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1 Introduction

The mathematical community began paying more and more attention to fractional calculus,
or FC. The majority of early work was on creating analytical formulations to address par-
ticular mathematical issues. The expansion of definitions for fractional operators, such as
the integral representation (Liouville, Riemann, and Hadamard) and the convergent series
representation (Grunwald and Letnikov), was the most direct outcome of the fast increas-
ing interest in fractional continuity (see the monograph [9l 12l 14} [16], 18]). The majority
of early research remained focused on the creation of the mathematical framework and the
integration of these operators into ordinary and partial differential equations, despite the fact
that these early studies had highlighted the fascinating role that FC can play when modeling
complex processes in physical systems. It was not until the latter part of the 20th century
that the idea of FC began to spread beyond of mathematics. One application area that has
grown quite quickly is the simulation of intricate physical events. In fact, viscoelastic effects,
nonlocal behavior, anomalous and hybrid transport, fractal media, and even control theory
were among the numerous early physical modeling applications of FC [0 [IT], 22].

The integer-order situation has been the focus of most of these models’ investigations. When
attempting to use a typical integer-order explanation to describe the dynamics of a particle
event, researchers resort to fractional calculus. Fractional calculus has drawn a lot of interest
from specialists in science and engineering as it may be utilized in a wide variety of mathe-
matical models in these domains. This is due to the fact that fractional calculus allows for
the exploration of the fractional operators’ utility in a variety of contexts. Three fractional
operators—Caputo, Caputo-Fabrizio, and Atangana-Baleanu—are often used in recent schol-
arly research. In recent research, a fractional model is offered for the banking data using the
framework developed by Caputo fractional derivative, with model parameters generated by
least-squares curve fitting and a larger range of Caputo-Fabrizio operators. We elucidate the
several acronyms that will be employed in this review to denote the various categories of

fractional-order operators [9] 12} [14], including:
1. 7CO” operators stand for single constant-order operators.

2. "DO” stands for distributed-order operators (with constant order distribution).



3. "VO” operators stand for variable-order operators. Although VO operators might be
distributed or single, when we use the abbreviation ”VO,” we mean single variable-order

operators alone.

4. ”’DVQO” operators stand for distributed-variable-order operators, which will be covered

later.

The groundwork for distributed-order fractional calculus (DOFC) was laid by Caputo’s
groundbreaking research on dissipative elastodynamics. In these investigations, a parallel
series of fractional-order derivatives was used to generalize the viscoelastic stress—strain con-
stitutive laws. Originally, this operator was known as the ”"mean fractional-order derivative.”
The many viscoelastic models that may be retrieved from the multi-term DO law in the
following examples further highlight the efficacy of the DO approach:

Kelvin-Voigt Models: The DO analogue of the Kelvin—Voigt model is obtained for the
choice of ¢, = d() and ¢ = K.

Maxwell Models: The fractional-order Maxwell model of viscoelasticity can be obtained
for ¢y = 6(7) + k%6(y — @) and ¢, = E.ox?5(y — ). Note that, assuming a = f in the
fractional Maxwell model, allows recovering the fractional Zener model.

Zener Model: Wave motion in fractional To create viscoelastic media of the Zener type,
select ¢y = ¢ = 6(7) + £¥6(y — ). Similarly, the choice of ¢, = §(7) + $0(y — (o — 3)) and
P =ad(y —a)+cd(y—n) + <%C)5('y —a—n+ ), also produces a fractional version of the
spring-and dashpot-based conventional Zener model.

In actuality, these stochastic dynamic systems depend on both the past and current states.
For example, [5l [0, 17] describes these systems in terms of stochastic functional differential
equations. Stability analysis, as a popular issue in stochastic dynamical systems research, has
caused a significant deal of anxiety (see monographs [5] and [13]). There is now a wealth of
material about SFDE stability. One of the fundamental characteristics of the world is stochas-
ticity, and in practical system application, stability is of utmost importance. As everyone
knows, stability is crucial for a system with real-world application experience. Numerous
theories of system stability have been proposed by scientists on real-world requirements. For
stochastic systems, stability analysis is crucial (see [6] [7, [17]).

For abstract differential equations, the existence results are established by employing the



successive approximation method. Also, the semigroup theory of bounded linear opera-
tors is firmly identified to find solvability of abstract differential equations within infinite-
dimensional spaces [I5]. By using an infinitesimal generator A of Cy—semigroup of bounded
linear operators C,(¢) on Hilbert spaces, one can construct a mild solution for the given
system.

The concept of contractors by Altman (1978) [I] has been extended in the case of random
operators on Banach spaces. The nonlinear term is assumed to have an integral contractor
which is a weaker condition than the Lipschitz’s continuity. The existence of the system is
guaranteed by the integral contractor but not the uniqueness [3]. We rely on the definition
of regularity to check the uniqueness of the system’s mild solution. This technique can be
implemented to all dynamical, stochastic, and fractional order systems, for more details on

integral contractors, readers refer the articles [2], 3| [8, 12, 22].

Novelty:

1. Stability of the stochastic system using integral contractor and regularity, has been

investigated. No research has been reported based on this new technique.

2. Sufficient conditions for the higher order fractional stochastic system is studied when

the nonlinear term is not Lipschitz continuous.

3. DOFC used in the system has a multiple applications in Kelvin-Voigt models, Maxwell
models, Zener model, etc. System considered here is the extended form of the these

models.

The article framework may be divided into the following categories: In Sect. 2, we give some
definitions of fractional calculus, semigroup theory, some associated notations and essential
lemmas. In Sect. 3, we establish an solvability and uniqueness of the higher-order fractional
neutral stochastic integro-delay differential system. In Sect. 4, we give a sufficient condition
of the exponential stability of the system (). Finally, in Sect. 5, an example is provided to

illustrate the suitability of our results.



