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A B S T R A C T   

The sensitivity of the RT-PCR test is limited, and the method itself is laborious and time-consuming to carry out. 
When it comes to making a diagnosis of COVID-19, chest CT scans have the potential to be of assistance. If, on the 
other hand, the infection does not spread to the lungs, then an abnormality check with a CT scan will not be 
necessary. Complementary assays have the potential to considerably reduce the frequency of false-positive re-
sults when they are used in combining with RT-PCR or CT scans. We propose in this study a decision support 
system that is based on deep learning and has the capability to evaluate the practically commonly required 
laboratory parameters for the purpose of identifying COVID-19. Here dataset contains the 1428 radiographs (224 
COVID-19, 504 Healthy, 700 Pneumonia) are considered for experimentation.   

1. Introduction 

The finding that a novel beta coronavirus was the cause of the 
pandemic led to the virus being given the name Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-COV-2) [1]. Coronavirus Disease 
2019 is the name that has been given to the ailment because an infection 
with SARS-CoV-2 can generate such a diverse array of symptoms in 
people [2]. This is because SARS-CoV-2 infections can take place in 
human hosts as well as other animals. 

The early signs and symptoms are not very specific and are rather 
like those of other seasonal viral infections. For example, a high tem-
perature, a dry cough, and excessive fatigue are all symptoms that are 
common with other seasonal viral infections [3]. The influenza virus 
may be responsible for causing these symptoms. It is possible that a 
correct clinical diagnosis cannot be made [4]. 

To establish a precise etiological diagnosis, it is important to do 
reverse transcription polymerase chain reaction (RT-PCR) testing to 
identify the SARS-CoV-2 genome. This is because RT-PCR may detect 
mutations in the SARS-CoV-2 genome [5]. 

The use of RT-PCR is subject to a variety of significant restrictions, 
which can be seen as drawbacks. To begin, utilising the technologies 
that are currently accessible might take anywhere, and laboratories 
frequently discover that they are unable to keep up with the demand for 
their services because of the time commitment involved. Second, there is 
a potential that some hospitals may not have the resources necessary to 

carry out tests at all hours of the day [6]. 
Swabs must be relocated to several different locations as a direct 

result of this, which makes the process more time intensive and over-
loads the central labs. The initial retropharyngeal swab RT-PCR result 
may be mistakenly negative, even though typical symptoms are present. 
It possible that an oversight occurred throughout the testing process, 
which would explain this result [7]. Finally, this method comes with a 
price tag, which may create a significant financial burden not only on 
healthcare organisations but also on individuals who are in need of this 
therapy [8]. 

With such restrictions, a significant number of patients are 
compelled to wait in the emergency room for a period that is signifi-
cantly longer than what is required before being admitted to the 
appropriate unit [9]. Patients who are in critical condition and need 
endotracheal intubation and mechanical breathing as soon as feasible 
have a huge barrier since they have reached this point. Even though the 
healthcare system is currently running at a level that is dangerously 
close to capacity, these people require the attention of doctors working 
in emergency departments [10]. 

The development of a test that is uncomplicated, can be completed in 
a short amount of time, and can establish whether an individual is 
susceptible to the SARS-CoV-2 virus or resistant to it could be of sig-
nificant therapeutic use. Newer, more sophisticated imaging methods 
have been incorporated into the process of building the algorithms that 
have been proposed [11]. 
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The sensitivity of the RT-PCR test is limited, and the method itself is 
laborious and time-consuming to carry out. When it comes to diagnosis 
of COVID-19, chest CT scans have the potential to be of assistance. On 
the other hand, the infection does not spread to the lungs, then an ab-
normality check with a CT scan is not necessary [12]. Complementary 
tests have the potential to considerably reduce the frequency of 
false-positive results when they are used in conjunction with RT-PCR or 
CT scans. 

This study provides a decision support system that is founded on 
deep learning and possesses the capability to analyse the laboratory 
parameters that are necessary from practically all patients for the 
detection of COVID-19. 

2. Related Works 

To make a definitive diagnosis with RT-PCR, additional RT-PCR 
testing is required because the findings of between 20% and 30% of 
these tests are incorrectly positive. In people who are infected with the 
virus, there is a possibility that a false positive test result could be 
produced as a result of the following factors: (1) a swab sample of poor 
quality as a result of insufficient patient material; (2) a swab sample 
taken at an extremely early or late stage of infection; (3) improper swab 
sample processing; and (4) technical reasons inherent to the test, such as 
PCR inhibition or virus mutation [13]. 

