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A B S T R A C T

The main concern of the manuscript deals with the optimal control problem of conformable
fractional neutral stochastic integrodifferential systems with infinite delay. This study is
motivated by SAR and RAR systems advantage of providing control over many factors such as
power, frequency, phase, polarization, incidence angle, spatial resolution and swath width, all of
which are important when designing and operating a radar system. Initially, we investigate the
existence of mild solutions for the conformable fractional stochastic integrodifferential equations
with infinite delay using stochastic analysis techniques and Banach fixed point theorem. In the
later part we establish the existence of mild solutions of the conformable fractional neutral
stochastic integrodifferential system with infinite time delay. Furthermore, the existence of
optimal control of the corresponding Lagrange optimal control problem is investigated. An
example is provided to illustrate the applications of the obtained results. We explain the
limitation we have with the existence software, and developed a numerical scheme to justify
the theory.

. Introduction

Numerous real-world phenomena, such as stock prices, heat conduction in materials with memory, rising population, and so
n, have fluctuated due to random influences or noise, requiring the accessibility of randomness in mathematical descriptions of
hese phenomena. Stochastic differential equations (SDEs) are differential equations that involve randomness. SDEs are used in a
ariety of domains including economics, finance and engineering due to its abstract formulation of many problems. For the study
f SDEs and SDEs in the fractional sense, the reader may refer to books [1–5] and articles [6–9]. Recently, much attention has been
aid to the qualitative properties of mild solutions to various stochastic integrodifferential equations and the fixed point technique,
ee [10–12] and the references therein.

Many fields of science, including engineering, mathematics, and biomedicine, use optimal control problems. An optimal control
roblem becomes a stochastic optimal control problem when the performance index and system dynamics are described by stochastic
ifferential equations. Recently, Sathiyaraj et al. [13] demonstrated controllability and optimal control for a class of time-delayed
ractional stochastic integrodifferential systems with Poisson jumps. Several studies have recently been conducted to determine the

∗ Corresponding author.
E-mail addresses: chalishajardn@vmi.edu (D. Chalishajar), ramkumarkpsg@gmail.com (K. Ramkumar), ravikumarkpsg@gmail.com (K. Ravikumar),

ngurajpsg@yahoo.com (A. Anguraj), sonaljainmaths@gmail.com (S. Jain).
1 All authors contributed equally to this research work.
vailable online 21 September 2023
666-7207/Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.rico.2023.100293
eceived 3 February 2023; Received in revised form 16 June 2023; Accepted 5 September 2023

https://www.elsevier.com/locate/rico
http://www.elsevier.com/locate/rico
mailto:chalishajardn@vmi.edu
mailto:ramkumarkpsg@gmail.com
mailto:ravikumarkpsg@gmail.com
mailto:angurajpsg@yahoo.com
mailto:sonaljainmaths@gmail.com
https://doi.org/10.1016/j.rico.2023.100293
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rico.2023.100293&domain=pdf
https://doi.org/10.1016/j.rico.2023.100293
http://creativecommons.org/licenses/by/4.0/


Results in Control and Optimization 13 (2023) 100293D. Chalishajar et al.

f
c
i
o
d
a
t

a
L
t
t
t
n
o

a
i
R
t
n
f

e
t
f
p
b
i
p
e
o
o
t
b
p

existence of optimal control conditions for a variety of dynamic systems. In the case of fractional optimal control problems, however,
there are only a few works in the literature. The reader may refer to [14–18].

Using the fractional variational principle and the Lagrange multiplier technique, Agrawal [15] presented general information
or fractional optimal control problems where fractional derivatives were considered in the Riemann–Liouville sense but not the
onformable sense. Liu et al. [19] investigated the solvability and optimal controls for a few fractional evolution equations with
mpulse effects using fractional calculus, the Gronwall inequality, and the Leray Schauder fixed point theorem. Using resolvent
perators, Tamilagan et al. [20] investigated the solvability and optimal control for fractional stochastic differential equations
riven by Poisson jumps. A fractional neutral stochastic differential system with a Caputo fractional derivative using successive
pproximation was taken into consideration by Ramkumar et al. [21]. For papers describing the solvability and optimal control for
he fractional SDEs, see [22–24].

FDEs are significant and helpful, which makes them and the approaches used to solve them popular. Numerical approaches are
lso essential for solving FDEs in practice because analytical solutions, such as those utilizing matrix Mittag-Leffler functions or
aplace transforms, are sometimes impractical or unfeasible for increasingly complex FDEs. Numerous such techniques, including
he q-homotopy analysis transform method, the B-spline collocation method, the predictor–corrector method, the space-spectral
ime-fractional Adams–Bashforth–Moulton technique, the fractional Taylor operational matrix technique, the Bernoulli polynomials
echnique, the differential transform technique, and others, have been established in the literature. Here, we justify the idea using a
umerical scheme. The proposed method’s very effective outcomes and applicability can make significant contributions to the field
f numerical methods.

Many researchers used an integral form for fractional derivative definition. The most popular definitions of fractional derivatives
re Riemann–Liouville and Caputo definitions. Lately, Khalil at al.give a new definition of fractional derivative and fractional
ntegral [25]. This new definition benefit from a limit form as in usual derivatives. This new theory is improved by Abdeljawad [26].
ecently, Chalishajar et al. [[27], RICO] discussed the optimal controllability of stochastic systems with deviated argument in infinite

ime horizon using new definition of a phase space. This work is the extension of authors own work using conformal mapping with
umerical simulation. This theoretical and numerical approach makes this work unique. For more articles regarding conformable
ractional derivative, one may refer [28,29].

Researchers are increasingly interested in numerical modeling of optimal control of nonlinear time-delay fractional differential
quations. Optimal management of nonlinear time-delay fractional differential equations was achieved by Chen et al. [30] using
he Dickson polynomial. They approximated the system’s states and control variables using a set of Dickson polynomials as basis
unctions and then utilized a collocation method to translate the issue into a system of nonlinear algebraic equations. Chu et al. [31]
resented a dynamical model of SARS-CoV-2 in fractional derivative utilizing fourth-wave coronavirus cases. They fit the data to
oth the fractional and piecewise stochastic differential equations and show that they both match the data well. Sher et al. [32]
nvestigated the existence and uniqueness of solutions for a class of evolution fractional order differential equations (FODEs) with
roportional delay utilizing Caputo derivative under local conditions using topological degree theory (TDT). In addition, Chu
t al. [33] employ a combination of Shehu decomposition and variational iteration transform methods to solve fractional third-
rder dispersive partial differential equations. The graphs and table depict the behavior of the solution for various fractional
rder values. In [34], Ahmad et al. used an effective local meshless method to discretize the numerical treatment of three-term
emporal fractional-order multi-dimensional diffusion equations. The proposed meshless approach based on the multiquadric radial
asis function through the time-fractional component discretizes the space derivative of the models. Hajiseyedazizi et al. [35] just
ublished a paper on multi-step approaches for singular fractional 𝑞-integro-differential equations with some boundary conditions
𝛺, which singular at some point 0 ≤ 𝑡 ≤ 1. Chen et al. [36] presented a unique approach to solving optimal control problems using
fractional differential equations and time delay. To be more specific, a set of global radial basis functions is utilized to approximate
the problem’s states and control variables.

1.1. A deterministic and stochastic method to conformal array fabrication for SAR applications

Space-borne Synthetic Aperture Radars (SARs) often use conformal phased array antennas with a large number of elements,
which are required to generate multiple shaped beams, including nulls and side-lobe regions with intricate geometries. Only the
pattern amplitudes are of importance in such applications, necessitating the learning of the optimal control on the cost basis.

SARs have been employed in both military and civilian settings. They have been shown to be particularly useful in applications
such as sea and ice or oil pollution monitoring, oceanography, snow monitoring, earth terrain categorization, and so on. Because of
the vast range of applications and benefits of Real Aperture Radars (RARs), a large number of airborne and spaceborne SAR systems
have been developed over the last few decades.

