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EXISTENCE AND UNIQUENESS RESULTS FOR SEQUENTIAL

ψ-HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

WITH MULTI-POINT BOUNDARY CONDITIONS

S. K. NTOUYAS and D. VIVEK

Abstract. In this paper, we study multi-point boundary value problems for se-
quential fractional differential equations involving ψ-Hilfer fractional derivative.

Existence and uniqueness results are obtained by using the classical fixed point the-

orems of Banach, Krasnoselskii, and the nonlinear alternative of Leray-Schauder.
Examples illustrating our results are also presented.

1. Introduction

In recent few decades, fractional differential equations with initial/boundary condi-
tions have been studied by many researchers. This is because fractional differential
equations describe many real world processes related to memory and hereditary
properties of various materials more accurately comparing to classical order dif-
ferential equations. Therefore, the fractional-order models become more practical
and realistic comparing to the integer-order models. Fractional differential equa-
tions arise in lots of engineering and clinical disciplines which include biology,
physics, chemistry, economics, signal, and image processing, control theory and so
on; see the monographs as [3, 11, 14, 16, 17, 19, 29].

In the literature, there exist several different definitions of fractional integrals
and derivatives. The most popular are the Riemann-Liouville fractional derivative
of order α > 0 defined for a continuous function by

RLDαu(t) := DnIn−αu(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1u(s)ds,

n− 1 < α < n, and the Caputo fractional derivative of order α > 0, defined by

CDαu(t) := In−αDnu(t) =
1

Γ(n− α)

∫ t

a

(t− s)n−α−1
(

d

ds

)n
u(s)ds,
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n − 1 < α < n. In the above definitions, Iα is the Riemann-Liouville fractional
integral of order α > 0 defined by

Iαu(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, n− 1 < α < n,

where n = [α] + 1, [α] denotes the integer part of real number α, provided the
right-hand side is point-wise defined on (a,∞).

In the literature, other known definitions of fractional integrals and derivatives
are the Hadamard fractional derivative, the Erdeyl-Kober fractional derivative,
and so on. A generalization of derivatives of both Riemann-Liouville and Caputo
was given by R. Hilfer in [7], known as the Hilfer fractional derivative of order α
and type β ∈ [0, 1], which interpolates between the Riemann-Liouville and Caputo
derivatives, since it is reduced to the Riemann-Liouville and Caputo fractional
derivatives when β = 0 and β = 1, respectively. The Hilfer fractional derivative of
order α and parameter β of a function is defined by

HDα,βu(t) = Iβ(n−α)DnI(1−β)(n−α)u(t), t > a,

where n− 1 < α < n, 0 ≤ β ≤ 1, D =
d

dt
. Some properties and applications of

the Hilfer derivative are given in [8, 9], and references cited therein.
Initial value problems involving Hilfer fractional derivatives were studied by

several authors, see, for example, [4, 6, 28] and references therein. In [1], the
authors initiated the study of nonlocal boundary value problems for Hilfer frac-
tional derivative, by studying boundary value problem of Hilfer-type fractional
differential equations with nonlocal integral boundary conditions:

HDα,βx(t) = f(t, x(t)), t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1,(1)

x(a) = 0, x(b) =

m∑
i=1

δiI
ϕix(ξi), ϕi > 0, δi ∈ R, ξi ∈ [a, b],(2)

where HDα,β is the Hilfer fractional derivative of order α, 1 < α < 2, and param-
eter β, 0 ≤ β ≤ 1, Iϕi is the Riemann-Liouville fractional integral of order ϕi > 0,
ξi ∈ [a, b], a ≥ 0 and δi ∈ R. Several existence and uniqueness results were proved
by using a variety of fixed point theorems.

In [18], the existence and uniqueness of solutions were studied for a new class
of system of Hilfer-Hadamard sequential fractional differential equations

(3)

{
(HD

α1,β1

1+ + k1HD
α1−1,β1

1+ )u(t) = f(t, u(t), v(t)), 1 < α1 ≤ 2, t ∈ [1, e],

(HD
α2,β2

1+ + k2HD
α2−1,β2

1+ )v(t) = g(t, u(t), v(t)), 1 < α2 ≤ 2, t ∈ [1, e],

with two point boundary conditions

(4)

{
u(1) = 0, u(e) = A1,

v(1) = 0, v(e) = A2,
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where HD
αi,βi is the Hilfer-Hadamard fractional derivative of order αi ∈ (1, 2] and

type βi ∈ [0, 1] for i ∈ {1, 2}, k1, k2, A1, A2 ∈ R+, and f, g : [1, e]×R×R→ R are
given continuous functions.