Insufficient patient material can result in a swab sample of poor 
quality. In addition, CT scans are executed at an earlier stage in the 
evolution of the disease might not be able to determine the effect that 
the COVID-19 virus has on the patient lungs at that point in time. It is 
very challenging for doctors and other medical experts to diagnose the 
disease in a patient until the virus has completely established itself in the 
lungs of the individual being treated [14]. 

A new insight that can enhance clinical practise and the treatment of 
individual patients, an increasing number of academics have begun 
looking into medical databases. The findings of this research have 
resulted in the development of novel treatments and the identification of 
new ways of diagnosis, both of which contribute to the overall 
improvement of human health and to the extension of human life ex-
pectancy. The use of artificial intelligence (AI) technology into the 
diagnostic procedure for COVID-19 has given rise to a great number of 
new research endeavours [15]. 

Zali et al. [16] said that the CT scans are favoured over RT-PCR for 
making a diagnosis of COVID-19 in places with a high frequency of the 
disease. This is since CT scans are less invasive than RT-PCR, require less 
time to complete, and yield more accurate results. 

Kayaaslan et al. [17] investigated patients who had previously had 
an RT-PCR screening for COVID-19 but had received a negative result. It 
was hypothesised that these patients were infected with the virus. They 
arrived at the conclusion that the second RTPCR test was not necessary 
and that it only offered a minor improvement over the initial test. 

Positive RT-PCR results were obtained in 59% of COVID-19 patients, 
while positive thoracic CT scans were observed in 88% of patients, as 
stated by the conclusions of the research carried out by Ai et al. [18]. 
When it came to determining whether or not an individual had 
COVID-19 infection, Long et al. [19] found that thoracic CT had a 
sensitivity of 97.2% while RTPCR had a sensitivity of 83.3%. These 
conclusions were based on the findings of their analysis. In addition to 
the RT-PCR test, they emphasised the need of utilising CT scans as a 

helpful diagnostic tool. CT scans need to be analysed to assist in the early 
discovery of people who have the ailment and to evaluate how far along 
they are in the progression of it. The reverse transcription polymerase 
chain reaction, also known as RT-PCR, requires an extremely lengthy 
amount of time to obtain results and has a low sensitivity when 
compared to thoracic CT, which generates data nearly immediately. 

In [20], a DL base approach is used to classify and detect the 
COVID-19 cases from x-ray images. Our model is entirely automated and 
is capable of categorizing binary class with 100% accuracy using VGG16 
and multi-class with 93.75% using a built CNN. 

The author in presented a five different image enhancement tech-
niques: histogram equalization (HE), contrast limited adaptive histo-
gram equalization (CLAHE), image complement, gamma correction, and 
balance contrast enhancement technique (BCET) were used to investi-
gate the effect of image enhancement techniques on COVID-19 detec-
tion. A novel U-Net model was proposed and compared with the 
standard U-Net model for lung segmentation. Six different pre-trained 
Convolutional Neural Networks (CNNs) (ResNet 18, ResNet 50, ResNet 
101, InceptionV3, DenseNet201, and ChexNet) and a shallow CNN 
model were investigated on the plain and segmented lung CXR images. 
The novel U-Net model showed an accuracy, Intersection over Union 
(IoU), and Dice coefficient of 98.63%, 94.3%, and 96.94%, respectively 
for lung segmentation. 

The rate of transmission of the coronavirus pandemic can be slowed 
or stopped entirely with the assistance of early detection and treatment, 
which will also help to minimise the severity of the sickness. Numerous 
researchers have focused their attention on analysing the COVID-19 
patient laboratory data to better understand the disease. 

3. Proposed method 

This research was conducted with the intention of developing a 
conceptual framework for the classification of COVID-19. To accomplish 
this goal, chest CT scans and more traditional diagnostic criteria were 
utilised during the research. The organisational structure of the research 
project is depicted in Fig. 1. 

The following is a list of the actions that must be taken for hybrid 
CNN models to be successfully executed. 

Step 1. The initial phase comprises performing CT scans on patients 
who either have or do not have COVID-19. 
Step 2. The second step is to get the feature vectors from the pooling 
layer that have previously been pre-trained. 
Step 3. Rather of employing the classification layer, we make use of 
the standard Artificial Neural Network (ANN) technique. 
Step 4. In the fourth stage, the improved hyperparameters are 
implemented into the training of the CNN model as a means of 
guiding its development. 
Step 5. To avoid overfitting the data and to control the error rate the 
k-fold validation model is used. 
Step 6. Result Evaluation 

The first thing that was done was to obtain CT scans of each of the 
patients. 