The main advantage they offer is the ability to achieve high azimuth resolution. In fact, to improve RAR system resolution,
one should either utilize a very long antenna or reduce the signal wavelength. However, in spaceborne and airborne applications,
the antenna size and weight are constrained by the platform’s structure. Furthermore, short wavelengths are subject to significant
attenuation in the environment. SARs, on the other hand, employ the forward motion of the actual antenna on the vehicle to
‘‘synthesize’’ an extremely long antenna, allowing a suitable antenna size to be maintained. Thus the study of optimal control is
helpful to day and night monitoring and wide area coverage (even in unfavorable weather conditions).

The antenna in imaging radar systems moves at a constant speed along the track direction. The ability of the system to distinguish
between two targets on the ground is characterized as ground resolution. A long antenna in RAR systems generates the beam that
2

illuminates the ground below. The radar along track resolution, also known as the azimuth resolution, is the shortest distance
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on the ground parallel to the flight path at which two targets can be viewed individually. The azimuth resolution is defined as
𝜌𝑎 = 𝑅𝜆∕𝑙, where 𝑅 is the slant range from the antenna to the mean point of the swath, 𝜆 is the wavelength, and ‴ is the physical
perture length. The pulse length, 𝜏𝑝, on the other hand, determines the across-track resolution, or range resolution. It is calculated
s 𝜌𝑔 = 𝑐𝜏𝑝∕(2𝑠𝑖𝑛𝜃), where 𝑐 is the speed of light and 𝜃 is the look angle. To improve azimuth resolution, either a longer antenna or
shorter wavelength must be employed in conjunction with optimal conformable system control.

SAR processing results in a high resolution image. In SAR systems, the azimuth resolution is 𝜌𝑎 ≥ 𝑙∕2. Furthermore, SAR systems
rovide control over numerous aspects such as power, frequency, phase, polarization, incidence angle, spatial resolution, and swath
idth, all of which are significant for developing and running a system for quantitative information extraction. But, when antenna
rrays of many elements are involved, using simple and light feeding networks is highly important to the aim of reducing the cost
nd the payload of a satellite. Thus, it is important to reduce the dynamic range ratio (DRR) of the excitation, defined as the ratio
etween the maximum and the minimum amplitude of the excitation using optimal control of the conformal stochastic system.

Motivated by the above facts, let us take into account the Conformable fractional stochastic integrodifferential system with
nfinite delay of the form:

𝛼x(t) = Ax(t) + B(t)z(t) + f

(

t, xt,∫

t

0
g
(

t, 𝑠, x𝑠
)

𝑑𝑠
)

+ h

(

t, xt,∫

t

0
g̃
(

t, 𝑠, x𝑠
)

𝑑𝑠
)

𝑑𝜔(t)
𝑑t

,

x(t) = 𝜁 (t), ∈ 2(𝛺,G ), t ∈ (−∞, 0], (1.1)

• 𝛼 is the conformable fractional derivative w.r.t. t ∈  ′ = (0, v] and 0 < 𝛼 < 1.
• The infinitesimal generator of A ∶ D(A) ⊂  →  generates a strongly continuous semigroup {G(t)}t ≥ 0 on a Hilbert space 

with ⟨., .⟩ and norm ‖.‖ .
• Allowing  = [0, v]. Then, values are received by the control function z from the reflexive Hilbert space, .
• The appropriate functions are f ∶  ×G ×  →  , h ∶  ×G ×  → 0

2 and g, g̃ ∶  ×  ×G →  .
• Let  be a different real separable Hilbert space with ⟨., .⟩ and ‖.‖ as its norm.
• We may assume that {𝜔(t), t ≥ 0} is a − valued Brownian motion with finite-trace nuclear covariance operator  ≥ 0
• The abstract phase space G has the element xt ∶ (−∞, 0] →  , which is described by xt(𝑠) = x(t + 𝑠).
• The initial condition 𝜁 = {𝜁 (t) ∶ t ∈ (−∞, 0]} is independent of the Wiener process {𝜔(t)} with the finite second moment which

is G − valued random variable and ℑ0−measurable.

The outline of this paper is as follows: Section 2 is devoted to the notions and preliminaries required to solve the aforementioned
ystem (1.1). In Section 3, for the modeled system, the existence results of mild solutions are investigated. In Section 4, a Conformable
ractional stochastic neutral integrodifferential system is framed and the existence results of mild solutions are presented. In
ection 5, the optimal results of the system (4.1) are investigated. To validate the obtained results, an example is provided in
ection 6 depicts the cost functional considered attains its minimum. In Section 7 numerical simulation is presented to show the
pplication of the equation. At last Section 8 Conclusion is presented.

The primary contribution along with the innovation of the manuscript are listed as follows:

∙ A conformable fractional stochastic integrodifferential system with infinite delay and the neutral condition is modeled and
the existence result is established which is not discussed so far

∙ The optimal controllability with the numerical simulation of the conformable fractional stochastic integrodifferential system
with infinite delay is untreated in the literature.

∙ Theoretical proofs are justified by numerical simulation uniquely.

. Preliminaries

Assume that (𝛺,ℑ,) is a complete probability space, that ℑt, t ∈  represents the normal filtration as being right continuous,
and that {ℑ0} contains −null sets. With the covariance operator , 𝜔 is a -Wiener process on (𝛺,ℑv,) ∋ 𝑇 𝑟() <∞. Consider
the sequence of bounded non-negative real number {ℎ𝑘}𝑘≥0 and the complete orthonormal basis {𝜉𝑘}𝑘≥1 in  ∋ 𝜉𝑘 = ℎ𝑘𝜉𝑘. The
equence of independent Brownian motion {w𝑘}𝑘≥1 follows ⟨𝜔(t), 𝜉⟩ =

∑∞
𝑘=1

√

ℎ𝑘⟨𝜉𝑘, 𝜉⟩w𝑘(t), 𝜉 ∈ , t ∈  . Take into account
0
2 = 2

(

1∕2;
)

as the space containing all Hilbert–Schmidt operators from 1∕2 to  with ‖𝜙‖2 = 𝑇 𝑟(𝜙𝜙∗), where 𝜙∗

s the adjoint operator of 𝜙. The expression 2 (𝛺,ℑ, ;) ≡ 2(𝛺;) is used to describe the set of all strongly measurable
quare integrable − valued random operators, is a Banach space equipped with the norm ‖x(.)‖2

=
(

E ‖

‖

x(., 𝜈0)‖‖
2


)1∕2
, where

‖ℎ0‖ = ∫𝛺 ℎ0(𝜈0)𝑑 defines the expectation E. Let 
(

 ,2(𝛺;)
)

be the Banach space consisting of all continuous functions  into
2(𝛺;) satisfying supt∈ E ‖x(t)‖2 < ∞.

efinition 2.1 ([25]). For a function p(.) with t > 0, the conformable fractional derivative of order 𝜈 is defined as follows.

𝑑𝜈p(t)
𝑑t𝜈

= lim
𝑣→0

p(t + 𝑣t1−𝜈 ) − p(t)
𝑣

, 0 < 𝜈 < 1.

For the specific condition t = 0, the following definition is derived:
𝑑𝜈p(0)

= lim
𝑑𝜈p(t)

.

3

𝑑t𝜈 t→0+ 𝑑t𝜈
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The conformable fractional derivative of order 𝜈 of a function s(.) is related with a fractional integral 𝜈 (.) defined by

𝜈 (p)(t) = ∫

t

0
s𝜈−1p(s)𝑑s.