2 Problem Formulation and Preliminaries

In this section, we discuss about exponential stability of higher-order fractional neutral

stochastic differential system driven by Poisson jump is of the form

“po [2(0) + g(v,2,)] = Az(e) + f(e,2,) + G(L,xL)dU:lEL) + /O‘(L,CCL,U)N(dL, du), v € J:=10,b]
z
#(0) = 6 € L(0,B) s 1r(0) + 90,2l imo =7 € HL 1)

where z(+) is a stochastic process in a separable Hilbert space H, with the inner product (-, )i
and the norm | - ||g. Here, ©D® denotes the Caputo fractional derivative of order 1 < o < 2;
A :D(A) C H — H is the infinitesimal generator of an Cy— semigroup of a— order cosine
family Cy(¢),0 < ¢ < oo of strongly continuous bounded linear operators associated with
sine operator S,(¢),0 < ¢ < oco. The state variable z, : J — H,z,(6) = x(¢ + 0) defined
on a separable Hilbert space H. Let K be the another separable Hilbert and with the inner
product (-,-)x and the norm || - ||g. The initial data ¢,n are the Fo-measurable H-valued
stochastic process independent of the Brownian motion and {w(¢);¢ € J} is a standard
Wiener process on a real and separable Hilbert space H. In addition N(di,du) denotes the
Poisson point process N (dv, du) = N (dt, du) — di(Adu) is the Poisson measure and N (du, du)
calls Poisson counting measure correlated with a characteristic measure A. The non-linear
maps are f,g : J x B, - H,G : J x B, — LOQ(K,H), o:JxB. — H,i =1,2 and
0 :J x B, x Z — H are appropriate continuous functions to be specified in the sequel. Here,

L% (K, H) is the space of all @—Hilbert Schmidt operators from K into H.

2.1 Preliminaries

In this part, we recollect some basic concepts of fractional calculus (Riemann-Liouville) frac-
tional derivative and, Caputo derivative, stochastic analysis technique, existing lemmas and
Cp— semigroups are defined in the sequel. Take (€2, §,P) to be a complete filtered probability
space furnished with complete family of right continuous increasing sub o-algebras {§,,. € J}
satisfying §, C §. A H-valued random variable is an §,-measurable function z(¢) :  — H,
and the space S = {z(;,w) : @ — H : ¢ € J} which contains a collection of random variable

is called a stochastic process. Let 7,(¢)(n = 1,2,...) be a sequence of real valued one-



dimensional standard Bm independent of (2,F,P). Set w(t) = > 07 1 vV Auvn()n(1), ¢ > 0,
where A\, > 0 are positive real numbers and {(,}(n = 1,2,...) is complete orthonor-
mal basis in K. Let @ € L(K,H) be an operator defined by Q¢, = A\,(, with finite
Tr(Q) = >.02 1 An < co. Then the above K-valued stochastic process w(c) is called as
@Q-Wiener process. Let ¥ € LOQ(K, H),

1W)IE = Tr(TQU*) = > VA WGl
n=1

If |[¥|lg < oo, then W is known as Q-Hilbert Schmidt operator. The articles can be consulted
for more information on the concepts and theory of SDEs [6l [7, 17, 22] and references therein.
Now, we define the space formed by §,—adapted H— valued measurable stochastic process

{z(1),. € J} s.t = is continuous endowed with the supremum norm

1

ol = ( sup Blla(0)])”
0<<T
Now, define the set
B, = {x € C(J, Ly(Q,H)),Ellz()|P < 7, ¢ € J}
is a closed ball in C(J, L,(2,H)). Then (C(H), || - ||) is Banach space.

Definition 2.1 [6] The R-L integral of order n —1 < q¢ < n, for a continuous function
f:J—=R

L

19, () = ﬁ /(L 0 ), 130, >0,
0

provided that the R.H.S is point-wise defined on J.

Definition 2.2 [72] The R-L derivative of order q, of a function f:J — R,

1 d\m» / n—q—1
Di () = m(a) /(L—U) T fw)e, 0>0, n—1<q<n,
0
here n = [q]+1, [q] denotes the integral part of number q, provided that the R.H.S is point-wise

defined on J.



Definition 2.3 [9] The Caputo derivative of order q for a function f:J — R,

L

— [—ur O -1 <q <

“DI, f(u) = Tn—q
0

where (n) denotes the n derivative, provided that the R.H.S is point-wise defined on J.

Definition 2.4 [7], A one parameter family (Co(t)),>0, € (1,2] is called the solution
operator (or) strongly continuous a-order fractional cosine family for the given Cauchy prob-
lem (@) and A is the infinitesimal generator of {Cqa(t)},>0 if the following conditions are
satisfied

1. Cu (1) is strongly continuous for 1 > 0 and Cy(0) = I, where I is an identity operator.

2. Co(t)D(A) C D(A) and AC,()n = Cu(t)An n € D(A, 1 > 0;

3. Ca(L)n is solution of (1) =n+ & [(t — v)* T Az(v)dv, ¥ € D(A).
0

Definition 2.5 [20,[21] The fractional sine family S, (¢) : [0,00) — R associated with Cq(t)
is defined by

L

Sal(t) = /Ca(v)dv, . <0.
0

Definition 2.6 [1], [16] The fractional R-L family P, : [0,00) — RT associated with Cq(t)
is defined by
Po(1) = J*71CL(0).

Definition 2.7 [20] For any x € H, 0 < v < 1 and p € (0,1], we have AS,(t)x =
A8, (1) A and
acy,

[AYYS, ()| < =&,V e

= LOW’

Lemma 2.8 [15] For any fixred « > 0 and for any x € H, the following estimates are true

[Ca()ll < Me; [[Sa(d)]| < Me.



Lemma 2.9 [13,[3] For any p > 1 and for an arbitrary L%(K, H)-valued predictable process
G(-) such that

2
2

s;g}])IEH O/G(v)dw(v)Hp <C, (/L(EG(U)Z%)idv) e,

0

where C’p = (@) %.

Lemma 2.10 [10] For any p > 2, there exists C, > 0 such that

OSSELE{H/L/J(L,x)N(dL,dx)H]p <C, E[(/L/IIJ(L,x)HZ)\dg;dL)g]
<< ) |/
E{/L/U(L,x)Qp)\ddeF}_
0 7

Definition 2.11 An X -valued stochastic process x(t) (v € J), is said to be a mild solution

for system (), provided

1. (1) is fitting a §, (¢ > 0) has a cadlag path ¢ > 0 a.s.

2. For v € J, the following integral equation is satisfied:

o(1), L € (—00,0];

Ca(t)[¢ + 9(0,0)] + Sa(t)n — g1, 2,) — bfASa(L —v)g(v, ,)dv

+ [ Salt = v) f(v,20)dv + [ Sa(t — 0)G (v, 2y )dw(v)
0

_l’_

J
OL
[ [ Salt —v)o(v, 2y, u)N(dv,du), € J.
0z

\

Definition 2.12 Suppose that there exists mappings are I'y : J x B — H; I'y : J X B —
H;I's : J x B — LOQ(K,H) and I'y + J x B x Z — H be real valued functions on a bounded
linear operator. Then there exist positive constants a;,i =1,2,3,4,5 s.t for any x,y € H, we

have
L

EHf(L x(t) +y(e /S t—v)T1(v,z(v))y(v)dv —i—/Sa(L —v)le (v, z(v))y(v)dv

0

+ O/ Salt = V)T3(v,2(0))y(v)dw(v) + 0/ Z/ Salt = V)Ta(v, 2(0), uy()Adu) — (1, 2(0))

- Ty ey )| < ).