The fractional derivative with another function, in the Hilfer sense, called ψ-
Hilfer fractional derivative, was introduced in [20]. For some recent results on
existence and uniqueness of initial value problems and results on Ulam-Hyers-
Rassias stability, see [10, 21, 22, 23, 24, 25, 26, 13, 27] and references therein.
Recently, in [15], the authors extended the results from [1] to ψ-Hilfer nonlocal
implicit fractional boundary value problems.

Motivated by the research going on in this direction, in this paper, we initiate
the study of existence and uniqueness of solutions for a new class of boundary
value problems of sequential ψ-Hilfer-type fractional differential equations with
multi-point boundary conditions of the form(

HDα,β;ψ
a+ + k HDα−1,β;ψ

a+

)
x(t) = f(t, x(t)), t ∈ [a, b],(5)

x(a) = 0, x(b) =

m∑
i=1

λi x(θi),(6)

where HDα,β;ψ
a+ is the ψ-Hilfer fractional derivative of order α, 1 < α < 2, and

parameter β, 0 ≤ β ≤ 1, f : [a, b] × R → R is a continuous function, a < b,
k, λi ∈ R, i = 1, 2, . . . ,m, and a < θ1 < θ2 < · · · < θm < b.

Existence and uniqueness results are proved by using classical fixed point the-
orems. We make use of Banach’s fixed point theorem to obtain the uniqueness
result, while nonlinear alternative of Leray-Schauder type [5] and Krasnoselskii’s
fixed point theorem [12] are applied to obtain the existence results for the problem
(5)–(6). The main results are presented in Section 3. Examples are constructed to
illustrate the main results. In Section 2, some notations, definitions, and known
results from fractional calculus are recalled.

2. Preliminaries

Let γ = α+2β−αβ, 1 < α < 2, 0 ≤ β ≤ 1. Then 1 < γ ≤ 2. Let ψ ∈ C1([a, b],R)
be an increasing function with ψ′(t) 6= 0 for all t ∈ [a, b].

Definition 2.1 ([11]). Let α > 0, α ∈ R, and g ∈ L1([a, b],R). The ψ-Riemann-
Liouville fractional derivative of a function g with resepect to ψ is defined by

Iα;ψg(t) =
1

Γ(α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1g(s)ds.

Definition 2.2 ([20]). Let n − 1 < α < n, n ∈ N and g ∈ Cn([a, b],R).
The ψ-Hilfer fractional derivative HDα,β;ψ(·) of a function g of order α and type
0 ≤ β ≤ 1, is defined by

HDα,β;ψ
a+ g(t) = Iβ(n−α);ψ

( 1

ψ′(t)

d

dt

)n
I(1−β)(n−α);ψg(t).
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Lemma 2.3 ([20]). Let α, χ > 0 and δ > 0. Then

(i) Iα;ψIχ;ψh(t) = Iα+χ;ψh(t),

(ii) Iα;ψ (ψ(t)− ψ(a))
δ−1

=
Γ(δ)

Γ(α+ δ)
(ψ(t)− ψ(a))α+δ−1.

We note also that HDα,β;ψ
a+ (ψ(t)− ψ(a))γ−1 = 0.

The following lemma contains the compositional property of Riemann-Liouville
fractional integral operator with the ψ-Hilfer fractional derivative operator.

Lemma 2.4 ([20]). Let f ∈ L(a, b), n − 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1,
γ = α+ nβ − αβ, I(n−α)(1−β)f ∈ ACk[a, b]. Then(

Iα;ψ;ψ HDα,β;ψ
a+ f

)
(t)

= f(t)−
n∑
k=1

(ψ(t)− ψ(a))γ−k

Γ(γ − k + 1)
f
[n−k]
ψ lim

t→a+

(
I(1−β)(n−α);ψf

)
(t),

where f
[n−k]
ψ =

(
1

ψ′(t)
d
dt

)n−k
f(t).