Remark 2.1. By considering a simple differential equation x1∕2 + x = 0, one can solve using either Caputo or Riemann–Liouville
definition, then one can use Laplace transform or fractional power series technique. Nevertheless using Conformable fractional
derivative and the fact 𝛼

(

𝑒
1
𝛼 t𝛼

)

= 𝑒
1
𝛼 t𝛼 , we can easily see that x = 𝑐𝑒−2

√

t.

Following is the abstract phase space G [37]:

G =

⎧

⎪

⎨

⎪

⎩

𝜁 ∶ (−∞, 0] →  ,∀ 𝑐 > 0, (E‖𝜁 (𝜂)‖2)1∕2 is a bounded and measurable function on [−𝑐, 0]
with ∫ 0

−∞  (𝑠) sup
𝑠≤𝜂≤0

(

E‖𝜁 (𝜂)‖2
)1∕2 𝑑𝑠 < +∞,

where  ∶ (−∞, 0] → (0,+∞) be continuous with l = ∫ 0
−∞  (t)𝑑t < +∞ and

‖𝜁‖G
= ∫

0

−∞
 (𝑠) sup

𝑠≤𝜂≤0

(

E‖𝜁 (𝜂)‖2
)1∕2 𝑑𝑠, ∀ 𝜁 ∈ G .

Clearly
(

G , ‖.‖G

)

is a Banach space.
The  ((−∞, 𝜈],) be the space of all continuous − valued stochastic processes {𝜉(t) ∶ t ∈ (−∞, 𝜈]}. Also, G′

 = {x ∶ x ∈
 (−∞, 𝜈],)} endowed with the seminorm G′

 defined as

‖x‖v = ‖𝜁‖G
+ sup
𝑠∈[0,v]

(

E‖x(𝑠)‖2
)1∕2 , x ∈ G′

 .

Lemma 2.1 ([37]). If x0 = 𝜁 ∈ G , x ∈ G′
 , then for t ∈  , xt ∈ G . Moreover,

l
(

E‖x(t)‖2
)1∕2 ≤ ‖xt‖G

≤ ‖x0‖G
+ l sup

𝑠∈[0,t]

(

E‖x(𝑠)‖2
)1∕2 ,

where l = ∫ 0
−∞  (𝑠)𝑑𝑠 < +∞.

Definition 2.2. If the mild solution x(.) satisfies 𝛿(t) = x(t) a.e., then the system (1.1) is trajectory controllable on [t0, 𝚃].

Lemma 2.2 (Generalized Gronwall’s inequality [3,37]).: If 𝛽 > 0, ã(t) is a non-negative function locally integrable on 0 ≤ t < 𝚃, for some
(𝚃 < +∞), and g(t) is a non-negative, non-decreasing continuous function on 0 ≤ t ≤ 𝚃, g(t) ≤ 𝑐 being a constant and suppose ũ(t) is
non-negative and locally integrable on 0 ≤ t < 𝚃 with ũ(t) ≤ ã(t) + g(t) ∫ t

0 (t − 𝑠)
𝛽−1ũ(𝑠)𝑑𝑠, on the interval. Then

ũ(t) ≤ ã(t) + ∫

t

0

∞
∑

𝑛=1

(g(t)𝛤 (𝛽))𝑛

𝛤 (𝑛𝛽)
(t − 𝑠)𝛽−1ã(𝑠)𝑑𝑠, 0 ≤ t < 𝚃.

In particular, when ã(t) = 0, then ũ(t) = 0 for all 0 ≤ t < 𝚃.

Definition 2.3 ([38]). A mild solution of (1.1) is ℑt−adapted stochastic process x ∶ (−∞, v] →  with 𝜁 ∈ 2(𝛺,G ) on (−∞, 0],
x0 ∈ 0

2(𝛺,) and the integral equation below is satisfied:

x(t) = ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠 + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f

(

𝑠, x𝑠,∫

𝑠

0
g
(

𝑠, 𝜌, x𝜌
)

𝑑𝜌
)

𝑑𝑠

+ ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠, x𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌, x𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠) + 
(

t𝛼

𝛼

)

𝜁 (0). (2.1)

3. Main results

The following are the assumptions to discuss the existence and uniqueness of mild solution as well as the optimal control of the
evolution equation:

(A1) The linear operator A ∶  →  in (1.1) generates 𝐶0−semigroup  (.). Thus there exists  > 0 being constant such that
‖ (t)‖ ≤  ∀ t ∈  ′.

(A2) For t ∈  , the function f ∶  ×G ×  →  is continuous. u1, ũ1 ∈ G , u2, ũ2 ∈  and ∃ positive constants 𝑁f, 𝑁̂f

E ‖

‖

‖

f
(

t, u1, u2
)

− f
(

t, ũ1, ũ2
)

‖

‖

‖

2
≤ 𝑁f

(

‖

‖

u1 − ũ1
‖

‖

2
G

+ E ‖

‖

u2 − ũ2
‖

‖

2
)

,

E ‖

‖f
(

t, u , u
)

‖

‖

2
≤ 𝑁̂

(

1 + ‖u ‖

2 + E‖u ‖

2
)

.

4

‖

1 2
‖

f 1 G 2
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(A3) For t ∈  , the function h ∶  ×G ×  → 0
2 is continuous. u1, ũ1 ∈ G , u2, ũ2 ∈  and ∃ positive constants 𝑁h, 𝑁̂h

E ‖

‖

‖

h
(

t, u1, u2
)

− h
(

t, ũ1, ũ2
)

‖

‖

‖

2
≤ 𝑁h

(

‖

‖

u1 − ũ1
‖

‖

2
G

+ E ‖

‖

u2 − ũ2
‖

‖

2
)

,

E ‖

‖

‖

h
(

t, u1, u2
)

‖

‖

‖

2
≤ 𝑁̂h

(

1 + ‖u1‖
2
G

+ E‖u2‖2
)

.

(A4) For each (t, 𝑠) ∈ 2, the functions g, g̃ ∶ 2 ×G →  are continuous. For all u, ũ ∈ G , ∃ positive constants m1,m2, m̃1, m̃2

E ‖g(t, 𝑠, u) − g(t, 𝑠, ũ)‖2 ≤ m1‖u − ũ‖2
G

,

E ‖g̃(t, 𝑠, u) − g̃(t, 𝑠, u)‖2 ≤ m2‖u − ũ‖2
G

,

E ‖g(t, 𝑠, u)‖2 ≤ m̃1

(

1 + ‖u‖2
G

)

,

E ‖g̃(t, 𝑠, u)‖2 ≤ m̃2

(

1 + ‖u‖2
G

)

.

(A5) Operator B(.) defined on ∞ ( ,(,)), endowed with the sup norm ‖B‖2∞.
(A6) Let 𝑀() be a class of nonempty, closed, convex subsets of . The multivalued maps A ∶  → 𝑀() are measurable and

A(.) are contained in 𝛩, 𝛩 being bounded subset of .

Admissible set A𝑎𝑑 ∶= {𝜈(.) ∶  × 𝛺 → } ∋ 𝜈 is a ℑ−adapted stochastic process and E ∫ v
0 ‖𝜈(z)‖2𝑑z < ∞. Obviously, A𝑎𝑑 ≠ ∅ and

for (1 < 𝑞 < +∞), A𝑎𝑑 ⊂ 𝑞( ,) is convex, bounded and closed. This implies that Bz ∈ 𝑞( ,) for z ∈ A𝑎𝑑 .

Theorem 3.1. With the assumptions (A1)–(A5), a unique mild solution (1.1) exists if

32 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + m̃1v
2) + 32𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁̂h

(

1 + m̃2v
2) < 1.

Proof. Let the operator 𝜓 ∶ G′
 → G′

 be

𝜓x(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜁 (t), t ∈ (−∞, 0]

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠 + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f

(

𝑠, x𝑠,∫

𝑠

0
g
(

𝑠, 𝜌, x𝜌
)

𝑑𝜌
)

𝑑𝑠

+∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠, x𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌, x𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠), t ∈  .