(74) E“A79<L,x(b) +y() + / Sa(t — )Ty (v, z(v))y(v)dv + / Sa(t — )Ty (v, z(v))y(v)dv

0 0

/SL )5 (v, z(v //SL )04 (v, z(v (Mm)

= Ag(e,2(2)) = Ti(e 2@y < GBlyO)IP.

(141) EHG(L,JU(L) +y() + /Sa(L — )y (v, z(v))y(v)dv + / Sa(t — )Ty (v, z(v))y(v)dv

0 0
+/S (t —v)3(v,z(v //S (t — )Ty (v, z(v),u)y(v ))\du) — G(t,z(1))
~ Lot 2y < @By,

<'[/M\wawm+/su O (w2 @)y(@)dv + [ Salt = 0)Ta(0,2(0))y()de

0

+/SL v)s(v, z(v //SL v)L4(v, z(v ())\du))\du
0

/U(L x(t),u)N(de,du) — Ty(e, z( H )\du} < a4y (0)]P.
Z
ol x(e) +y /S v — )l (v, z( (v)dv + /SQ(L—’U)FQ(U,.’E(U))y(U)dU

o [ /el
Z 0
/SL 0)s(v, 2(v //SL )L (v, 2(v (Mmpm

—/ (t,2(¢),u)N(de,du) — Tae,z(0))y(e H )\du] < asEl|y(o)|P. (2)
Z
Then, I'1,T'9,I's, 'y are integral contractors for the non-linear functions f,q,G, o, respec-

tively.

Remark 2.13 [fT'| =19 =,T3 =14 =0, then @) reduces to Lipschitz conditions (i.e)
E[£(oa() +y0) = G20 < aBllyeP,
E[lg(,2() +y() = 92| < arBllye1P,

E|G(.a() + () = G2 ()| < asEly()]”
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| [ [oa0) + u).0) = 020, 0] 2" < a1
Z

Remark 2.14 [t should be remarked here that the Lipschitz conditions leads to a unique
solution of (), but the condition given in ([2) may not give the uniqueness of the solution
of ). The uniqueness of the solution of the given system is ensured by the regularity of the

integral contractor.

Definition 2.15 A bounded stochastic integral contractor is said to be reqular, if the integral

equation

L L

y(0) + / Sa(t — V)T (v, 2(0))y(v) + / Sa(t — 0)Ta (v, 2(v))y(v)

0 0
L

+ /SQ(L —v)3(v, z(v))y(v)dw(v) + O/Z/Sa(L — )Ly (v, z(v),uw)y(v)A\du = A(t)  (3)

0

has a solution y € H for any x, A € H.
Let us assume that E|T1(¢,2(0))|P < ¢1, E||T2(e,2(0))|[P < co, ElT3(e,2(2))||P < c3, and

E|T4(s, 2()||% < cq, E|Dy(e, 2(0))||P < &4 for all v € J, z € H.

3 Existence and Uniqueness of the Proposed System

In this section, we show that the existence and uniqueness of mild solution for the proposed
system (). After that proving the existence results for the mild solution, the following

hypotheses are necessary to prove the main results:

(Hy) The non-linear continuous functions f,g,G and o have regular integral contractors

I'1, 'y, I'g, and 'y, respectively.

Theorem 3.1 If the assumption (Hi) holds, then the fractional neutral higher-order stochas-
tic differential system has a unique mild solution defined on J, provided
_ _ P >\ 5 2PN
P I o at [P k) Mr{(5) a+ (5,5) o)
+MP T MT AT A <1
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Proof: Existence of Mild Solution
We consider the operator @ : B, — B, defined by

(

<

(1), L € (—00,0]

Ca(t)[¢ +9(0,9)] + Sa(t)n — gt 2,) — bfASa(L —v)g(v, x,)dv

+ [ Sa(t —v) f(v,zy)dv —i—fS L —0)G(v, zy)dw(v)

_l’_

J
0
L
[ [ Sa(t —v)o(v, 2y, u)N(dv,du), € J.

0z

In order to prove that the existence and unique result for the mild solution of (), it is enough
to show that the operator ® has a unique mild solution. By using successive approximation
technique, we study the following cases:

Case (i): Consider the following two sequences {x,}5° ; and {y,}°2; in H.

zo(t) = Ca(t)[¢ + 9(0,0)] + Sale)n,

L

i(0) = 2al0) = ga?) = [ ASale = vhg(v. o+ [ Sule—v)f(w, 2o
0

0

+/Sa(L—U)G(U,$Z)dw(U)—i—/L/Sa(L—U) (v, 22, u)N(dv, du). (4)
0z

Bt = 20 = [1n(0) + [ Sale = 01 (0, (0))n0) + / St~ V)20, 20 (1)) ()

0
L

+/SQ(L—U)F3(U,xn(U)) //5 L — )4 (v, 2n (), )yn(v))\du]

0

= —g(t,z /S (L — )y (v, 2 (V) yn (v )dU—/ASa(L—U)g(U,xU)dU

0
L

—/Sa(L—U)Fl(v,xn(v))yn(v)dv+/Sa(L—U)f(v,mﬁ)dv—/Sa(L—U)Fg(v,xn(v))yn(v)dv
0

+/SQ(L—U)G( ™ duo(w /s (4 = ©) T (v, 5 (0))yn (0)de(v)
0

+//S°‘ v = v)o(v, 2y, u)N (dv’du)_/L/Soz(b—U)H(%%(U),u)yn(v))\du—i—wo(L).
0 0z
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Now, we have

yni1(t) = @nia() = g(e,at) — /AS (e = v)g(v, 2t )dv +/S (L =) f(v, 2 )dv

n / Salt = V)G, 22 ) dw(v / / Salt — v)o (v, 2 )N (dv, du) — o(0).
0

Now, we have to substitute the value of x,1 in the above inequality, we get the following

- /Sa(L — )y (v, 22)yn(v)dv — /ASQ(L —v)g(v,zl)dv
0 0

L

Sa(t — )T (v, 2 yn(v)dv + /S (L —v)f(v,a))dv — /Sa(L — )l (v, 22)yn(v)dv
0

_l’_

L O O —

Sa(t —v)G /S (¢ — )Ty (v, ) yn (v)dw(v)