For convenience of the reader, we collect the fixed point theorems used to prove
the results in this paper.

Lemma 2.5 (Banach fixed point theorem, [2]). Let X be a Banach space,
D ⊂ X closed, and F : D → D a strict contraction, i.e., |Fx− Fy| ≤ k|x− y| for
some k ∈ (0, 1) and all x, y ∈ D. Then F has a fixed point in D.

Lemma 2.6 (Krasnoselskii’s fixed point theorem, [12]). Let M be a closed,
bounded, convex, and nonempty subset of a Banach space X. Let A,B be the
operators such that (a) Ax + By ∈ M whenever x, y ∈ M , (b) A is compact and
continuous, (c) B is a contraction mapping. Then there exists z ∈ M such that
z = Az +Bz.

Lemma 2.7 (Nonlinear alternative for single valued maps, [5]). Let E be a
Banach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U .
Suppose that A : Ū → C is a continuous, compact (that is, A(Ū) is a relatively
compact subset of C) map. Then either

(i) A has a fixed point in Ū , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with x = λA(x).

3. Main results

We first prove an auxiliary lemma concerning a linear variant of the boundary
value problem (5)–(6).

Lemma 3.1. Let a < b, 1 < α < 2, γ = α+ 2β − αβ, h ∈ C([a, b],R), and

(7) Λ := (ψ(b)− ψ(a))γ−1 −
m∑
i=1

λi(ψ(θi)− ψ(a))γ−1 6= 0.
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Then the function x ∈ C([a, b],R) is a solution of the boundary value problem(
HDα,β;ψ

a+ + k HDα−1,β;ψ
a+

)
x(t) = h(t), t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1,(8)

x(a) = 0, x(b) =

m∑
i=1

λi x(θi),(9)

if and only if

(10)

x(t) = Iα;ψh(t)− kI1;ψx(t) +
(ψ(t)− ψ(a))γ−1

Λ

[
− k

m∑
i=1

λiI
1;ψx(θi)

− Iα;ψh(b) +

m∑
i=1

λiI
α;ψh(θi) + kI1;ψx(b)

]
, t ∈ [a, b].

Proof. Assume that x is a solution of the nonlocal boundary value problem
(8)–(9). Operating fractional integral Iα;ψ on both sides of equation (8) and using
Lemma 2.4, we obtain for t ∈ [a, b],

x(t)−
2∑
k=1

(ψ(t)− ψ(a))γ−k

Γ(γ − k + 1)
x
[2−k]
ψ lim

t→a+

(
I(1−β)(2−α);ψx

)
(t)+kI1;ψx(t) = Iα;ψh(t).

Hence, using the fact that (1− β)(2− α) = 2− γ, we have

x(t) =
(ψ(t)− ψ(a))γ−1

Γ(γ)

( 1

ψ′(t)

d

dt

)
I2−γ;ψx(t)

∣∣∣
t=a

+
(ψ(t)− ψ(a))γ−2

Γ(γ − 1)
I2−γ;ψx(t)

∣∣∣
t=a
− kI1;ψx(t) + Iα;ψh(t)

=
(ψ(t)− ψ(a))γ−1

Γ(γ)
HDγ−1,β;ψ

a+ x(t)
∣∣
t=a

+
(ψ(t)− ψ(a))γ−2

Γ(γ − 1)
I2−γ;ψx(t)

∣∣
t=a
− kI1;ψx(t) + Iα;ψh(t)

= c1
(ψ(t)− ψ(a))γ−1

Γ(γ)
+ c2

(ψ(t)− ψ(a))γ−2

Γ(γ − 1)
− kI1;ψx(t) + Iα;ψh(t),

where c1 = HDγ−1,β;ψ
a+ x(t)

∣∣
t=a

and c2 = I2−γ;ψx(t)
∣∣
t=a

.

From the first boundary condition x(a) = 0, we can obtain c2 = 0. Then we get

(11) x(t) = c1
(ψ(t)− ψ(a))γ−1

Γ(γ)
− kI1;ψx(t) + Iα;ψh(t), t ∈ [a, b].