For 𝜁 ∈ G , we may define 𝜁 as

𝜁 (t) =

{

𝜁 (t), t ∈ (−∞, 0]
𝜁 (0), t ∈  .

hen 𝜁 ∈ G′
 . Let x(t) = w(t) + 𝜁 (t), −∞ < t ≤ v. Clearly x is satisfied if and only if w fulfills w0 = 0.

w(t) = ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠 + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝑠

+ ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠).

et G′′
 = {w ∈ G′

 ;w0 = 0 ∈ G }. For any w ∈ G′′
 .

‖w‖v = ‖w0‖G
+ sup

0≤𝑠≤v

(

E‖w(𝑠)‖2
)1∕2 = sup

0≤𝑠≤v

(

E‖w(𝑠)‖2
)1∕2 .

his demonstrates that
(

G′′
 , ‖.‖v

)

is a Banach space. We assume p = {w ∈ G′′
 ∶ ‖w‖

2
v ≤ p}; for some p > 0. then, p ⊆ G′′

 is
niformly bounded, w ∈ p, ∀ p. By virtue of Lemma 2.1,

‖wt + 𝜁 t‖2G
≤ 2

(

‖wt‖
2
G

+ ‖𝜁 t‖
2
G

)

≤ 4
(

‖w0‖
2
G

+ l2 sup
𝑠∈[0,t]

(

E‖w(𝑠)‖2
)

+ ‖𝜁0‖
2
G

+ l2 sup
𝑠∈[0,t]

(

E‖𝜁 (𝑠)‖2
)

)

≤ 4
(

0 + l2‖w‖

2
v + ‖𝜁‖2

G
+ l2E‖𝜁 (0)‖2

)

≤ 4
(

l2p + ‖𝜁‖2 + l2E‖𝜁 (0)‖2
)

= p′. (3.1)
5

G
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L

T

D

Now we may define 𝛹̃ ∶ G′′
 → G′′

 as

𝛹̃w(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, t ∈ (−∞, 0]

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠

+∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f
(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝑠

+∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠), t ∈  ,

(3.2)

implies that 𝛹̃ has a unique fixed point. Let us divide the proof into several steps.

Step 1: To claim ∃ p > 0 ∋ 𝛹̃ (p) ⊂ p.
On the contrary let us assume that for p > 0 ∃ w𝑝(.) ∈ p and 𝛹̃ (w𝑝) ∉ p, (i.e), E‖(𝛹̃wp)(t)‖2 > p for some t ∈  . From

emma 2.2 and the assumptions (A1)–(A6), yield

p ≤ E‖
(

𝛹̃wp
)

(t)‖2

≤ 3
[

E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠
‖

‖

‖

‖

‖

2

+ E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f
(

𝑠,wp
𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,wp
𝜌 + 𝜁𝜌

)

𝑑𝜌
)

𝑑𝑠
‖

‖

‖

‖

‖

2

+ E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠,wp
𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,wp
𝜌 + 𝜁𝜌

)

𝑑𝜌
)

𝑑𝜔(𝑠)
]

‖

‖

‖

‖

‖

2

≤ 3[S1 +S2 +S3],

where

S1 = E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠
‖

‖

‖

‖

‖

2

≤ 2
∫

t

0
s2(𝛼−1)E‖z(𝑠)‖2𝑑𝑠

≤ 2 t2𝛼−1

2𝛼 − 1
‖z‖2q( ,),

S2 ≤ E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f
(

𝑠,wp
𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,wp
𝜌 + 𝜁𝜌

)

𝑑𝜌
)

𝑑𝑠
‖

‖

‖

‖

‖

2

≤ 2
∫

t

0
s2(𝛼)−1𝑁̂f

(

1 + ‖wp
𝑠 + 𝜁 𝑠‖

2 + E
‖

‖

‖

‖

∫

𝑠

0
g
(

𝑠, 𝜌,wp
𝜌 + 𝜁𝜌

)

𝑑𝜌
‖

‖

‖

‖

2
)

𝑑𝑠

≤ 2 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + p′ + m̃1v
2(1 + p′)

)

,

S3 ≤ E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h
(

𝑠,wp
𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,wp
𝜌 + 𝜁𝜌

)

𝑑𝜌
)

𝑑𝜔(𝑠)
‖

‖

‖

‖

‖

2

≤ 2𝑇 𝑟()∫

t

0
s2(𝛼)−1𝑁̂h

(

1 + ‖wp
𝑠 + 𝜁 𝑠‖

2 + E
‖

‖

‖

‖

∫

𝑠

0
g̃
(

𝑠, 𝜌,wp
𝜌 + 𝜁𝜌

)

𝑑𝜌
‖

‖

‖

‖

2
)

𝑑𝑠

≤ 2𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁̂h

(

1 + p′ + m̃2v
2(1 + p′)

)

.

hus combining the above form we obtain

p ≤ 32 t2𝛼−1

2𝛼 − 1
‖z‖2q( ,) + 32 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + p′ + m̃1v
2(1 + p′)

)

+ 32𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁̂h

(

1 + p′ + m̃2v
2(1 + p′)

)

.

ividing throughout by p and by taking p → ∞,

1 ≤ 32 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + m̃1v
2) + 32𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁̂h

(

1 + m̃2v
2) ;

which goes against what we assumed. therefore, for some p > 0, 𝛹̃ (p) ⊂ p.

Step 2: To claim 𝛹̃ is a contraction on p.
̂

6

Let us consider w,w ∈ p, then
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h

A

E ‖

‖

𝛹̃w(t) − 𝛹̃ŵ(t)‖
‖

2

≤ 2
[

E
‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

[

f

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

− f

(

𝑠, ŵ𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌, ŵ𝜌 + 𝜁𝜌
)

𝑑𝜌
)

]

𝑑𝑠
‖

‖

‖

‖

2
+ E

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

×
[

h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

− h

(

𝑠, ŵ𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌, ŵ𝜌 + 𝜁𝜌
)

𝑑𝜌
)]

𝑑𝜔(𝑠)
‖

‖

‖

‖

2]

≤ 22 t2𝛼−1

2𝛼 − 1
𝑁f

(

‖w𝑠 − ŵ𝑠‖
2
G

+m1v
2
‖w𝜌 − ŵ𝜌‖

2
)

+ 22𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h

(

‖w𝑠 − ŵ𝑠‖
2
G

+ m2v
2
‖w𝜌 − ŵ𝜌‖

2)

≤
[

22𝑁f
t2𝛼−1

2𝛼 − 1
(1 +m1v

2) + 22𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h(1 +m2v

2)
]

‖

‖

w𝑠 − ŵ𝑠
‖

‖

2
G

≤
[

22𝑁f
t2𝛼−1

2𝛼 − 1
(1 +m1v

2) + 22𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h(1 +m2v

2)
]

×
(

l2 sup
𝑠∈

E ‖

‖

w(𝑠) − ŵ(𝑠)‖
‖

2 + ‖w0‖
2
G

+ ‖ŵ0‖
2
G

)

≤ l2
[

22𝑁f
t2𝛼−1

2𝛼 − 1
(1 +m1v

2) + 22𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h(1 +m2v

2)
]

sup
𝑠∈

E ‖

‖

w(𝑠) − ŵ(𝑠)‖
‖

2

≤ 𝖯∗ sup
𝑠∈

E ‖

‖

w(𝑠) − ŵ(𝑠)‖
‖

2 ,

ere

𝖯∗ = l2
[

22𝑁f
t2𝛼−1

2𝛼 − 1
(1 +m1v

2) + 22𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h(1 +m2v

2)
]

.

Thus by taking supreme over t, we obtain ‖𝛹̃w − 𝛹̃ŵ‖

2
v ≤ 𝖯∗‖w − ŵ‖

2
v.