In the second stage, we used the models that had been pre-trained to 
get the feature vectors of each image that we had previously stored. 
Multiple iterations of convolution, normalisation, and pooling were 

Fig. 1. Proposed model.  
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carried out on each individual photo before it was submitted to the CNN 
models for analysis. Following the completion of these procedures, it 
was possible to successfully extract feature vectors from each individual 
image. 

When classifying the feature vectors that were obtained through the 
utilisation of pre-trained models, the softmax layer was utilised as a 
means of doing so. 

As was mentioned in Step 3, ANN were utilised in place of softmax 
for the classification of feature vectors in the pooling layers. This was 
accomplished by replacing softmax with ANN. 

After adjusting the values of their hyperparameters to achieve 
optimal performance in the third phase, we moved on to the fourth stage 
of the process, which consisted of training the CNN models using the 
training set. 

The issue of overfitting was addressed, and error rates were brought 
back under control after Step 5 utilisation of cross validation on a 
fivefold basis. The total included training data, which made up 60% of 
the total, validation data, which made up 20%, and test data, which 
made up the remaining 20%. This not only led to more accurate findings 
from the categorization process, but it also made it possible to validate 
those results. 

The results of the classification were acquired and evaluated with the 
assistance of a technique known as deep convolutional encoder-decoder, 
which was carried out under the direction of professionals in the medical 
field. 

3.1. Deep convolutional encoder 

The DCN network makes use of encoder-decoder frameworks as its 
backbone to train its nodes in a sequential fashion (Fig. 1). 

3.1.1. Encoder network 
Encoders are algorithms that take an input and output abstract fea-

tures that capture all the essential information for later processing, such 
as segmentation, detection, and classification. Encoders take an input 
and output abstract features that capture all the necessary information. 
A substantial chunk of the encoder for a classification network is made 
up of the convolution and pooling layers. Encoders in the DCN can take 
advantage of the benefits offered by contemporary classification net-
works. The extent to which the network is structured is its most valuable 
feature, as this characteristic plays a significant part in bringing about 
the outcomes that are wanted to be achieved. 

The encoder that is used by the DCN is based on AlexNet, however it 
has had a few tweaks here and there to improve its performance. It is 
constructed out of 13 convolutional layers, each of which has two 
pooling operations and three filters. After the initial layer of processing 
that involves convolution, this design makes a smooth transition into a 
layer that is responsible for pooling, and then it moves on to a layer that 
is responsible for full connectivity. 

The architecture of the visual geometry group network (AlexNet) 
served as the foundation for this framework, but it was modified in some 
way. Given two data sets, an algorithm known as a convolution can 
perform mathematical operations such as addition, integration, multi-
plication, and the derivative when it is given those data sets. The 
convolution can be represented mathematically as follows:  

y = x*w⇒y[i] =
∑

x[i− j]w[j]                                                           (1) 

Where. 

x -input data 
w-convolution filter. 

The convolution filter, which is also known as the kernel, and the 
input data x are the two pieces of data. The convolution filter is also 
known as the kernel. A feature map is generated as a by product of the 

convolutional process, which consists of moving the kernel across the 
whole input data set. This action ultimately leads to the generation of 
the feature map. It is possible to construct feature maps by combining 
several different convolutions, each of which has its own individual 
filter. Combining these feature maps results in the output of the 
convolution layer, which is created by the layer itself. 

After the phase of convolution, activation functions are used to 
transform the model into a nonlinear representation. This takes place 
immediately after the convolution phase. Even though the linear func-
tion, the sigmoid function, and the tanh are all feasible possibilities for 
activation functions, the proposed AlexNet uses the rectified linear unit 
(ReLU) rather than any of the other available options. This is because the 
ReLU enables substantially faster model training and provides near- 
global weight optimization. The reason for this is that the ReLU was 
designed. According to the findings of our investigation, the ReLU 
activation function can be characterised as follows:  

f(xi) = max (0, xi).                                                                          (2) 

The layer known as the pooling layer is the one that follows the 
convolution layer directly after it Equation. (2). This layer decreases the 
sample size of all the feature maps to speed up the process of overfitting 
and training the model. The max-pooling strategy, which is imple-
mented in the AlexNet that has been proposed, uses a random selection 
process to select the maximum value from the pooling window and then 
uses that value. 

In artificial neural networks, the FC layer is responsible for per-
forming operations that are comparable to those carried out by a fully 
connected layer. The FC layer is responsible for carrying out the clas-
sification process using the low-level features that have been automat-
ically extracted by the AlexNet, the convolution layer, and the pooling 
layer. 