From x(b) =
∑m
i=1 λi x(θi), we have

c1 =
Γ(γ)

Λ

[
− k

m∑
i=1

λiI
1;ψx(θi)− Iα;ψh(b) +

m∑
i=1

λiI
α;ψh(θi) + kI1;ψx(b)

]
.

Substituting the values of c1 in (11), we obtain the solution (10).
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Conversely, suppose that x is the solution of the fractional integral equation (10).

Operating fractional derivative HDα,β;ψ
a+ on both sides of equation (10) and using

Lemma 2.3, we obtain

(12)

HDα,β;ψ
a+ x(t) = h(t)−

(
HDα,β;ψ

a+ k
)
I1;ψx(t)

+
1

Λ

[
− k

m∑
i=1

λiI
1;ψx(θi)− Iα;ψh(b) +

m∑
i=1

λiI
α;ψh(θi)

+ kI1;ψx(b)
]
HDα,β;ψ

a+ (ψ(t)− ψ(a))γ−1

= h(t)− kDα−1,β;ψ
a+ h(t), t ∈ [a, b].

Now we prove that x satisfies the boundary condition (9). Obviously x(a) = 0.
For each i(i = 1, . . . ,m), from equation (10), we have

m∑
i=1

λix(θi) =

m∑
i=1

λiI
α;ψh(θi)−

m∑
i=1

λikI
1;ψx(θi)

+

m∑
i=1

λi
(ψ(θi)− ψ(a))γ−1

Λ

[
− k

m∑
i=1

λiI
1;ψx(θi)

− Iα;ψh(b) +

m∑
i=1

λiI
α;ψh(θi) + kI1;ψx(b)

]
=

m∑
i=1

λiI
α;ψh(θi)−

m∑
i=1

λikI
1;ψx(θi)

+

[
(ψ(b)− ψ(a))γ−1

Λ
− 1

][
− k

m∑
i=1

λiI
1;ψx(θi) [by (7)]

− Iα;ψh(b) +

m∑
i=1

λiI
α;ψh(θi) + kI1;ψx(b)

]
= Iα;ψh(b)− kI1;ψx(b) +

(ψ(b)− ψ(a))γ−1

Λ

[
− k

m∑
i=1

λiI
1;ψx(θi)

− Iα;ψh(b) +

m∑
i=1

λiI
α;ψh(θi) + kI1;ψx(b)

]
= x(b).

This completes the proof. �

Let C([a, b],R) denote the Banach space of all continuous functions from [a, b]
to R endowed with the norm ‖x‖ = supt∈[a,b] |x(t)|. In view of Lemma 3.1, we
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define an operator A : C([a, b],R)→ C([a, b],R) by

(13)

(Ax)(t) = Iα;ψf(t, x(t))− kI1;ψx(t)

+
(ψ(t)− ψ(a))γ−1

Λ

[
− k

m∑
i=1

λiI
1;ψx(θi)

+

m∑
i=1

λiI
α;ψf(θi, x(θi)) + kI1;ψx(b)− Iα;ψf(b, x(b))

]
, t ∈ [a, b].

It should be noted that the sequential boundary value problem (5)–(6) has
solution if and only if the operator A has fixed points.

In the following, for the sake of convenience, we set constants

(14) Ω =
(ψ(b)− ψ(a))γ−1

|Λ|Γ(α+ 1)

[ m∑
i=1

|λi|(θi−a)α+(ψ(b)−ψ(a))α
]

+
(ψ(b)− ψ(a))α

Γ(α+ 1)
,

and

(15) Ω1 = |k|(b− a) +
(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

m∑
i=1

|λi|(θi − a) + |k|(b− a)
]
.

In the following subsections, we prove existence, as well as existence and unique-
ness results for the sequential boundary value problem (5)–(6) by using classical
fixed point theorems.

3.1. Existence and uniqueness result

Our first result is an existence and uniqueness result, based on Banach’s fixed
point theorem.

Theorem 3.2. Assume that

(H1) there exists a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y| for each t ∈ [a, b] and x, y ∈ R.