As a result, 𝛹̃ is a contraction on p and has a unique fixed point w(.) ∈ p, which is the mild solution of (1.1). Hence the
facts. □

4. Systems of neutral stochastic differential equations with infinite delay

Neutral differential systems have gained popularity in applied mathematics recently. A number of partial differential systems,
such as heat flow in materials, wave propagation, and various natural phenomena, get assistance from neutral systems with or
without delay. Let us now consider the following neutral stochastic infinite-delay integrodifferential system of the following form:

𝛼 [x(t) − 𝗄(t, xt)
]

= A
[

x(t) − 𝗄(t, xt)
]

+ z(t) + f

(

t, xt,∫

t

0
g
(

t, 𝑠, x𝑠
)

𝑑𝑠
)

+ h

(

t, xt,∫

t

0
g̃
(

t, 𝑠, x𝑠
)

𝑑𝑠
)

𝑑𝜔(t)
𝑑t

,

x(t) = 𝜁 (t), ∈ 2(𝛺,G ), t ∈ (−∞, 0], (4.1)

strongly continuous semigroup {G(t)}t≥0 is generated by A on  .
Consider the following hypotheses:

(A5) 𝗄 ∶ [0, v] ×G →  is a continuous function such that it satisfies the following requirement

E ‖𝗄(t, x) − 𝗄(t, x̂)‖2 ≤ 𝑁𝗄‖x − x̂‖2
G

, x, x̂ ∈ G , t ∈ G ,

E ‖𝗄(t, x)‖2 ≤ 𝑁̂𝗄

(

1 + ‖x‖2
G

)

, x ∈ G , t ∈ G .

Theorem 4.1. Assume that (A1)–(A6) gets satisfied. Then (4.1) has a unique mild solution provided,

5𝑁̂𝗄 +
[

52𝑁̂f(1 + m̃1v
2) + 52𝑁̂h𝑇 𝑟()(1 + m̃2v

2)
] t2𝛼−1

2𝛼 − 1
< 1.

Proof. Let us define 𝜂 ∶ G′
 → G′

 as

𝜂x(t) =

⎧

⎪

⎪

⎨

⎪

⎪

𝜁 (t), t ∈ (−∞, 0],


(

t𝛼

𝛼

)

[𝜁 (0) − 𝗄(0, 𝜁)] + 𝗄(t, xt) + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠) + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f
(

𝑠, x𝑠, ∫
𝑠
g
(

𝑠, 𝜌, x𝜌
)

𝑑𝜌
)

𝑑𝑠 +
t

s𝛼−1
(

t𝛼 − 𝑠𝛼 )
h

(

𝑠, x𝑠,
𝑠
g̃
(

𝑠, 𝜌, x𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠), t > 0.
7

⎩

0 ∫0 𝛼 𝛼 ∫0
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t

N

w

Consider 𝜁 as

𝜁 (t) =

{

𝜁 (t), t ∈ (−∞, 0]
𝜁 (0), t ∈ 

𝜁 ∈ G ;

hen 𝜁 ∈ G′
 . Let x(t) = w(t) + 𝜁 (t), −∞ < t ≤ v. Clearly x is satisfied if and only if w fulfills w0 = 0.

w(t) = −
(

t𝛼

𝛼

)

𝗄(0, 𝜁) + 𝗄
(

t,wt + 𝜁 (t)
)

+ ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠 + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

× f

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝑠 + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

× h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠).

For any w ∈ G′′
 = {w ∈ G′

 ;w0 = 0 ∈ G },

‖w‖v = ‖w0‖G
+ sup

0≤𝑠≤v

(

E‖w(𝑠)‖2
)1∕2 = sup

0≤𝑠≤v

(

E‖w(𝑠)‖2
)1∕2 .

Eventually,
(

G′′
 , ‖.‖v

)

is a Banach space. We consider p = {w ∈ G′′
 ∶ ‖w‖

2
v ≤ p}; For some p > 0, then p ⊆ G′′

 is uniformly
bounded, for each p. For w ∈ p and by the virtue of Lemma 2.1

‖wt + 𝜁 t‖2G
≤ 2

(

‖wt‖
2
G

+ ‖𝜁 t‖
2
G

)

≤ 4
(

‖w0‖
2
G

+ l2 sup
𝑠∈[0,t]

(

E‖w(𝑠)‖2
)

+ ‖𝜁0‖
2
G

+ l2 sup
𝑠∈[0,t]

(

E‖𝜁 (𝑠)‖2
)

)

≤ 4
(

0 + l2‖w‖

2
v + ‖𝜁‖2

G
+ l2E‖𝜁 (0)‖2

)

≤ 4
(

l2p + ‖𝜁‖2
G

+ l2E‖𝜁 (0)‖2
)

= p′. (4.2)

ow we may define 𝛹̃ ∶ G′′
 → G′′

 as:

𝛹̃w(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, t ∈ (−∞, 0]

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠

+∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f
(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝑠

+∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠), t ∈  ,

(4.3)

implies that 𝛹̃ has a unique fixed point. Let us divide the proof into several steps.

Step 1: 𝜂(p) ⊂ p for p > 0.
Assuming the contrary, for each p > 0 there exists w(.) ∈ p and 𝜂(w) ∉ p (i.e), E ‖

‖

(𝜂w)(t)‖
‖

2 > p for some t ∈  .

p ≤ E ‖

‖

(𝜂w)(t)‖
‖

2

≤ 5E
‖

‖

‖

‖


(

t𝛼

𝛼

)

𝗄(0, 𝜁)
‖

‖

‖

‖

2
+ 5E

‖

‖

‖

‖

𝗄
(

t,wt + 𝜁 t
)

‖

‖

‖

‖

2
+ 5E

‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠
‖

‖

‖

‖

‖

2

+ 5E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝑠
‖

‖

‖

‖

‖

2

+ 5E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠)
‖

‖

‖

‖

‖

2

≤ S1 +S2 +S3 +S4 +S5.

here

S1 = E‖
(

t𝛼

𝛼

)

𝗄(0, 𝜁)‖2 ≤ 2𝑁̂𝗄

(

1 + ‖𝜁‖2
G

)

,

S2 = E
‖

‖

‖

‖

𝗄
(

t,wt + 𝜁 t
)

‖

‖

‖

‖

2
≤ 𝑁̂𝗄

(

1 + ‖wt + 𝜁 t‖2
)

≤ 𝑁̂𝗄(1 + p1),

S3 = E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

z(𝑠)𝑑𝑠
‖

‖

‖

‖

‖

2

≤ 2
‖B‖2∞E

[ t

s𝛼−1‖z(𝑠)‖2𝑑𝑠
]

≤ 2 t2𝛼−1
‖z‖2q ,
8

∫0 2𝛼 − 1  ( ,)
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w

S4 ≤ E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝑠
‖

‖

‖

‖

‖

2

≤ 2 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + ‖w𝑠 + 𝜁 𝑠‖2G
+ E

‖

‖

‖

‖

∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
‖

‖

‖

‖

2
)

≤ 2 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + ‖w𝑠 + 𝜁 𝑠‖2G
+m1v

2
(

1 + ‖w𝜌 + 𝜁𝜌‖2G

))

≤ 2 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + p1 +m1v
2(1 + p1)

)

,

S5 = E
‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠)
‖

‖

‖

‖

‖

2

≤ 2𝑇 𝑟() t2𝛼−1

2𝛼 − 1
E
‖

‖

‖

‖

‖

∫

t

0
h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

𝑑𝑠
‖

‖

‖

‖

‖

2

≤ 2𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁̂h

(

1 + ‖w𝑠 + 𝜁 𝑠‖2G
+m2v

2
(

1 + ‖

‖

‖

w𝜌 + 𝜁𝜌
‖

‖

‖

2

G

))

≤ 2𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁̂h

(

1 + p1 +m2v
2(1 + p1)

)

.