—i—//Sa(L—U o(v,zy, u)N(dv, du) //S (t — v)Ty(v, 27, w)yn (V) Adu
0z

/S =)l (v,x)yn(v dv—/S (¢ —v)La(v, z7)yn(v)dv

L

—/sa(b—v)rg(v,x //s L — )L (0, 27, W)y (v )Adu)

[ asute— (et - /sm_mrm)% o — /s (= )T ()
[ sute - ottt / [ st =Rt )
N EE /S (5= O — [ S Il
[ sute— oratenatimoptoto) - [ [ sute—ory U,%,;yn@w(dv,dugdv

0 0 =z

+ /SQ(L — v)G(v,xﬁ — Yy — /Sa(/{ — )1 (v, 2] yn(v)dv — /Sa(/{ — )2 (v, ) yn(v)dv
0 0
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/Ksa(ﬁ—v)rg(v,x //sa e~ )0, 2%, w)ya ()N (dv, du) ) duw()
OL B 0z
/

/SQ(L—U)J<U,x’J—yg—/S (k — 0)T1 (v, 2)yn (v dv—/S (k — 0)Ta(v, 2"y (v)dv
Z

/Sa (k — )3 (v, 2" //Sa K — 0)Ta(v, 27, w)yn (V)N (dv,du))N(dv,du).
0

(5)

Substituting x,, = z and y, = —y in equation (&), and by using Definition 2-T5] we get

Ynt1(t) = —g(, ) /S t— ) (v, 2)y(v)dv — /ASQ(L —v)g(v, zy)dv

+/SaL—U i(v,zy)y dv+/5 (t —v)f(v,xy dv+/S (t —v)a(v, zy)y(v)dv

+

0
/SaL—U (v, zy)dw(v /S (t — )y (v, )y (v)dw(v)

f

0z

o

Sa(t —v)o(v,zy, u)N (dv, du) +//Sa(L — )y (v, zy, w)y(v)Adu

g<L x, + Yy, + /S (L — )Ty (v, 2y)y( dv—i—/S (t —v)Ta(v, zy)y(v)dv

/5 (1 — 0)T3(v, 20)y //5 (t — 0)Ta(v, T, )(U))\du)

R

/AS (L —v)g <v xv+yv+/5 (k — )1 (v, 20)y (v )dv+/Sa(/£—v)l’2(v,xv)y(v)dv
0

/s (k — v)T3(v, )y //Saﬁ—vf4vxv w)y(v )N(dv,du))dv

/s (= 0)f (v +y0t /s (5 — )T (0, 20 )y dv—i—/S (5 — 0)a(v, 20 )y (v)dv

/S (k — v)T3(v, 20 )y //S (k — v)Ta(v, 2o, )(v)N(dv,du))dv
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KR R

St — U)G(U Ty + Yo +/S (k — )1 (v, 2)y(v)dv +/Sa(li — )l (v, xy)y(v)dv
0

_l’_

Sa(k —v)Ts(v,20)y //S Kk —0)T4(v, 2y, u)y (U)N(dv,du)) dw(v)

R

Salt — v)a(v, Ty + Yo + /Sa(m — )1 (v, x)y(v)do + / Sa(k — )2 (v, xy)y(v)dv
0

+

+
5 T — e T T
N\

+ /Sa (k — v)'3(v, )y (v)dw(v) + //Sa(li — U)I’4(U,xv,u)y(v)N(dv,du)) N(dv, du).
0 0z

(6)

.. Using (6]) and Hélder’s inequality, we have

E|yn-+1.(1)[|”

L L

= 5”_1{EH —g(,x,) + /Sa(b — )1 (v, 2)y(v)dv — /.ASa(L —v)g(v, zy,)dv
0 0

+ [ Sa(t — )Ty (v, zy)y(v)do + /S (t —v)f(v,xy)dv +/S L —v)To(v, ) y(v)dv

_l’_

S O —_

Sa(t — )G (v, xy)dw(v /S (t — V)T (v, )y (v)dw(v)

+
o _

/Sa (t —v)o(v,xy,u)N(dv, du) + //Sa(L—U)F4(U,xy,u)y(v))\du
Z 0z

L

LyXy, + Yy, + / Sa(L - U)Fl(v, xv)y(v)dv + /Sa(L - U)F2(U, xv)y(v)dv

0 0
L

/N

-9

+

Sa(t —0)'3(v, )y (v)dw(v) + //SQ(L — )Ty (v, xy, u)y(v)Adu)

0z
K K

ASq (L — U)g(u, Ty + Yo + /Sa(li — ) (v, 2)y(v)do + /Sa(li — )l (v, x)y(v)dv
0

_l’_

s O — . OY—__

+ /Sa (k — v)'3(v, )y (v)dw(v) + //Sa(li — U)F4(U,wv,u)y(v)N(dv,du)) dv
0 0z
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+/LSQ(L U)f(y xv—i—yv—i—jS (k — 0)T (v, 2,)y(v )dv+j5 (k — v)l2(v, z0)y(v)dv
0 0
+iS(/<& V)3 (v, 20 )y //Sli V)40, 2y, u)y(v)N (dv, du) ) dv

+ [ Sa(t — v)G(v xv—}—yv+/5 (k=)' (v, z0)y( dv+/5 Kk —v)a(v, zy)y(v)dv

+

O\: St~ °

Su(k — )T3(v, 20 )y //s K — V)4 (v, 20, w)y (V)N (dv, du))dw(v)

K

Sa(t —v)o <U xU—i-yU—i-/S (k — )1 (v, 2)y(v )dv—i—/S (k —v)la(v, 24)y(v)dv
0

+
. O~
N\

Sa(k —v)Ts(v,x0)y Sa(k —v)T4(v, 2y, u)y(v)N(dv, du) ) N(dv, du) :
[ st et - | [ s or )]
S 51)—1 Z Qj. (7)
1=1

Now, we compute the R.H.S of (). By using Definitions (i),

a; < EHAVg (L, x, +y, + /LSQ(L — )1 (v, 2y)y(v)dv + /LSQ(L —v)la(v, zy)y(v)dv

/SL v)3(v, 24y //SL )Ty (v, Ty, u ))\du)

- AVg(¢,x,) /S L— U)Fl(v,xy)y(v)de
< AP af By

By using Lemma 2.8 and Definition 212] (i), we get the following estimation:

ag = EH/.AS (L— U)g(v Ty + Yo + /S (k — )1 (v, 2)y( dv—i—/S (k — v)Ta(v, x)y(v)dv