If

(16) LΩ + Ω1 < 1,

where Ω and Ω1 are defined by (14) and (15), respectively, then the boundary value
problem (5)–(6) has a unique solution on [a, b].

Proof. We transfrom the boundary value problem (5)–(6) into a fixed point
problem, x = Ax, where the operator A is defined as in (13). Observe that the
fixed points of the operator A are solutions of problem (5)–(6). Applying the
Banach contraction mapping principle, we show that A has a unique fixed point.

Let supt∈[a,b] |f(t, 0)| = M <∞, and choose

(17) r ≥ MΩ

1− LΩ− Ω1
.
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Now, we show that ABr ⊂ Br, where Br = {x ∈ C([a, b],R) : ‖x‖ ≤ r}. By using
the assumption (H1), we have

|f(t, x(t))| ≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|
≤ L|x(t)|+M ≤ L‖x‖+M ≤ Lr +M.

For any x ∈ Br, we have

|(Ax)(t)|

≤ sup
t∈[a,b]

{
Iα;ψ|f(t, x(t))|+ |k|I1;ψ|x(t)|

+
(ψ(b)− ψ(a))γ−1

|Λ|

( m∑
i=1

|λi|Iα;ψ|f(θi, x(θi))|+ Iα;ψ|f(b, x(b))|

+ |k|I1;ψ|x(b)|+ |k|
m∑
i=1

|λi|I1;ψ|x(θi)|
)}

≤ Iα;ψ(|f(t, x(t))− f(t, 0)|+ |f(t, 0)|) + |k|I1;ψ|x(b)|

+
(ψ(b)− ψ(a))γ−1

|Λ|

( m∑
i=1

|λi|Iα;ψ|f(θi, x(θi))− f(θi, 0)|+ |f(θi, 0)|)

+ Iα;ψ(|f(b, x(b))− f(b, 0)|+ |f(b, 0)|) + |k|I1;ψ|x(b)|

+ |k|
m∑
i=1

|λi|I1;ψ|x(θi)|
)

≤

{
(ψ(b)− ψ(a))α

Γ(α+ 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
m∑
i=1

|λi|
(ψ(θi)− ψ(a))α

Γ(α+ 1)

+
(ψ(b)− ψ(a))α

Γ(α+ 1)

]}
(L‖x‖+M)

+

{
|k|(b− a) +

(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

m∑
i=1

|λi|(θi − a) + |k|(b− a)
]}
‖x‖

≤ (Lr +M)Ω + Ω1r ≤ r,
which implies that ABr ⊂ Br.

Next, let x, y ∈ C([a, b],R). Then for t ∈ [a, b], we have

|(Ax)(t)− (Ay)(t)|

≤ Iα;ψ|f(t, x(t))− f(t, y(t))|+ |k|I1;ψ|x(t)− y(t)|

+
(ψ(b)− ψ(a))γ−1

|Λ|

( m∑
i=1

|λi|Iα;ψ|f(θi, x(θi))− f(θi, y(θi))|+ Iα;ψ|f(b, x(b))

− f(b, y(b))|+ |k|I1;ψ|x(b)− y(b)|+ |k|
m∑
i=1

|λi|I1;ψ|x(θi)− y(θi)|
)
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≤ L

{
(ψ(b)− ψ(a))α

Γ(α+ 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[
m∑
i=1

|λi|
(ψ(θi)− ψ(a))α

Γ(α+ 1)

+
(ψ(b)− ψ(a))α

Γ(α+ 1)

]}
‖x− y‖

+

{
|k|(b− a) +

(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

m∑
i=1

|λi|(θi − a) + |k|(b− a)
]}
‖x− y‖

= (LΩ + Ω1)‖x− y‖,
which implies that ‖Ax − Ay‖ ≤ (LΩ + Ω1)‖x − y‖. As LΩ + Ω1 < 1, A is a
contraction. Therefore, we deduce by the Banach’s contraction mapping principle,
thatA has a fixed point which is the unique solution of the boundary value problem
(5)–(6). The proof is completed. �

Example 3.3. Consider the multi-point boundary value problem with sequen-
tial ψ-Hilfer fractional differential equation(

D
3
2 ,

1
2 ;t

1+ +
1

6
D

1
2 ,

1
2 ;t

1+

)
x(t) =

|x(t)|
8(t+ 1)2 (1 + |x(t)|)