In the final stage of classification, the SoftMax activation function is 
used to assign a probability value to each class in such a way that the 
probabilities sum up to 1. This ensures that the probabilities always add 
up to 1. The definition of the SoftMax function and it is feasible that this 
function could be replaced.  

S(y = j∨φ(i)) = eφ(i)
∑

keφ(i)k.                                                         (3) 

W- weight matrix. 
X - feature matrix 
φis generalized as  

φ =
∑

iWiXi=WTX                                                                                  

Fig. 2. Accuracy.  
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3.1.2. Decoder network 
The process of automatically extracting characteristics and classi-

fying them takes up most of the time that is allotted for the encoding 
stage. Fig. 3 depicts how we achieve consistency by employing the same 
AlexNet design for both the encoding and decoding processes. 

To rebuild the matching high-level segmented image from the low- 
level characteristics, the decoder framework makes use of deconvolu-
tion in conjunction with an upsampling of the layers. The output feature 
of the encoder demonstrates the use of a 1 × 1 convolution to produce a 
coarse segmentation of the input signal. This segmentation is provided 
by the encoder. Successive deconvolution layers upsample the output of 
the layer that came before them to provide features with a high 
resolution. 

The convolution process that takes place inside of the encoder, the 
size of the output is less than the size of the input. There is a problem 
with the way the decoding process is carried out. This study utilised a 
technique known as deconvolution in conjunction with up-sampling to 
make the input appear the same as the image. Even though the input had 
a lower resolution than the image, this was accomplished by making the 
input appear to be up sampled. 

To provide a description of the process of transpose convolution, the 
sparse matrix of the kernel is first multiplied by the output, and then it is 
transposed to provide a description of the process. The size of the input is 
raised so that the downscaling of the output, which occurs during 
decoding because of the convolution features, can be avoided. 

4. Results and Discussions 

Here dataset contains the 1428 radiographs (224 COVID-19, 504 
Healthy, 700 Pneumonia) are considered for experimentation. In addi-
tion to the tried-and-true validation procedures for Training and Testing, 
we also analysed the data with the well-known and extensively used 5- 
fold cross-validation method. These two methods were utilised in 
conjunction with one another to verify the reliability of the findings. 
Using randomization, the dataset was subdivided into five groups (folds) 
of the same size. 

While the remaining samples were utilised in the process of training, 
a single sample from each group was chosen at random to act as the test 
or validation dataset. This dataset was then compared to the results of 
the training process. The accuracy of the model that was developed with 
the assistance of the data that was included in the validation set. 

Every deep learning system that was put into operation had five 
different models that were designed expressly for it, and the result of 
each model was an evaluation score. The mean values of the model 
sensitivity, specificity, overall accuracy, and balanced accuracy were 
analysed so that we could provide a conclusion regarding the 

performance of the models.  

Accuracy = (TP + TN)/(TP + TN + FP + FN)                                   (4)  

Precision = TP/(TP + FP)                                                                (5)  

Recall = TP/(TP + FN)                                                                    (6)  

F-measure = (2*TP)/(2*TP + FN + FP)                                             (7) 

When compared to the findings obtained by the same deep learning, 
the latter allows for somewhat superior predicted outcomes. We have 
concluded that the records distribution between the training and testing 
dataset should be done using a method that is not random. It takes use of 
standard clinical data, the likes of which are available in pretty much 
any hospital that specialises in treating emergencies which shown in 
Figs. 2–5. 

Even though CT scans are superior to X-rays in terms of their ability 
to detect the changes that are diagnostic of viral pneumonia, it is highly 
unlikely that every SARS-CoV-2 suspect will access a scanner. This is the 
case even though CT scans are more effective than X-rays in this regard. 
Even though there is not yet any evidence, it is possible that people of 
different races will react to a viral pandemic in several different ways. 

Fig. 3. Precision.  
Fig. 4. Recall.  

Fig. 5. F-measure.  
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5. Conclusions 

Although the two tests appear to be complementary to one another, 
more tests ought to be developed because of the high risk of false pos-
itives, the high cost, and the difficulty in separating pneumonia caused 
by COVID-19 from pneumonia caused by other reasons. It was demon-
strated that the AlexNet approach and the method that utilised labora-
tory parameters were both equally effective at classifying images for 
COVID-19 detection, with respective accuracy scores of 97% and 98%. 
This was uncovered because of the investigation that was carried out. 
The utilisation of laboratory parameters enabled the collection of results 
that were more accurate. The findings of this research indicate that the 
diagnostic strategy that was proposed is a practical option that, to obtain 
more accurate results, can be paired with RTPCR and CT imaging. 
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