/SFL )3(v, 24y //SFL )L (v, 2y, u )(dvdu))d
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_/_ASQ(L—v)g(v,xy)dv—/Sa(b—U)Fl(%%)y(v)dvup

0 0
K

/.Al TSa(t —v)ATyg <U Ty + Yo + /S k— ) (v, zy)y(v )dv—i—/Sa(ka—U)Fg(v,xU)y(v)dv
0

/SI{ )'3(v, zy)y //S/-{ v)La(v, 2y, u )(dvdu))d

/./41 TSa(t —v) AT g(v, zy)dv — /S t— )1 (v, x)y(v )dv”

([ POH A p—1 / oL AP
<o g [So] [o-v sl
0
L
p p o [P —pay P
< ol e, 4y [pa,u] (t—v) Ellyn (v)|P-
0

By using Lemma and Definition 2121 (i), we get the following estimation

as

/s (t— v)f(v Ty + Yo + js (k — 0)T1 (v, )y dv+/5 K — 0)Ta (v, 20 )y(v)dv

/ (k —v)'3(v, )y +//S k—v)L4(v, zp, u)y(v)N (dvdu))d

0

/ (1= 0)f (v, 2)dv — /s L= 0D,z )y(w)de]|

0
K

(L —wv) U s Ty + Yo + /S k=) (v, z)y(v )dv—i—/S (k — V)l (v, xy)y(v)dv

0 0
K

/ (k — 0)T3(v, 70)y //S (k — 0)Ta(v, To, w)y (V)N (dvdu))d

0
/ (t —v)f(v,xy)dv — /S t—v)To(v,xy)y(v )de
0

< / (1= V)| yn (v)P-
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By using Lemma and Definitions 2.8 Definitions 212 (iii), one can obtain

0 EH/S (= 0)G (v, +yo+ /s (5 — )T (v, 20 )y dv—i—/S (K — V) (v, 20 )y (v)dv
+/Sa(/<;—v)F3(v,xU //S (k — 0)Ta(v, Ty, 1)y (U)N(dv,du))dw(v)
0

_ /LSQ(L — V)G (v, )dv — /SQ(L - v)Fg(v,xv)y(v)dw(v)Hp
5 0

< C, Mp[/ <IEHG(U xv—}—yv+/5 (k =) (v, 20)y (v)dv+/Sa(/£—v)l’2(v,xv)y(v)dv

0 0
+ /Hsa(ﬁ—v)rg(v,xv //sa K — 0)Ca (v, T, 1)y (U)N(dv,du))dw(v)

P

/s (1= 0)G (v, ) dv—/S (4 = 0)Ts (0, 20)y (vdwvH) ik

By using Lemma 2.0l and Definitions 2.8 Definitions Z12] (iv), one can obtain

K

a5 — //s L= v)o (v, + i+ /s (5 — 0)T1 (0, 2y (v)dv+/Sa(/£—v)1‘2(v,xv)y(v)dv

0

+ /Sa K — )30, 20)y )+ //Sa (k — 0)Ta(v, B0, 1)y (U)N(dv,du)) N(dv, du)
0

0 Z

- /M_U)U(U,%,u)m,dm_/ [ st
0 =z

0z
3. P

< k) Mp{ (%) “a+ <2ipfl>éd§}E||y"(”)||p'

Combining these results together with equation (),

3\ R
2

o o N . LPOJN P A .
Ellyny1(e)]] < 57 l{HA TP af + of b af [m} + k(p) Mp{(g) al

S %p p
Q E
+(5y37) B EWOI

+ 50~ 1{Mp PUaE o, MP B G /L—v E||y, (v)]||P- (8)
0

IN
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Now, we have to substitute the value in y,(¢) in above equation (8) to obtain

Bl < (37 {1470 & +o7 o, af [+ ko) w{ (D) Far+ (;;pfl) 11 Bl

NI

voL

2
(et a0y MP S a)) / / (4= V)Ellyn—1 (v1)[Pdvrdo.

0 0
P
2

< (P E o g [ﬂ]pﬂ( ar{(5) a5+ (gg) a8} ) Bl
< 1 w a1 paj p 3 Gy 2p+1 5 Y\

L v U1

<5p 1{Mp Al + o, MP .5 /// Y Ry —a(v2)|[P dvgdur du.
0

From the above procedure and applying the mathematical induction method, we get

EHZJ +1(L)H < <5p71{”A7’YHp aP 4+ aP P &P [Lpa“]p+k(p) Mp{<£>§Ap+( 2p+1 )Edp}}>n+1
n < 1 w N Do 3) 4T \gp41/)

+1 1
< Blwo@)|? + (71 a0 21 a1 ¢, P A a))” / = )" Elyo(v)]Pdv.

0
1 B ) . (P p BNE 2t %A n+1
= <5P {HA VHP all)+ap cﬁ azl) [pa,u] +k {<§> Z (2p+1) ag}})
. 11 Ln+1
X Elgo(o)lP + (b a0, MP AT )T L Ro()]

as n — 00, Yn(L) converges to zero in H.

Case (ii): Now, we have to prove that {z,}2, converges to the given solution of Cauchy

problem ().
Now, we have to constructed the following:

L

Tni1(t) = zp(t) —ynle) — /Sa(L — )1 (v, 22)y" (v)dv — /SQ(L — )l (v, 2l)y" (v)dv
0

0
L

—/S (t — v)s3(v, ) y" (v)dw(v) —//SQ(L—U)FZL(U,xv,u)y (V)N (dv, du).
0z
Tny1(t) —xp (L) = —ynle /S =)y (v, 22)y"(v)dv — /S (t —v)Ta(v, z0)y"™ (v)dv

—/sa(L—v)rg(v,x;;) //sa L — )T (v, 2", w)y" (V)N (dv, du).
0
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L L

Bllen1() = 2a I = B[~ 5n(0) = [ Sue= o)1 (005" (0)d0 — [ Sale = 0)la(w. " (0)do
0