Therefore,

p ≤ 52𝑁̂𝗄

(

1 + ‖𝜁‖2
G

)

+ 5𝑁̂𝗄(1 + p1) + 52 t2𝛼−1

2𝛼 − 1
‖z‖2q( ,)

+ 52 t2𝛼−1

2𝛼 − 1
𝑁̂f

(

1 + p1 +m1v
2(1 + p1)

)

+ 52𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁̂h

(

1 + p1 +m2v
2(1 + p1)

)

.

Dividing by p throughout and let p → ∞, we obtain

1 ≤ 5𝑁̂𝗄 + 52𝑁̂f
t2𝛼−1

2𝛼 − 1
(1 +m1v

2) + 52𝑇 𝑟()𝑁̂h
t2𝛼−1

2𝛼 − 1
(1 +m2v

2)

t opposes our theory (4.1). Therefor 𝜂(p) ⊂ p, p > 0.

Step 2: 𝜂 is a contraction on p.
Using w, ŵ ∈ p,
E ‖

‖

𝜂w(t) − 𝜂ŵ(t)‖
‖

2

= E
‖

‖

‖

‖

[

𝗄
(

t,wt + 𝜁 t
)

− 𝗄
(

t, ŵt + 𝜁 t
)]

+ ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

[

f

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

− f

(

𝑠, ŵ𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌, ŵ𝜌 + 𝜁𝜌
)

𝑑𝜌
)

]

𝑑𝑠 + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

×
[

h

(

𝑠,w𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝜌 + 𝜁𝜌
)

𝑑𝜌
)

− h

(

𝑠, ŵ𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌, ŵ𝜌 + 𝜁𝜌
)

𝑑𝜌
)]

𝑑𝑠
‖

‖

‖

‖

2

≤ 3𝑁𝗄‖wt − ŵt‖
2
G

+ 32𝑁f
t2𝛼−1

2𝛼 − 1
(

1 +m1v
2)

‖w𝑠 − ŵ𝑠‖
2
G

+ 32𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h

(

1 +m2v
2)

× ‖w𝑠 − ŵ𝑠‖
2
G

≤
[

3𝑁𝗄 + 32𝑁f
t2𝛼−1

2𝛼 − 1
(

1 +m1v
2) + 32𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h

(

1 +m2v
2)
]

×
(

l2 sup
𝑠∈

E‖w(𝑠) − ŵ(𝑠)‖2 + ‖w0‖
2
G

+ ‖ŵ0‖
2
G

)

≤ l2
[

3𝑁𝗄 +
[

32𝑁f(1 +m1v
2) + 32𝑇 𝑟()𝑁h

(

1 +m2v
2)] t2𝛼−1

2𝛼 − 1

]

sup
𝑠∈

E ‖

‖

w(𝑠) − ŵ(𝑠)‖
‖

2

≤ Q∗ sup
𝑠∈

E ‖

‖

w(𝑠) − ŵ(𝑠)‖
‖

2 ,

ith

Q∗ = l2
[

3𝑁𝗄 +
[

32𝑁f(1 +m1v
2) + 32𝑇 𝑟()𝑁h

(

1 +m2v
2)] t2𝛼−1

2𝛼 − 1

]

.

By taking supremum over t,

‖𝜂w − 𝜂ŵ‖

2
v ≤ Q∗

‖w − ŵ‖

2
v.

Thus 𝜂 is a contraction. As a result, the mild solution of (4.1) has a unique fixed point w(.) ∈  for the function 𝜂. □
9

p
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B

A

5. Optimal control

Consider the Lagrange problem (LP). Find a control z0 ∈ A𝑎𝑑 ∋ L (z0) ≤ L (z), ∀ z ∈ A𝑎𝑑 where

L (z) = E{∫

b

0
M

(

t, xzt , x
z(t), z(t)

)

𝑑𝑧},

and xz relates to the control z ∈ A𝑎𝑑 and is the mild solution of system (4.1). To demonstrate that there is a solution to the problem,
we establish the following hypotheses (LP).

(A7) (i) M ∶  ×G ×  × → R ∪ {∞} is Borel measurable.
(ii) M (t, ., ., .) on G ×  × is a sequentially lower semicontinuous functional ∀ t ∈  .
(iii) M (t, x, x̂, .) is convex on  for each x ∈ G , x̂ ∈  and almost all t ∈  .
(iv) There exist constants ã, b̃ ≥ 0, c̃ > 0, g is non-negative and g ∈ 1( ,R) such that

g(t) + ã‖x‖2
G

+ b̃‖x̂‖2 + c̃‖z‖
q
 ≤ M (t, x, x̂, z)

Theorem 5.1. Assume that (A7), Theorem 4.1, and the existence of the strongly continuous operator B are all true. Then, the Lagrange
Problem (LP) accepts at least one optimal control pair, that is, a control z0 ∈ A𝑎𝑑 such that ∀z ∈ A𝑎𝑑 ,

L (z0) = E
{

∫

v

0
M

(

t, x0t , x
0(t), z0(t)

)

𝑑t
}

≤ L (z).

Proof. For inf{L (z) ∣ z ∈ A𝑎𝑑} = +∞, nothing needs to be verified. Without loss of generality, we deduce that inf {L (z) ∣ z ∈
A𝑎𝑑} = 𝛩 < +∞. By (A7), we have 𝛩 > −∞. According to the notion of infimum, there is a minimizing sequence of feasible pairs
{(x𝑛, z𝑛)} ⊂ 𝑎𝑑 , where 𝑎𝑑 = {(x, z) ∶ x is a mild solution of [(4.1)] relating to z ∈ A𝑎𝑑} such that L (x𝑛, z𝑛) → 𝛩, as 𝑛 → +∞. Then
{z𝑛} ⊆ A𝑎𝑑 , 𝑛 = 1, 2,… , {z𝑛} is a bounded subset of the separable reflexive Hilbert space q( ,) and ∃ a subsequence, {z𝑛} and
z0 ∈ q( ,) ∋ z𝑛

𝑤
←←←←←←←←→ z0 in q( ,). Due to the closed convex nature of A𝑎𝑑 , the Mazur Lemma, which states that z0 ∈ A𝑎𝑑 ., holds

true. If {x𝑛}, which corresponds to {z𝑛}, is the solution sequence for (4.1), then

x𝑛(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜁 (t), t ∈ (−∞, 0],


(

t𝛼

𝛼

)

[𝜁 (0) − 𝗄(0, 𝜁)] + 𝗄(t, x𝑛t ) + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

B(𝑠)z𝑛(𝑠) + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

f
(

𝑠, x𝑛𝑠 , ∫
𝑠
0 g

(

𝑠, 𝜌, x𝑛𝜌
)

𝑑𝜌
)

𝑑𝑠 + ∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

h

(

𝑠, x𝑛𝑠 ,∫

𝑠

0
g̃
(

𝑠, 𝜌, x𝑛𝜌
)

𝑑𝜌
)

𝑑𝜔(𝑠), t > 0.

y referring Theorem 4.1, it is evident that ∃ 𝜏 > 0 ∋ 𝑛 = 0, 1, 2,….

