (o
W (@) = Y@ —— [ ) W) — ¥ )* gs)lds
r') /s,

1 7
+m/a [W(S) (W (12) — ¥ (@)™ (Y (1) — P(s))*!

IA

—y/(5) (W (m) = ¥ (@)' W) =y ()" lg o)l ds

MT (y) (Y (r2) — ¥ (@)™
T'@+y)

U T 1— a—1
+ / V() (Y(0) — Y@)' ™ (Y(n) — ¥(s)
@ Ja
—¥(s) W (T) — @) W (m) — ) (W) — ¥(a)? ! ds.

(W (1) — Y (m)* !

IA
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542 D. Vivek et al.

Note that
W (@) =¥ @) Q@) — W (@) = ¥(@)' 7 Q)| = 0 as © -1
This shows that Q is equicontinuous on J. Therefore, Q is relatively compact on Bys.

By Ci—y y type Arzela-Ascoli Theorem Q is compact on By

As a consequence of Krasnoselskii’s fixed point theorem, we conclude that N has at least
a fixed point y € C1_y v (J) and by the same way of the proof of Theorem 5, we can easily
show that y* € C . ]//(J ). Using Lemma 5, we conclude that (1)—(2) have at least one

solution in the space Cl_y v J). O

4 An Application

Consider the BVP
2+ Iyl + | DS y ()
DXV (1) = | | Pe(Vitl) 3 o
B
107e—1+4 (1 vl + )D“ (r)‘) 3Vi—1
vy(3) = ceR, 21

Wherea:%,ﬁ:Oandy = %.Set

24u+v log (v +1)
107e=1+4(1 4+ u + v) 3Vi—1 "

ft,u,v)= te(1,3],u,ve 0,o0].
We have
PO ([1.3)) = € 4.,y ([, 3])_[h (1,3] > R: V3 (Vi - ) heCll, 3]}

Clearly, the function f € Cg g.y ([1, 3]). Hence the condition (H1) is satisfied. For each
u,v,u,veRandt € (1, 3]

|f(tu,0) = [, )] < m%,mm—mﬂv—m) < 1oz (lu =l + v =)

Therefore, (H2) is verified with K = L = ]07e The condition (14) is also satisfied with
T = 3 and a = 1. It follows from Theorem 6 that (20)—(21) have a solution in the space

Cl gy (113D,
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