0
—/Sa(L—U)Fg(v,xﬁ)y"(v)dw(v) —//SQ(L—U)I’4(U,mﬁ,u)y”(v)N(dv,du)Hp
0 0 2

5 p—1 Y|P 5P P oP P
< Gl (AT e g [
3 g L2p+1

+k(p) Mp{(%) @ + <2p+ 1>%&§}}>n

{0 57 i)

n Ln+1

n+1
x (14 M2 &+ Cy MPE &+ MPR)ES + 28] )Ellyo (1)),

for a given m > 0 s.t m < n, then from the above procedure, we have

Ellzy () —2m @ < Ellzn(e) — 21| + Ellzn-1(t) — zn—2()[” + - + El|mi1(¢) — zm (o) |IP
< 57 (14 MPP &+ Gy MPE &+ MPR()LES, + P E) ) Ellyo ()"
n—1
1
AP 9
<Y e A (9)
k=m
where
Ak _ 5p—1 3 L2p+1 1

ol A e g a [0 ko ar{ () (5,0) )

1
n (5P*I{Mp PLaP o0 MP 5T ap})" il
2 P 3 n-+1

Clearly, the R.H.S of (@) is a convergent series. Thus, {x,}°, is a Cauchy sequence in B

and hence convergent uniformly to x*. Hence,

ynlt) = 2nt) — 9t,7) — / ASa (i — v)g(v,27)dv + / Salt — v) (v, 27)dv
0 0

L

+ / Sa(t — )G (v, 27)dw(v) + / / Sa(t —v)o(v, 2, u)N(dv,du) — xo(1).
0z

0
7}1—{20 yn(t) = nh_)rrgo (L) — xo(L) — nh_)rrgo g(t,x)') — 7}1—{20 ASy (v —v)g(v, zl)dv
0
+ lim [ St —v)f(v,2))dv+ lim [ Sa(v —v)G(v,z))dw(v)
n—00 n—00

0 0
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+ lim /L/SQ(L—U) (v, 2™ )N (dv, du).

n—00
zZ

L

2" (1) = zo(1) /AS L —v)g )dv+/Sa(L—v)f(v,xz)dv

0
+/SQ(L—U)G(U,xz)dw(U)+//SQ(L—U) (v, 2%, w)N(dv, du).
0 0 Z

L

(1) = Cq(t)[o+ 9(0,0)] + Sa(t)n — g(t,x,) — /AS (L —v)g(v,xy)dv +/Sa(L —u)f(v,zy)dv

0
L

+/Sa(L—U)G(U xy)dw(v //S L —v)o (v, zy, u)N(dv, du).

0
Hence, 2*(¢) is the mild solution of the given Cauchy problem ().
Uniqueness Result for Mild Solution:
Next, our aim is to prove the uniqueness of the solution by utilizing the regularity property
of the integral contractor. Let x; and xo be the mild solutions of the given Cauchy problem
(). Then, we have

By using the regularity condition in Definition 2T5 with x = z; and A = 29 — x1 s.t

/s (1 — )Ty (v, 2w /s (1= V)Ds (v, 2(0))y(v)

+/SQ(L—U)F3(U,x( //s L — )4 (v, 2(v), w)y(v)Adu = A1)

0
L

v+ [ Sale = 01w 0)y(0) + / Salt — 0)Ta(v, 2(v))y(v)
0

0
L

—i—/Sa(L —v)lg(v, z(v))y(v)dw(v) + O/Z/Sa(L — )y (v, z(v),w)y(v)N(du, dv) = x2(1) — x1(1).

0
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L L

(10)

Since x1 , x9 are the mild solutions of the fractional neutral stochastic system (I), we have

(1) = —g(1,z}) /AS (t —v)g(v,z)) dv—i—/S (1 —v)f(v,x))dv

L

+/Sa(L—U //S L —v)o (v, zh, u)N(dv, du).

0
L

xa(L) = —g(L,x%)—/AS L—v) dv+/5 L—0)

0
L

+/sa(b_v //s L — v)o (v, 22, u)N(dv, du).

0

22(0) = 01(0) = glosa?) - glo.ah) + / ASa(e = v)[g(o,a%) = glv.a})]dv

—i—/Sa L—0) — f(v,z} dv—i—/S L—U)[G(U z2) — G(U,w}))]dw(v)

0

_l’_

—-

So(t —v)|o(v, 22, u) — a(v,xé,u)}N(dv,du). (11)
0z

Now we have to substitute equation (I0) in (III), we get

Ellza(e) =21 ()P

L L

= EHg(L, x1() +y(e) + / Sa(t — )Ty (v, z(v))y(v)dv + / Sa(t — )Ty (v, z(v))y(v)dv

0 0

/S t—v)T3(v,z(v))y(v)dw(v )+//Sa(b—U)F4(v,x(v),u)y(v)N(du,dv)) —g(1,z})
0 =z
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L L KR

- /Sa(b — )1 (v, z1(v))y(v)dv + /.ASa(L — ) {g(v,xl(v) +y(v) + / So(k — )1 (v, z(v))y(v)dv

0 0 0
+ /Sa(,k; —v)le(v,z(v))y(v)dv + /Sa(li —v)l3(v, z(v))y(v)dw(v)

0 0
[ Sal=0)[f0,21(0) +y(©) + [ Salr = )1 (v, 2(0))y(v)dv

0 0

—|—//Sa(/£—v)l‘4(v 2(v), w)y (V)N (du, dv))(v) — /s (¢ — v)Ta (v, 2(v))y( )dv]d
0z
+ / Salt = 0)[Glv,21(0) + y(v) + [ Suli— T30l
0 0
+/Hsa(m—v)r2(v,x( Ny( )dv+j5 (k= v)l3(v, z(v))y(v)dw(v)
0 0
+i/Sa(ﬂ—U)F4(U,x(U) W)y (V)N (du, dv))(v) — /s L — 0)Ta (v, 2(0))y(v)dw(®)] dw(v)
0z

—|—//SQL—U o(v,z1(v /S (k — )1 (v, z(v))y(v)dv
0z

ElAQI < 577 {|A7P & + o o af |~

(%)

p 1
? 2+l

W+ (507) RN
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+5p71{Mp LP*I dg +Cp MP Lgf ag / v EHA )Hp

0
L
= GE[AVIP + 02 [ElA©)Pde,
0
where
' 1 B . . [Pt p L3 %A L2p+1 %A
@ =5 {HA Y|P ak +aP o af [p—au} + k(p) Mp{(g) al + <2p+ 1) ag}},
Do = 5p71{Mp Pt ab + Cp MFP 5t dg}.
This implies that
L
EAOP < % [ - 0Bl (13)
0

By applying Gronwall’s inequality, the above inequality (I3]) reduces to given Cauchay prob-
lem (J). Also,

EfA@I" = 0
za(t) = 21(2) as,

which means that the mild solution of the give Cauchy problem () is unique. Thus, the

solution is well defined.