, t ∈ [1, 3],(18)

x(1) = 0, x(3) =
1

8
x

(
3

2

)
+

3

7
x(2) +

2

15
x

(
5

2

)
.(19)

Here α = 3/2, β = 1/2, k = 1/6, λ1 = 1/8, λ2 = 3/7, λ3 = 2/15, θ1 = 3/2,

θ2 = 2, θ3 = 5/2, ψ(t) = t, and f(t, x) = 1
8(t+1)2

|x|
(1+|x|) , t ∈ [1, 3], x ∈ R.

For any x, y ∈ R and t ∈ [1, 3],

|f(t, x)− f(t, y)| ≤ 1

32
|x− y| .

Hence condition (H1) is satisfied with L = 1/32. With the given data, we find Λ ≈
2.679969, Ω ≈ 8.657332, and Ω1 ≈ 0.687071. Therefore LΩ + Ω1 ≈ 0.957612 < 1.

It follows from Theorem 3.2 that the problem (18), (19) has a unique solution.

3.2. Existence results

In this subsection, we present two existence results. The first is based on the
well-known Krasnoselskii’s fixed point theorem.

Theorem 3.4. Let f : [a, b]× R→ R be a continuous function such that:

(H2) |f(t, x)| ≤ ϕ(t) for all (t, x) ∈ [a, b]× R and ϕ ∈ C([a, b],R+).

Then the boundary value problem (5)–(6) has at least one solution on [a, b], pro-
vided

(20) Ω1 := |k|(b− a) +
(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

m∑
i=1

|λi|(θi − a) + |k|(b− a)
]
< 1.

Proof. Setting supt∈[a,b] ϕ(t) = ‖ϕ‖ and choosing

(21) ρ ≥ ‖ϕ‖Ω
1− Ω1

,
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we consider Bρ = {x ∈ C([a, b],R) : ‖x‖ ≤ ρ}. We define the operators A1, A2 on
Bρ by

A1x(t) = Iα;ψf(t, x(t)) +
(ψ(t)− ψ(a))γ−1

Λ

[ m∑
i=1

λiI
α;ψf(θi, x(θi))

− Iα;ψf(b, x(b))
]
, t ∈ [a, b],

and

A2x(t) = − kI1;ψx(t) +
(ψ(t)− ψ(a))γ−1

Λ

[
− k

m∑
i=1

λiI
1;ψx(θi)

+ kI1;ψx(b)
]
, t ∈ [a, b].

For any x, y ∈ Bρ, we have

|(A1x)(t) + (A2y)(t)|

≤ sup
t∈[a,b]

{
Iα;ψ|f(t, x(t))|+ |k|I1;ψ|y(t)|

+
(ψ(b)− ψ(a))γ−1

|Λ|

( m∑
i=1

|λi|Iα;ψ|f(θi, x(θi))|+ Iα;ψ|f(b, x(b))|

+ |k|I1;ψ|y(b)|+ |k|
m∑
i=1

|λi|I1;ψ|y(θi)|
)}

≤
{

(ψ(b)− ψ(a))α

Γ(α+ 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[ m∑
i=1

|λi|
(ψ(θi)− ψ(a))α

Γ(α+ 1)

+
(ψ(b)− ψ(a))α

Γ(α+ 1)

]}
‖ϕ‖

+

{
|k|(b− a) +

(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

m∑
i=1

|λi|(θi − a) + |k|(b− a)
]}
‖y‖

≤ ‖ϕ‖Ω + Ω1ρ ≤ ρ.

This shows that A1x + A2y ∈ Bρ. By using (20), it is easy to see that A2 is a
contraction mapping.

Continuity of f implies that the operatorA1 is continuous. Also, A1 is uniformly
bounded on Bρ as

‖A1x‖ ≤
{

(ψ(b)− ψ(a))α

Γ(α+ 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[ m∑
i=1

|λi|
(ψ(θi)− ψ(a))α

Γ(α+ 1)

+
(ψ(b)− ψ(a))α

Γ(α+ 1)

]}
‖ϕ‖.