‖x𝑛‖2v ≤ 𝜏,

ssume that x𝑛(t) = w𝑛(t) + 𝜁 (t); w𝑛 ∈ G′′
 and 𝜁 ∶ (−∞, v] →  are the functions defined in the earlier part of the proof. For t ∈  ,

we get
E ‖

‖

‖

w𝑛(t) −w0(t)‖‖
‖

2

≤ 4E
‖

‖

‖

‖

𝗄
(

t,w𝑛
t + 𝜁 t

)

‖

‖

‖

‖

2
+ 4E

‖

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

[

B(𝑠)z𝑛(𝑠) − B(𝑠)z0(𝑠)
]

𝑑𝑠
‖

‖

‖

‖

‖

2

+ 4E
‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

[

f

(

𝑠,w𝑛
𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w𝑛
𝑠 + 𝜁 𝑠

)

𝑑𝜌
)

− f

(

𝑠,w0
𝑠 + 𝜁 𝑠,∫

𝑠

0
g
(

𝑠, 𝜌,w0
𝑠 + 𝜁 𝑠

)

𝑑𝜌
)

]

𝑑𝑠
‖

‖

‖

‖

2
+ 4E

‖

‖

‖

‖

∫

t

0
s𝛼−1

(

t𝛼

𝛼
− 𝑠𝛼

𝛼

)

×
[

h

(

𝑠,w𝑛
𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w𝑛
𝑠 + 𝜁 𝑠

)

𝑑𝜌
)

− h

(

𝑠,w0
𝑠 + 𝜁 𝑠,∫

𝑠

0
g̃
(

𝑠, 𝜌,w0
𝑠 + 𝜁 𝑠

)

𝑑𝜌
)]

𝑑𝜔(𝑠)
‖

‖

‖

‖

2

≤ 4𝑁𝗄‖w
𝑛
t −w0

t‖
2
G

+ 42 t2𝛼−1

2𝛼 − 1
E
[

∫

t

0

‖

‖

‖

B(𝑠)z𝑛(𝑠) − B(𝑠)z0(𝑠)‖‖
‖

2
𝑑𝑠

]

+
[

42 t2𝛼−1

2𝛼 − 1
𝑁f

(

1 +m1v
2)

+ 42𝑇 𝑟() t2𝛼−1

2𝛼 − 1
𝑁h

(

1 +m2v
2)
]

‖

‖

‖

w𝑛
𝑠 −w0

𝑠
‖

‖

‖

2
.

So 𝑒𝑥𝑖𝑠𝑡𝑠 S ∗ > 0 ∋ sup𝑠∈ E
‖

‖

‖

w𝑛(𝑠) −w0(𝑠)‖‖
‖

2
≤ S ∗ ‖

‖

‖

Bz𝑛 − Bz0‖‖
‖

2

q( ,)
, ∀ t ∈  .

Hence, B is strongly continuous. This implies that
‖

‖

‖

Bz𝑛 − Bz0‖‖
‖

2

q( ,)
→ 0 𝑎𝑠 𝑛 → ∞.

Then, we have
‖ 𝑛 0‖2
10

‖

‖

w −w ‖

‖v
→ 0 𝑎𝑠 𝑛 → ∞.
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T

a

A

A

a

(

which is equivalent to

‖x𝑛 − x0‖2v → 0 𝑎𝑠 𝑛 → ∞.

herefore,

x𝑛 → x0 𝑖𝑛 G′
 𝑎𝑠 𝑛 → ∞.

We deduce that
(

xt × x, z
)

→ E
{

∫

v

0
M

(

t, xt, x(t), z(t)
)

𝑑t
}

is sequentially lower semicontinuous in the weak topology of q( ,) ⊂ 1( ,) and strong topology of 1( ,G ×) from Balder’s
theorem [39]. So, L is weakly lower semicontinuous on q( ,). By (A7), L > −∞ and L succeeds its minimum at z0 ∈ A𝑎𝑑 , i.e.,

𝛩 = lim
𝑛→∞

E
{

∫

v

0
M

(

t, x𝑛t , x
𝑛(t), z𝑛(t)

)

𝑑t
}

≥ E
{

∫

v

0
M

(

t, x0t , x
0(t), z0(t)

)

𝑑t
}

= L (z0) ≥ 𝛩.

Hence the assertion. □

6. Illustration

Let us consider a conformable fractional stochastic neutral control system of the form:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛼
[

x(t, 𝜀) − ∫ 0
−∞ b(t, 𝜀)x(t, 𝜀)𝑑𝜀

]

= 𝜕2

𝜕𝜀2
x(t, 𝜀) + ∫[0,1] U (𝜀, 𝑠)z(𝑠, t)𝑑𝑠

+𝛯
(

t, ∫ t
−∞ 𝛯1(𝑠 − t)x(𝑠, 𝜀)𝑑𝑠, ∫ t

0 ∫ 0
−∞ 𝛯2 (𝑠, 𝜀, 𝜖 − 𝑠) x(𝜖, 𝜀)𝑑𝜖𝑑𝑠

)

+𝛶
(

t, ∫ t
−∞ 𝛯1(𝑠 − t)x(𝑠, 𝜀)𝑑𝑠, ∫ t

0 ∫ 0
−∞ 𝛯3 (𝑠, 𝜀, 𝜖 − 𝑠) x(𝜖, 𝜀)𝑑𝜖𝑑𝑠

)

𝑑𝜔(t)
𝑑t , t ∈  ′

x(t, 0) = x(t, 𝜋) = 0, t ≥ 0,
x(t, 𝜀) = 𝜙(t, 𝜀), 𝜀 ∈ [0, 𝜋],−∞ < t < 0,

(6.1)

where 𝛼 is the Conformable derivative, and the neutral function be b(t, 𝜀). (𝛺,ℑ,) is the filtered Probability space with 𝜔(t) being
one-dimensional standard Weiner process in  . The functions 𝜙(t, 𝜀), 𝛯, 𝛶 , 𝛯2, and 𝛯3 are continuous.

Let us equalize the Considered Hilbert spaces, (i. (e)
(

 =  = 2([0, 𝜋])
)

. The operator A ∶ D(A) ⊂  →  is expressed by
u = u′′ ∈ D(A), where

D(A) = {u ∈  ∶ u, u′ are absolutely continuous, u′′ ∈  , u(0) = u(𝜋) = 0}.

generates a continuous semigroup G(t)t≥0 being compact, analytic, and self-adjoint, having a discrete spectrum. Let −𝑣2, 𝑣 ∈ N
re the eigenvalues and the corresponding normalized eigenvectors are

w𝑣(𝜀) =
( 2
𝜋

)1∕2
sin(𝑣𝜀), 𝑣 = 1, 2,… .

Let us consider the following assumptions:
(i) Provided, u ∈ D(A), Au =

∑∞
𝑣=1⟨u,w𝑣⟩w𝑣.

ii) For u ∈  , Q =
∑∞
𝑣=1

1
𝑣 ⟨u,w𝑣⟩w𝑣 in the space D(Q) = {u ∈  ,

∑∞
𝑣=1 𝑣⟨u,w𝑣⟩w𝑣}, Q = 1 − A.

Consider  (𝑠) = 𝑒2𝑠, 𝑠 < 0, then l = ∫ 0
−∞  (𝑠)𝑑𝑠 = 1

2 . G be the phase space equipped with the norm

‖𝜁‖G
= ∫

0

−∞
 (𝑠) sup

𝑠≤𝜂≤0

(

E‖𝜁 (𝜂)‖2
)1∕2 𝑑𝑠.