4 Exponential Stability via Integral Contractors

In this section, the sufficient criteria of the mild solution for the given Cauchy problem ()
is investigation by employing the impulsive integral inequality.

In order to prove our main result, some additional assumptions are imposed.

(H2) For a strongly continuous a-order cosine families C, () associated with sine operator

Sa(t) s.t there exist positive constants a; and ag with Dy, Dg > 1 s.t

sup ||Cq (1) < Dye™; sup [|Sqa(r) < Doe 2"
>0 >0
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Lemma 4.1 Suppose that for h > 0,m1,m2 € (0,h], there exist constants & > 0 (i =
1,2,3,4) and a function ¥ : [—k,00) — [0,00) s.t

e Mt Le ™ e [, 0
Erem M+ &e P+ &3 sup Y(v+6) +§4fe m=v) sup W(v+ 0)dv
0c[—r,0] 0e[—r,0]
V() < (14)
+§5fe*"2 =0 sup U(v + 0)dv —|—§6fe me=v) sup W(v+ 0)dv
0 0e[—r,0] 0e[—r,0]
—|—£7fe_”2(‘_“) sup Y(v+0)dv, t>0,
0 0e[—r,0]
and if
§3+ b _ & <1 (15)
nmo o n
then, we have
V() < Nee M for t > —k, (16)
where 1 € (0,714 12) is a positive root of the equation &e™H¢ + 54 e~k i &5<— =1 and

n—p

(=) (= p)
Eaehd — €y Exenl — 57}>°'

Theorem 4.2 Assume that the assumption (Hs) is fulfilled, then the given Cauchy problem

Ne = mam{gl + 52’

@) is exponentially stable in the p™* moment sense on J, provided

p
[ pap 2

2 — 1)\ 1—
AT i+ o af e’ + Dju af -+, Df (2222
poup »—2

~pP
o 3

+h(p) DY(af +a) (2L <

Proof : Let 2(¢) be the mild solution of the given Cauchy problem (Il). Now

E|lz()|P < 5”_1{EHg(L, x, +y, + / Sa(t — )Ty (v, zy)y(v)do + / Sa(t — )Ty (v, xy)y(v)dv

L

+/s (1 = 0)Ts (0, 20)y //s L~ V)40, 2y )y (v) M)

(¢, 2,) /S t—v)l'1(,z(v)) (v)dep
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—HE‘/.AS (L— U)g(u Ty + Yo +/S (k — )1 (v, 20)y(v )dv—i—/Sa(/f—v)f’g(v,xv)y(v)dv

0 0
K

+/S(/<; )3 (v, ) //Sn )4 (v, T, u )(dvdu))d

0

—/ASO,(L v)g(v, T, )dv — /S t— )1 (v, z)y(v )de
0

0
K

‘/LS (L— v)f(v Ty + Yo + /RS (k — )1 (v, 2)y(v )dv—l—/S (k — )2 (v, ) y(v)dv

0 0
K

+/S(,-@ 0)Ts(v, ) —|—//S/< 0)L4(, 2o, u )(dvdu))d

0

+E

—/LSa(L ) f(v, xy)dv — /S t—v)To(v,xy)y(v )dUH
0

0

‘/S (L— U)G(U Ty + Yo +/S k=) (v, z)y(v )dv—i—/S (k — V)l (v, xy)y(v)dv

0 0
K

+/S(/<; 0)03(v, ) //S K — )4 (v, 20, 0)y(W)N (dvdu))dw(v)

0

+E

= [ Sale = 0)Gw. ) dute) - / Sale = 0)T3(v, 2 )y(0)du(v)|

0 0
+IE‘//S (t— v)a(v o + Yo +j5 (k — )0y (v, 20 )y (v )dv+j5a(m—v)F2(v,xv)y(v)dv
0 Z 0
+0/S(/<; )3 (v, ) +//Sn )4 (v, 20, w)y (V)N (dvdu)) (dv, du)
//S(L V)0 (v, T, w) N (dv, du) //SL V)L (v, T, w)y dvduH}
0 Z 0 Z

< 5t Z K;. (17)
i=1
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Here, it is easy to estimate each term of the R.H.S of the above inequality (7).
By using Definition [Z12] (ii), we get the following estimation.

K EH <L z, +y + /S (t =)' (v,zy)y(v dv+/5 (t —v)a(v, zy)y(v)dv

/S (t — v)T3(v, zy)y(v)dw(v +//SQL—UF4U$U, )y(v))\du)
0z

gl - / Sale =i a()y()do| < AP & Bl
By using Definition 2.7 and Definition (ii), we get the following estimation.

Ky = IEH/.AS (t—wv)g <v Ty + Yo + /S (k=)' (v, z0)y( dv+/5 (k — V)2 (v, xy)y(v)dv

+/sa(m — 0)T3(v, 20)y //5 K — )Ty (v, 20, 1)y (v)N(dv,du))dv

/AS (t—v)g (nydv—/S (t — )1 (v, 20)y vde

< o al

POt p
o

] B,
pap

By using assumption (Hz) and Definition 2Z12] (i), we get the following estimation.

Ky = EH/S (= 0)f (v + 9 + /s (5 — )T (v, 20 )y dv—i—/S (5 — V)a(v, 30 )y (v)dv
+/SQ(K—U)F3(U,xv //sa K — )4 (v, 20, 1)y (v)N(dv,du))dv

p
/S t—v)f(v,zy,)d /S (t —v)a(v, zy) (v)dv”

< E

K

(L— v)f(v Ty + Yo + /S k— )1 (v, z,)y(v)dv + /Sa(/{ — )2 (v, zy)y(v)dv

0

—|—/Sa(/f — 0)Ts(v, 20 )y //Sa K — 0)Ta(v, T, 1)y (U)N(dU,du)) v
0
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L L

S Y Y

0 0

~

< Dbabt b [ e 2 VE| 2, ||Pdo.