Now we prove the compactness of the operator A1.
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We define sup(t,x)∈[a,b]×Bρ |f(t, x)| = f̄ <∞, and consequently, we have

|(A1x)(t2)− (A1x)(t1)|

=
1

Γ(α)

∣∣∣∣ ∫ t1

a

ψ′(s)[(ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1]f(s, x(s))ds

+

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1f(s, x(s))ds

∣∣∣∣
+

(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ|

[ m∑
i=1

|λi|Iα;ψ|f(θi, x(θi))|

+ |Iα;ψf(b, x(b))|
]

≤ f̄

Γ(α+ 1)
[2(ψ(t2)− ψ(t1))α + |(ψ(t2)− ψ(a))α − (ψ(t1)− ψ(a))α|]

+ f̄
(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ|

[ m∑
i=1

|λi|
(ψ(θi)− ψ(a))α

Γ(α+ 1)

+
(ψ(b)− ψ(a))α

Γ(α+ 1)

]
,

which is independent of x and tends to zero as t2 − t1 → 0. Thus, A1 is equicon-
tinuous. So A1 is relatively compact on Bρ. Hence, by the Arzelá-Ascoli theorem,
A1 is compact on Bρ. Thus all the assumptions of Lemma 2.6 are satisfied. So
the conclusion of Lemma 2.6 implies that the boundary value problem (5)–(6) has
at least one solution on [a, b]. �

The Leray-Schauder’s Nonlinear Alternative is used for proving our second ex-
istence result.

Theorem 3.5. Let f : [a, b] × R → R be a continuous function. Assume that
(20) holds. In addition we suppose that:

(H3) there exist a continuous, nondecreasing function ψ : [0,∞)→ (0,∞) and a
function p ∈ C([a, b],R+) such that

|f(t, u)| ≤ p(t)ψ(|u|) for each (t, u) ∈ [a, b]× R,

(H4) there exists a constant K > 0 such that

(1− Ω1)K

ψ(K)‖p‖Ω
> 1.

Then the boundary value problem (5)–(6) has at least one solution on [a, b].

Proof. Let the operator A be defined by (13). First, we show that A maps
bounded sets (balls) into bounded set in C([a, b],R). For a number r > 0, let
Br = {x ∈ C([a, b],R) : ‖x‖ ≤ r} be a bounded ball in C([a, b],R).
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Then for t ∈ [a, b], we have

|(Ax)(t)|

≤ sup
t∈[a,b]

{
Iα;ψ|f(t, x(t))|+ |k|I1;ψ|x(t)|

+
(ψ(b)− ψ(a))γ−1

|Λ|

( m∑
i=1

|λi|Iα;ψ|f(θi, x(θi))|

+ Iα;ψ|f(b, x(b))|+ |k|I1;ψ|x(b)|+ |k|
m∑
i=1

|λi|I1;ψ|x(θi)|
)}

≤
{

(ψ(b)− ψ(a))α

Γ(α+ 1)
+

(ψ(b)− ψ(a))γ−1

|Λ|

[ m∑
i=1

|λi|
(ψ(θi)− ψ(a))α

Γ(α+ 1)

+
(ψ(b)− ψ(a))α

Γ(α+ 1)

]}
‖p‖ψ(‖x‖)

+

{
|k|(b− a) +

(ψ(b)− ψ(a))γ−1

|Λ|

[
|k|

m∑
i=1

|λi|(θi − a) + |k|(b− a)
]}
‖x‖,

and consequently,

‖Ax‖ ≤ ψ(r)‖p‖Ω + Ω1r.

Next, we show that A maps bounded sets into equicontinuous sets of C([a, b],
R). Let t1, t2 ∈ [a, b] with t1 < t2 and x ∈ Br. Then we have

|(Ax)(t2)− (Ax)(t1)|

=
1

Γ(α)

∣∣∣∣ ∫ t1

a

ψ′(s)[(ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1]f(s, x(s))ds

+

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1f(s, x(s))ds

∣∣∣∣+ |k|r(t2 − t1)

+
(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ|

[ m∑
i=1

|λi|Iα;ψ|f(θi, x(θi))|

+ |Iα;ψf(b, x(b))|+ |k|
m∑
i=1

|λi|(θi − a)r + |k|(b− a)r
]