Then,
(

G , ‖.‖G

)

is a Banach space.
For (t, 𝜁) ∈ [0, v] ×G , where 𝜁 (., 𝜀) = 𝜙(., 𝜀) ∈ (−∞, 0] × [0, 𝜋], we consider

x(t)(𝜀) = x(t, 𝜀),

g (t, 𝜁) (𝜀) = ∫

0

−∞
𝛯2(t, 𝜀, 𝑠)𝜁 (𝑠)(𝜀)𝑑𝑠,

f

(

t, 𝜁 ,∫

t

0
g(𝑠, 𝜁)

)

(𝜀) = 𝛯
(

t,∫

t

−∞
𝛯1(𝑠 − t)x(𝑠, 𝜀)𝑑𝑠,∫

t

0
g (t, 𝜁) (𝜀)𝑑𝑠

)

,

g̃ (t, 𝜁) (𝜀) = ∫

0

−∞
𝛯3(t, 𝜀, 𝑠)𝜁 (𝑠)(𝜀)𝑑𝑠,

h

(

t, 𝜁 ,∫

t

0
g̃(𝑠, 𝜁)

)

(𝜀) = 𝛶
(

t,∫

t

−∞
𝛯1(𝑠 − t)x(𝑠, 𝜀)𝑑𝑠,∫

t

0
g̃ (t, 𝜁) (𝜀)𝑑𝑠

)

,

𝗄(t, 𝜁)(𝜀) =
0
b(t, 𝜀)𝜁 (t, 𝜀)𝑑𝜀.
11
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It is obvious that the functions f, g, g̃, h, and 𝗄 satisfy the assumptions (A1)–(A7).
The function z ∈ Gx([0, 𝜋]) → R is a control where z ∈ 2(Gx([0, 𝜋])), t → z(t) is measurable. Let the set A = {z ∈  ∶ ‖z‖ ≤ 𝜛}

where 𝜛 ∈ 2( ,R+). We confine the admissible control A𝑎𝑑 to be z ∈ 2(Gx([0, 𝜋])) ∋ ‖z(., t)‖ ≤ 𝜛(t).
We express B(t)z(t)(𝜀) = ∫[0,1] U (𝜀, 𝑠)z(𝑠, t)𝑑𝑠 and suppose that

(i) U is a continuous function.
(ii) z ∈ 2([0, 𝜋] × ) and M ∶  ×G ×  × → R ∩∞ being defined by

M
(

t, xzt , x
z(t), z(t)

)

(𝜀) = ∫[0,𝜋] ∫

0

−∞
|xz(t + 𝑠, 𝜀)|2𝑑𝑠𝑑𝜀 + ∫[0,𝜋]

|xz(t, 𝜀)|2𝑑𝜀 + ∫[0,𝜋]
|z(𝜀, t)|2𝑑𝜀.

t is explicit that all the requirements of Theorem 4.1 gets satisfied. Thus there occurs an admissible control pair (x, z) such that the
ssociated cost functional

L (z) = E
{

∫

v

0
M

(

t, xzt , x
z(t), z(t)

)

𝑑t
}

chieves its minimum.

. Application

In this section we will show numerical simulations of the application Eq. (7.1). In terms of approximating a numerical solution
his example has a variety of interesting and challenging components. If it only had the parabolic partial differential equation (PDE)
omponent then we could solve it with a variety of software suites and the methods described in [40,41]. If it was only the neutral
elay term then we could use the methods described in [42]. If it was only the Brownian and fBm components then we could use
he methods described on in [43]. This equation has all of these components in addition to an integral term.

To the author’s knowledge there is no existing software suite built to handle all of these components in the example NSIDE with
nfinite delay and mixed fBm so we have built one in Matlab. All of the specifics of the simulation are available within the code
ut the primary techniques are as follows. A forward finite difference was used in the time derivative as to make it an explicit
ethod. A centered difference approximation was used for all spatial (𝜃) derivatives. The trapezoid rule as implemented by the
atlab function trapz.m was used to approximate the integral term at each discretization point. The Brownian term 𝑑𝐵 is normally

istributed with mean zero and variance 𝑑𝜄 where 𝑑𝜄 is the time discretization step. the fractional Brownian term 𝑑𝑍 is normally
istributed with mean zero and variance 𝑑𝑡2ℎ where ℎ is the fBm parameter. The delayed derivative terms were approximated by
ifference derivatives on the mesh as well.

In the included simulations (Figs. 1–3) the following functions and parameters have been used. We have used 𝑛 = 2 and 20
oints in each spatial dimension for a total of 400 spatial points at each timestep. We have used 5000 time-steps so 𝑑𝜄 = 0.0002. The
Bm parameter ℎ = 0.7. The functions are 𝜙(𝜄, 𝜃) = 𝜄2 +

∑𝑛
𝑖 𝜃

2
𝑖 , 𝛬(𝑠) = 𝑐𝑜𝑠(𝑠), and 𝑐(𝜄, 𝜃) = 1

𝜄2+
∑𝑛
𝑖 𝜃

2
𝑖
. Fig. 1 shows the function at the

beginning at 𝜄 = 0 and a third way through the simulation. Fig. 2 shows the simulation at roughly two thirds through the simulation
and at the end. Fig. 3 shows the simulation at roughly third eighth through the simulation and at the end.

𝜕
𝜕𝜄

[

𝜗(𝜄, 𝜃) +
𝜄2 + 𝑒𝜄 |𝜗(𝜄 − 𝜑, 𝜃)|2

18

]

(7.1)

= 𝜕2

𝜕𝜃2

[

𝜗(𝜄, 𝜃) +
𝜄2 + 𝑒𝜄 |𝜗(𝜄 − 𝜑, 𝜃)|2

18

]

+
𝑒𝜄𝜗(𝜄 − 𝜑, 𝜃)∕

√

2 + 𝜗(𝜄, sin 𝜄 |𝜗(𝜄, 𝜃)|)∕
√

2
9

(7.2)

+ 𝑒𝜄 ∫

𝑡

−∞
sin(𝜄 − 𝜁 )𝑑𝜄∫

𝑡

0 ∫

0

−∞

[

𝜄 sin 𝜃
8𝜋

+
𝑒𝜄 |𝜗(𝜄 − 𝜑, 𝜃)|
2 + |𝜗(𝜄, 𝜃)|

]

𝑑𝜄𝑑𝜃

+

[

𝑒𝜄 ∫

𝑡

−∞
sin(𝜄 − 𝜁 )𝑑𝜄∫

𝑡

0 ∫

0

−∞

[

𝜄 sin 𝜃
8𝜋

+
𝑒𝜄 |𝜗(𝜄 − 𝜑, 𝜃)|
2 + |𝜗(𝜄, 𝜃)|

]

𝑑𝜄𝑑𝜃

]

𝑑𝜔(t)
𝑑t

(7.3)

𝜄 ∈ (0, 1], 𝜃 ∈ [0, 𝜋],

𝜗(𝜄, 0) = 0,

𝜗(𝜄, 𝜃) = 𝜑(𝜄, 𝜃), 𝜃 ∈ [0, 𝜋], 𝜄 ∈ (−∞, 0]. (7.4)

. Conclusion

In this article, we discussed the optimal control of conformable fractional neutral stochastic integrodifferential system. This
quation has infinite delays and takes place in a separable Hilbert space. In addition, using Banach fixed point theorem, the existence
esults and some conclusions concerning the optimal control are obtained. An illustration of the theory that has been presented is
rovided as the concluding part. We developed a numerical scheme to justify the theory. The code contains all of the details of
he simulation based on finite difference method in Matlab. This work is a unique combination of theoretical proof with numerical
stimations.
12
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Fig. 1. Function at the beginning at 𝜄 = 0 and a third way through the simulation.

Fig. 2. Simulation at roughly one half

This work can further be extended to trajectory (T-) controllability of conformable fractional stochastic differential equations.
T-controllability is the strongest notion of controllability, so one has to prove the result without assuming the compactness of the
semigroup or the resolvent operator using measure of noncompactness or some other way. Also, we are planning to weaker the
Lipschitz condition on nonlinear operator by the ‘‘Integral Contractor method with Regularity’’ for the advanced stochastic fractional
order system, like, 𝜓-Hilfer system, Hadamard system, Hilfer–Katugampola system, etc.
13
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Fig. 3. Simulation roughly two-thirds through the simulation and at the end

We have studied the solution of the model as a piecewise random stochastic with numerical schemes including Newton
polynomial. This technique is more accurate and useful for solving the linear and nonlinear partial differential equations. We can
generalize the same for the future work. One can use the hybrid control system using the same argument. ∙We cannot apply this
result to the boundary value problem. The existence result has not been reported so far for the system with infinite time/state
delay with boundary value. This is the limitation. The studied numerical simulation is valid only for the time delay system, but not
for the state delay, and not for the deviating arguments. One needs to generate separate codes to extend the result studied in this
manuscript.
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