0

We estimate K, by using assumption (Hs) and Definition T2 (iii),

K

K, = EH /S L—U)G(U Ty + Yo + /S (k=) (v, 20)y (U)dv—i-/Sa(/f—v)f’g(v,xv)y(v)dv
0

—|—/Sa(/f — 0)Ts(v, 20 )y //Sa K — 0)Ta(v, T, 1)y (U)N(dU,du)) dw(v)

/S (¢ —v)G (v, z,)dv — /S (t —v)3(v, )y (U)dw(U)Hp

L K

< G, Dg{/ (EHG(U,xv + Yy + / Sa(k — )1 (v, 2y)y(v)dv + / Sa(k —v)le(v, zy)y(v)dv
0

0

0z

—{—O/SQ(,% —0)'3(v, )y (v)dw(v) +//Sa(/-$ — U)F4(v,xv,u)y(v)N(dv,du)) dw(v)

_ /Sa(L — )G (v, xy)dv — /Sa(L _ U)FB(U,$v)y(U)dw(v)Hp>idv]
0

L
2a9(p — 1)\ 1%
< ¢, DY (LW 5 )> : &g/e_”(‘_“)EHxUdev.
p_
0

By using Lemma 2.10] Definition and Definition 212 (iv), one can obtain

//s L — ) v Ty + Yo + /5 K — )Ty (v, 20)y (v)dv+/HSQ(K—U)F2(U,:cv)y(v)dU

0 Z

- / / Salt = 0)o (v, 2y, u) N (du, dv) — / / Sal = V)a(v, 2, w) N (dv,du) |
0z

+0/sa K — )Ty (v, 24 )y +//sa 5~ 0)Ta(, 20, W)y (0) N (dv, du) | N(dv, du)

0z

2a3(p — 1)\ 1% |
a2(p )) 2/€a2(LU)EH$vadU-

D
< k) Dy(ag +a5) (=22

0
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These together with equation (IT),
P p—1 Y|P 4P P p [P P p—1) pp,p—1 4P
Blal” < 5 [l 6f + o o af [ Bl + 57 { Dha "

2ao(p — 1)\ 1% 2 o 2as(p—1)\1-%

p 2 D D (52 P

+Cp Dy ( ) ) 5+ k(p) Dy(ai + 5)( ) }

X / e~ 2R |z, ||Pdv. (18)
0

Then, the above inequality (I8 are equivalent to L.H.S of Theorem [£.2] we have
E P < 5Pl AP P P PGP PR =t
el < & [JATP af + o o af | ] e

e AL ot
.—Ale" s

where

N pPap4p
A=A a4 ar o ab =],
pap

By Lemma T and by equation (I8]), we have E||z(:)|P < e ™, > Kk, n € (0,71 An2), where

al+k(p) DB (a2 +ab) (Ljﬁ 5 1))175}}.

D
2

Here 1 is a +ve root of the equation Ay emt =1, A = &3, and Ay is defined as in above

equation. Hence, the fractional stochastic system (1) is exponentially stable.

5 Example

We provide an example in this section for validating the theoretical results. Consider the
control problem for higher-order fractional neutral stochastic integro-delay differential system

given as follows:

O oo Lt=s HZ(%’,L)H
e, [z 19+ 20 0]
0+ (W)* VH } “ )+/6 S 191200
0
e'U
v Nd ,d 5 ’ ’ )
+25+HZ(xL +/ o(v,xy), u)N(dv,du), v € J, r € [0, 7]
zZ

2(2(0, K)) =1, Kk € [0,7|. (19)

2(¢,0) = z(t,m) =0, ¢ € [0,], %
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5
Here, CD(;”Jr denotes Caputo partial derivative of order a@ = g

Let w(¢) denotes the standard Wiener process.

Let A:H — H defined as

where
D((.A)%) = {w ceH: an(f, en)en € H:w(0) =w(n) = 0}.
n=1

Then A has spectral representation
o
Aw = Z —n%(w,wy),
n=1

where, wy,(v) = \/g sin(nv) is the orthonormal set of eigenvalue of A. A is the infinitesimal
generator of a strongly continuous cosine family {C(¢),t € R} define as

[ee]
Cllw = Zcosm <w,w, >, weH,

n=1
and the associated sine family is given by
= 1
S(t)w = ; st <w,wp >, we H.
Hence, from the subordinate principle, it follows that A is the exponentially bounded frac-
tional cosine family C'(¢) such that C'(0) = I. The nonlinear functions f : J x B, — H, g :
Jx B, —H,G:Jx B, — L%(K,H), and o : J x B, x Z — H, described by

( ) 6—2L
I\ T ) = T
A=
f(LaxL) = 429 )
dw(t) e dw(t)
Gl ) do 25 di
/O‘(L,J?L,U)N(dL, du) = /6_6(L_U)N(dL,du).
z z

The non-linear functions are f, g, G, o have regular integral contractors 'y =['y =3 =1y =

0.



30

Hence, the system (II) has a unique mild solution. By choosing the particular values in the
given parameters are, M = 0.002, p = 2, + = %,Cp = 1,040 = a3 = a3 = a4

is = 0.02, k(p) = 1.

From the definition of (A)~7 [see [I5]], it is easy to infer that

Accordingly, all the hypotheses of Theorem [B.] are satisfied.

3.2 2p+1 L
P LA i o [0 i o () i+ (200 )
1 p1 paL 3 4 2p+ 1 5
+ M7 a Gy MP AT
1 2 ,1\2742 x 0.572 05
= 5”71{6*1—3 + <§) (—) [72 ] F1x0002x1x S
) 3 3 2x0.5 25
+1x 0002<(05)3 % 676X0.5 + <(0‘5)5)%66X0.5)}
3 5
= 0.007436 < 1.

Moreover, by Theorem [£2], we may deduce that if

- B R o [P 1. p (2a2(p—1)\1-% .
5 I[HA NP a4 a? &, I;[p—au} + D22 @& + O, D <7p_2 ) i
2 o 2a0(p—1)\1-%
+ k(p) D5(af + g)(ﬁ) 2}

1 2,1\2742 x 0.572
- 51’*1{51— i (g) <—> [27} 11%0.002 x1x0.33
)

- 3/ 1L2x05
(0.5)°  _6x0s —6x0.5
+1><0.002( X e T0 +(e : (0.33)))}
= 0.00874 < 1.

Then the mild solution of the system () is exponentially stable.

6 Conclusion

A new exponential stability model is presented with existence and uniqueness for the higher-
order fractional neutral delay differential system using the new technique of integral con-

tractors with the regularity. To demonstrate the results, stochastic analysis approach and
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the concept of bounded integral contractors was combined with the sequencing technique.

Furthermore, exponential stability results for fractional stochastic equations have been es-

tablished by using impulsive integral inequality technique. The numerical example, it helps

to establish the results numerically with simulation and one can give an application in the

numerical part of exponential stability using this result. In future, authors have planned the

same phenomena to study fractional stochastic partial differential equation models. Caputo

fractional derivative can also be replaced by Hilfer fractional derivative as of future study.
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