≤ ‖p‖ψ(r)

Γ(α+ 1)
[2(ψ(t2)− ψ(t1))α + |(ψ(t2)− ψ(a))α − (ψ(t1)− ψ(a))α|]

+ |k|r(t2 − t1)

+ ‖p‖ψ(r)
(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1

|Λ|

[ m∑
i=1

|λi|
(ψ(θi)− ψ(a))α

Γ(α+ 1)

+
(ψ(b)− ψ(a))α

Γ(α+ 1)
+ |k|

m∑
i=1

|λi|(θi − a)r + |k|(b− a)r
]
.
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As t2 − t1 → 0, the right-hand side of the above inequality tends to zero in-
dependently of x ∈ Br. Therefore, by the Arzelá-Ascoli theorem, the operator
A : C([a, b],R)→ C([a, b],R) is completely continuous.

The result follows from the Leray-Schauder nonlinear alternative (Lemma 2.7)
once we have proved the boundedness of the set of all solutions to equations
x = λAx for λ ∈ (0, 1).

Let x be a solution. Then, for t ∈ [a, b], and following the similar computations
as in the first step, we have

|x(t)| ≤ ψ(‖x‖)‖p‖Ω + Ω1‖x‖,
which leads to

(1− Ω1)‖x‖
ψ(‖x‖)‖p‖Ω

≤ 1.

In view of (H4), there exists K such that ‖x‖ 6= K. Let us set

U = {x ∈ C([a, b],R) : ‖x‖ < K}.
We see that the operator A : Ū → C([a, b],R) is continuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x = λAx for some
λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Lemma 2.7), we deduce that A has a fixed point x ∈ Ū which is a solution of the
boundary value problem (5)–(6). This completes the proof. �

Example 3.6. Consider the multi-point boundary value problem with sequen-
tial ψ-Hilfer fractional differential equation(

D
5
4 ,

3
4 ;t

0+ +
3

8
D

1
4 ,

3
4 ;t

0+

)
x(t) =

1

5
√
π

(
sin t tan−1 x+

π

2

)
, t ∈ [0, 1],(22)

x(0) = 0, x(1) =
1

9
x

(
2

5

)
+

1

5
x

(
1

2

)
.(23)

Here α = 5/4, β = 3/4, k = 3/8, λ1 = 1/9, λ2 = 1/5, θ1 = 2/5, θ2 = 1/2, and

ψ(t) = t. Set f(t, x) = 1
5
√
π

(
sin t tan−1 x+ π

2

)
. Obviously, |f(t, x)| ≤

√
π
5 . With

the given data it is found that Ω1 ≈ 0.8815 < 1 with Λ ≈ 0.8333. Clearly, all the
conditions of Theorem 3.4 are satisfied. Hence by the conclusion of the Theorem
3.4, it follows that problem (22)–(23) has at least one solution on [0, 1].

Example 3.7. Consider the multi-point boundary value problem with sequen-
tial ψ-Hilfer fractional differential equation(

D
6
5 ,

3
5 ;t

0+ +
1

7
D

1
5 ,

3
5 ;t

0+

)
x(t)(24)

=
1

10

(
1

6
|x|+ 1

8
cosx+

|x|
4 (1 + |x|)

+
1

16

)
, t ∈ [0, 1],

x(0) = 0, x(1) =
11

8
x

(
1

2

)
+

14

9
x

(
2

3

)
,(25)

where f(t, x) = 1
10

(
1
6 |x|+

1
8 cosx+ |x|

4(1+|x|) + 1
16

)
and |f(t, x)| ≤ 1

10

(
1
6 |x|+

7
16

)
.
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Here α = 6/5, β = 3/5, k = 1/7, λ1 = 11/8, λ2 = 14/9, θ1 = 1/2, θ2 = 2/3, and
ψ(t) = t. We have ‖p‖ = 1

10 , ψ (|x|) = 1
6 |x|+

7
6 . We find that the condition (H4)

holds for K > 0.7496. Hence, by the conclusion of the Theorem 3.5, it follows that
problem (24)–(25) has at least one solution on [0, 1].

Acknowledgement. The authors thank the reviewer for his/her useful re-
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